8199712: Flight Recorder
Reviewed-by: coleenp, ihse, erikj, dsamersoff, mseledtsov, egahlin, mgronlun
Contributed-by: erik.gahlin@oracle.com, markus.gronlund@oracle.com
/*
* Copyright (c) 2014, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/javaClasses.hpp"
#include "jfr/leakprofiler/chains/edge.hpp"
#include "jfr/leakprofiler/chains/edgeStore.hpp"
#include "jfr/leakprofiler/chains/edgeUtils.hpp"
#include "jfr/leakprofiler/utilities/unifiedOop.hpp"
#include "oops/fieldStreams.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/objArrayOop.inline.hpp"
#include "oops/oopsHierarchy.hpp"
#include "runtime/handles.inline.hpp"
bool EdgeUtils::is_leak_edge(const Edge& edge) {
return (const Edge*)edge.pointee()->mark() == &edge;
}
bool EdgeUtils::is_root(const Edge& edge) {
return edge.is_root();
}
static int field_offset(const Edge& edge) {
assert(!edge.is_root(), "invariant");
const oop ref_owner = edge.reference_owner();
assert(ref_owner != NULL, "invariant");
const oop* reference = UnifiedOop::decode(edge.reference());
assert(reference != NULL, "invariant");
assert(!UnifiedOop::is_narrow(reference), "invariant");
assert(!ref_owner->is_array(), "invariant");
assert(ref_owner->is_instance(), "invariant");
const int offset = (int)pointer_delta(reference, ref_owner, sizeof(char));
assert(offset < (ref_owner->size() * HeapWordSize), "invariant");
return offset;
}
static const InstanceKlass* field_type(const Edge& edge) {
assert(!edge.is_root() || !EdgeUtils::is_array_element(edge), "invariant");
return (const InstanceKlass*)edge.reference_owner_klass();
}
const Symbol* EdgeUtils::field_name_symbol(const Edge& edge) {
assert(!edge.is_root(), "invariant");
assert(!is_array_element(edge), "invariant");
const int offset = field_offset(edge);
const InstanceKlass* ik = field_type(edge);
while (ik != NULL) {
JavaFieldStream jfs(ik);
while (!jfs.done()) {
if (offset == jfs.offset()) {
return jfs.name();
}
jfs.next();
}
ik = (InstanceKlass*)ik->super();
}
return NULL;
}
jshort EdgeUtils::field_modifiers(const Edge& edge) {
const int offset = field_offset(edge);
const InstanceKlass* ik = field_type(edge);
while (ik != NULL) {
JavaFieldStream jfs(ik);
while (!jfs.done()) {
if (offset == jfs.offset()) {
return jfs.access_flags().as_short();
}
jfs.next();
}
ik = (InstanceKlass*)ik->super();
}
return 0;
}
bool EdgeUtils::is_array_element(const Edge& edge) {
assert(!edge.is_root(), "invariant");
const oop ref_owner = edge.reference_owner();
assert(ref_owner != NULL, "invariant");
return ref_owner->is_objArray();
}
static int array_offset(const Edge& edge) {
assert(!edge.is_root(), "invariant");
const oop ref_owner = edge.reference_owner();
assert(ref_owner != NULL, "invariant");
const oop* reference = UnifiedOop::decode(edge.reference());
assert(reference != NULL, "invariant");
assert(!UnifiedOop::is_narrow(reference), "invariant");
assert(ref_owner->is_array(), "invariant");
const objArrayOop ref_owner_array = static_cast<const objArrayOop>(ref_owner);
const int offset = (int)pointer_delta(reference, ref_owner_array->base(), heapOopSize);
assert(offset >= 0 && offset < ref_owner_array->length(), "invariant");
return offset;
}
int EdgeUtils::array_index(const Edge& edge) {
return is_array_element(edge) ? array_offset(edge) : 0;
}
int EdgeUtils::array_size(const Edge& edge) {
if (is_array_element(edge)) {
const oop ref_owner = edge.reference_owner();
assert(ref_owner != NULL, "invariant");
assert(ref_owner->is_objArray(), "invariant");
return ((objArrayOop)(ref_owner))->length();
}
return 0;
}
const Edge* EdgeUtils::root(const Edge& edge) {
const Edge* current = &edge;
const Edge* parent = current->parent();
while (parent != NULL) {
current = parent;
parent = current->parent();
}
return current;
}
// The number of references associated with the leak node;
// can be viewed as the leak node "context".
// Used to provide leak context for a "capped/skipped" reference chain.
static const size_t leak_context = 100;
// The number of references associated with the root node;
// can be viewed as the root node "context".
// Used to provide root context for a "capped/skipped" reference chain.
static const size_t root_context = 100;
// A limit on the reference chain depth to be serialized,
static const size_t max_ref_chain_depth = leak_context + root_context;
const RoutableEdge* skip_to(const RoutableEdge& edge, size_t skip_length) {
const RoutableEdge* current = &edge;
const RoutableEdge* parent = current->physical_parent();
size_t seek = 0;
while (parent != NULL && seek != skip_length) {
seek++;
current = parent;
parent = parent->physical_parent();
}
return current;
}
#ifdef ASSERT
static void validate_skip_target(const RoutableEdge* skip_target) {
assert(skip_target != NULL, "invariant");
assert(skip_target->distance_to_root() + 1 == root_context, "invariant");
assert(skip_target->is_sentinel(), "invariant");
}
static void validate_new_skip_edge(const RoutableEdge* new_skip_edge, const RoutableEdge* last_skip_edge, size_t adjustment) {
assert(new_skip_edge != NULL, "invariant");
assert(new_skip_edge->is_skip_edge(), "invariant");
if (last_skip_edge != NULL) {
const RoutableEdge* const target = skip_to(*new_skip_edge->logical_parent(), adjustment);
validate_skip_target(target->logical_parent());
return;
}
assert(last_skip_edge == NULL, "invariant");
// only one level of logical indirection
validate_skip_target(new_skip_edge->logical_parent());
}
#endif // ASSERT
static void install_logical_route(const RoutableEdge* new_skip_edge, size_t skip_target_distance) {
assert(new_skip_edge != NULL, "invariant");
assert(!new_skip_edge->is_skip_edge(), "invariant");
assert(!new_skip_edge->processed(), "invariant");
const RoutableEdge* const skip_target = skip_to(*new_skip_edge, skip_target_distance);
assert(skip_target != NULL, "invariant");
new_skip_edge->set_skip_edge(skip_target);
new_skip_edge->set_skip_length(skip_target_distance);
assert(new_skip_edge->is_skip_edge(), "invariant");
assert(new_skip_edge->logical_parent() == skip_target, "invariant");
}
static const RoutableEdge* find_last_skip_edge(const RoutableEdge& edge, size_t& distance) {
assert(distance == 0, "invariant");
const RoutableEdge* current = &edge;
while (current != NULL) {
if (current->is_skip_edge() && current->skip_edge()->is_sentinel()) {
return current;
}
current = current->physical_parent();
++distance;
}
return current;
}
static void collapse_overlapping_chain(const RoutableEdge& edge,
const RoutableEdge* first_processed_edge,
size_t first_processed_distance) {
assert(first_processed_edge != NULL, "invariant");
// first_processed_edge is already processed / written
assert(first_processed_edge->processed(), "invariant");
assert(first_processed_distance + 1 <= leak_context, "invariant");
// from this first processed edge, attempt to fetch the last skip edge
size_t last_skip_edge_distance = 0;
const RoutableEdge* const last_skip_edge = find_last_skip_edge(*first_processed_edge, last_skip_edge_distance);
const size_t distance_discovered = first_processed_distance + last_skip_edge_distance + 1;
if (distance_discovered <= leak_context || (last_skip_edge == NULL && distance_discovered <= max_ref_chain_depth)) {
// complete chain can be accommodated without modification
return;
}
// backtrack one edge from existing processed edge
const RoutableEdge* const new_skip_edge = skip_to(edge, first_processed_distance - 1);
assert(new_skip_edge != NULL, "invariant");
assert(!new_skip_edge->processed(), "invariant");
assert(new_skip_edge->parent() == first_processed_edge, "invariant");
size_t adjustment = 0;
if (last_skip_edge != NULL) {
assert(leak_context - 1 > first_processed_distance - 1, "invariant");
adjustment = leak_context - first_processed_distance - 1;
assert(last_skip_edge_distance + 1 > adjustment, "invariant");
install_logical_route(new_skip_edge, last_skip_edge_distance + 1 - adjustment);
} else {
install_logical_route(new_skip_edge, last_skip_edge_distance + 1 - root_context);
new_skip_edge->logical_parent()->set_skip_length(1); // sentinel
}
DEBUG_ONLY(validate_new_skip_edge(new_skip_edge, last_skip_edge, adjustment);)
}
static void collapse_non_overlapping_chain(const RoutableEdge& edge,
const RoutableEdge* first_processed_edge,
size_t first_processed_distance) {
assert(first_processed_edge != NULL, "invariant");
assert(!first_processed_edge->processed(), "invariant");
// this implies that the first "processed" edge is the leak context relative "leaf"
assert(first_processed_distance + 1 == leak_context, "invariant");
const size_t distance_to_root = edge.distance_to_root();
if (distance_to_root + 1 <= max_ref_chain_depth) {
// complete chain can be accommodated without constructing a skip edge
return;
}
install_logical_route(first_processed_edge, distance_to_root + 1 - first_processed_distance - root_context);
first_processed_edge->logical_parent()->set_skip_length(1); // sentinel
DEBUG_ONLY(validate_new_skip_edge(first_processed_edge, NULL, 0);)
}
static const RoutableEdge* processed_edge(const RoutableEdge& edge, size_t& distance) {
assert(distance == 0, "invariant");
const RoutableEdge* current = &edge;
while (current != NULL && distance < leak_context - 1) {
if (current->processed()) {
return current;
}
current = current->physical_parent();
++distance;
}
assert(distance <= leak_context - 1, "invariant");
return current;
}
/*
* Some vocabulary:
* -----------
* "Context" is an interval in the chain, it is associcated with an edge and it signifies a number of connected edges.
* "Processed / written" means an edge that has already been serialized.
* "Skip edge" is an edge that contains additional information for logical routing purposes.
* "Skip target" is an edge used as a destination for a skip edge
*/
void EdgeUtils::collapse_chain(const RoutableEdge& edge) {
assert(is_leak_edge(edge), "invariant");
// attempt to locate an already processed edge inside current leak context (if any)
size_t first_processed_distance = 0;
const RoutableEdge* const first_processed_edge = processed_edge(edge, first_processed_distance);
if (first_processed_edge == NULL) {
return;
}
if (first_processed_edge->processed()) {
collapse_overlapping_chain(edge, first_processed_edge, first_processed_distance);
} else {
collapse_non_overlapping_chain(edge, first_processed_edge, first_processed_distance);
}
assert(edge.logical_distance_to_root() + 1 <= max_ref_chain_depth, "invariant");
}