/*
* Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_Runtime1.hpp"
#include "classfile/systemDictionary.hpp"
#include "gc_interface/collectedHeap.hpp"
#include "interpreter/interpreter.hpp"
#include "oops/arrayOop.hpp"
#include "oops/markOop.hpp"
#include "runtime/basicLock.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/os.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
int C1_MacroAssembler::lock_object(Register hdr, Register obj, Register disp_hdr, Register scratch, Label& slow_case) {
const int aligned_mask = BytesPerWord -1;
const int hdr_offset = oopDesc::mark_offset_in_bytes();
assert(hdr == rax, "hdr must be rax, for the cmpxchg instruction");
assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different");
Label done;
int null_check_offset = -1;
verify_oop(obj);
// save object being locked into the BasicObjectLock
movptr(Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()), obj);
if (UseBiasedLocking) {
assert(scratch != noreg, "should have scratch register at this point");
null_check_offset = biased_locking_enter(disp_hdr, obj, hdr, scratch, false, done, &slow_case);
} else {
null_check_offset = offset();
}
// Load object header
movptr(hdr, Address(obj, hdr_offset));
// and mark it as unlocked
orptr(hdr, markOopDesc::unlocked_value);
// save unlocked object header into the displaced header location on the stack
movptr(Address(disp_hdr, 0), hdr);
// test if object header is still the same (i.e. unlocked), and if so, store the
// displaced header address in the object header - if it is not the same, get the
// object header instead
if (os::is_MP()) MacroAssembler::lock(); // must be immediately before cmpxchg!
cmpxchgptr(disp_hdr, Address(obj, hdr_offset));
// if the object header was the same, we're done
if (PrintBiasedLockingStatistics) {
cond_inc32(Assembler::equal,
ExternalAddress((address)BiasedLocking::fast_path_entry_count_addr()));
}
jcc(Assembler::equal, done);
// if the object header was not the same, it is now in the hdr register
// => test if it is a stack pointer into the same stack (recursive locking), i.e.:
//
// 1) (hdr & aligned_mask) == 0
// 2) rsp <= hdr
// 3) hdr <= rsp + page_size
//
// these 3 tests can be done by evaluating the following expression:
//
// (hdr - rsp) & (aligned_mask - page_size)
//
// assuming both the stack pointer and page_size have their least
// significant 2 bits cleared and page_size is a power of 2
subptr(hdr, rsp);
andptr(hdr, aligned_mask - os::vm_page_size());
// for recursive locking, the result is zero => save it in the displaced header
// location (NULL in the displaced hdr location indicates recursive locking)
movptr(Address(disp_hdr, 0), hdr);
// otherwise we don't care about the result and handle locking via runtime call
jcc(Assembler::notZero, slow_case);
// done
bind(done);
return null_check_offset;
}
void C1_MacroAssembler::unlock_object(Register hdr, Register obj, Register disp_hdr, Label& slow_case) {
const int aligned_mask = BytesPerWord -1;
const int hdr_offset = oopDesc::mark_offset_in_bytes();
assert(disp_hdr == rax, "disp_hdr must be rax, for the cmpxchg instruction");
assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different");
Label done;
if (UseBiasedLocking) {
// load object
movptr(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()));
biased_locking_exit(obj, hdr, done);
}
// load displaced header
movptr(hdr, Address(disp_hdr, 0));
// if the loaded hdr is NULL we had recursive locking
testptr(hdr, hdr);
// if we had recursive locking, we are done
jcc(Assembler::zero, done);
if (!UseBiasedLocking) {
// load object
movptr(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()));
}
verify_oop(obj);
// test if object header is pointing to the displaced header, and if so, restore
// the displaced header in the object - if the object header is not pointing to
// the displaced header, get the object header instead
if (os::is_MP()) MacroAssembler::lock(); // must be immediately before cmpxchg!
cmpxchgptr(hdr, Address(obj, hdr_offset));
// if the object header was not pointing to the displaced header,
// we do unlocking via runtime call
jcc(Assembler::notEqual, slow_case);
// done
bind(done);
}
// Defines obj, preserves var_size_in_bytes
void C1_MacroAssembler::try_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2, Label& slow_case) {
if (UseTLAB) {
tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
} else {
eden_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
incr_allocated_bytes(noreg, var_size_in_bytes, con_size_in_bytes, t1);
}
}
void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register t1, Register t2) {
assert_different_registers(obj, klass, len);
if (UseBiasedLocking && !len->is_valid()) {
assert_different_registers(obj, klass, len, t1, t2);
movptr(t1, Address(klass, Klass::prototype_header_offset()));
movptr(Address(obj, oopDesc::mark_offset_in_bytes()), t1);
} else {
// This assumes that all prototype bits fit in an int32_t
movptr(Address(obj, oopDesc::mark_offset_in_bytes ()), (int32_t)(intptr_t)markOopDesc::prototype());
}
#ifdef _LP64
if (UseCompressedClassPointers) { // Take care not to kill klass
movptr(t1, klass);
encode_klass_not_null(t1);
movl(Address(obj, oopDesc::klass_offset_in_bytes()), t1);
} else
#endif
{
movptr(Address(obj, oopDesc::klass_offset_in_bytes()), klass);
}
if (len->is_valid()) {
movl(Address(obj, arrayOopDesc::length_offset_in_bytes()), len);
}
#ifdef _LP64
else if (UseCompressedClassPointers) {
xorptr(t1, t1);
store_klass_gap(obj, t1);
}
#endif
}
// preserves obj, destroys len_in_bytes
void C1_MacroAssembler::initialize_body(Register obj, Register len_in_bytes, int hdr_size_in_bytes, Register t1) {
Label done;
assert(obj != len_in_bytes && obj != t1 && t1 != len_in_bytes, "registers must be different");
assert((hdr_size_in_bytes & (BytesPerWord - 1)) == 0, "header size is not a multiple of BytesPerWord");
Register index = len_in_bytes;
// index is positive and ptr sized
subptr(index, hdr_size_in_bytes);
jcc(Assembler::zero, done);
// initialize topmost word, divide index by 2, check if odd and test if zero
// note: for the remaining code to work, index must be a multiple of BytesPerWord
#ifdef ASSERT
{ Label L;
testptr(index, BytesPerWord - 1);
jcc(Assembler::zero, L);
stop("index is not a multiple of BytesPerWord");
bind(L);
}
#endif
xorptr(t1, t1); // use _zero reg to clear memory (shorter code)
if (UseIncDec) {
shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set
} else {
shrptr(index, 2); // use 2 instructions to avoid partial flag stall
shrptr(index, 1);
}
#ifndef _LP64
// index could have been not a multiple of 8 (i.e., bit 2 was set)
{ Label even;
// note: if index was a multiple of 8, than it cannot
// be 0 now otherwise it must have been 0 before
// => if it is even, we don't need to check for 0 again
jcc(Assembler::carryClear, even);
// clear topmost word (no jump needed if conditional assignment would work here)
movptr(Address(obj, index, Address::times_8, hdr_size_in_bytes - 0*BytesPerWord), t1);
// index could be 0 now, need to check again
jcc(Assembler::zero, done);
bind(even);
}
#endif // !_LP64
// initialize remaining object fields: rdx is a multiple of 2 now
{ Label loop;
bind(loop);
movptr(Address(obj, index, Address::times_8, hdr_size_in_bytes - 1*BytesPerWord), t1);
NOT_LP64(movptr(Address(obj, index, Address::times_8, hdr_size_in_bytes - 2*BytesPerWord), t1);)
decrement(index);
jcc(Assembler::notZero, loop);
}
// done
bind(done);
}
void C1_MacroAssembler::allocate_object(Register obj, Register t1, Register t2, int header_size, int object_size, Register klass, Label& slow_case) {
assert(obj == rax, "obj must be in rax, for cmpxchg");
assert_different_registers(obj, t1, t2); // XXX really?
assert(header_size >= 0 && object_size >= header_size, "illegal sizes");
try_allocate(obj, noreg, object_size * BytesPerWord, t1, t2, slow_case);
initialize_object(obj, klass, noreg, object_size * HeapWordSize, t1, t2);
}
void C1_MacroAssembler::initialize_object(Register obj, Register klass, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2) {
assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0,
"con_size_in_bytes is not multiple of alignment");
const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize;
initialize_header(obj, klass, noreg, t1, t2);
// clear rest of allocated space
const Register t1_zero = t1;
const Register index = t2;
const int threshold = 6 * BytesPerWord; // approximate break even point for code size (see comments below)
if (var_size_in_bytes != noreg) {
mov(index, var_size_in_bytes);
initialize_body(obj, index, hdr_size_in_bytes, t1_zero);
} else if (con_size_in_bytes <= threshold) {
// use explicit null stores
// code size = 2 + 3*n bytes (n = number of fields to clear)
xorptr(t1_zero, t1_zero); // use t1_zero reg to clear memory (shorter code)
for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += BytesPerWord)
movptr(Address(obj, i), t1_zero);
} else if (con_size_in_bytes > hdr_size_in_bytes) {
// use loop to null out the fields
// code size = 16 bytes for even n (n = number of fields to clear)
// initialize last object field first if odd number of fields
xorptr(t1_zero, t1_zero); // use t1_zero reg to clear memory (shorter code)
movptr(index, (con_size_in_bytes - hdr_size_in_bytes) >> 3);
// initialize last object field if constant size is odd
if (((con_size_in_bytes - hdr_size_in_bytes) & 4) != 0)
movptr(Address(obj, con_size_in_bytes - (1*BytesPerWord)), t1_zero);
// initialize remaining object fields: rdx is a multiple of 2
{ Label loop;
bind(loop);
movptr(Address(obj, index, Address::times_8, hdr_size_in_bytes - (1*BytesPerWord)),
t1_zero);
NOT_LP64(movptr(Address(obj, index, Address::times_8, hdr_size_in_bytes - (2*BytesPerWord)),
t1_zero);)
decrement(index);
jcc(Assembler::notZero, loop);
}
}
if (CURRENT_ENV->dtrace_alloc_probes()) {
assert(obj == rax, "must be");
call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)));
}
verify_oop(obj);
}
void C1_MacroAssembler::allocate_array(Register obj, Register len, Register t1, Register t2, int header_size, Address::ScaleFactor f, Register klass, Label& slow_case) {
assert(obj == rax, "obj must be in rax, for cmpxchg");
assert_different_registers(obj, len, t1, t2, klass);
// determine alignment mask
assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work");
// check for negative or excessive length
cmpptr(len, (int32_t)max_array_allocation_length);
jcc(Assembler::above, slow_case);
const Register arr_size = t2; // okay to be the same
// align object end
movptr(arr_size, (int32_t)header_size * BytesPerWord + MinObjAlignmentInBytesMask);
lea(arr_size, Address(arr_size, len, f));
andptr(arr_size, ~MinObjAlignmentInBytesMask);
try_allocate(obj, arr_size, 0, t1, t2, slow_case);
initialize_header(obj, klass, len, t1, t2);
// clear rest of allocated space
const Register len_zero = len;
initialize_body(obj, arr_size, header_size * BytesPerWord, len_zero);
if (CURRENT_ENV->dtrace_alloc_probes()) {
assert(obj == rax, "must be");
call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)));
}
verify_oop(obj);
}
void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache) {
verify_oop(receiver);
// explicit NULL check not needed since load from [klass_offset] causes a trap
// check against inline cache
assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()), "must add explicit null check");
int start_offset = offset();
if (UseCompressedClassPointers) {
load_klass(rscratch1, receiver);
cmpptr(rscratch1, iCache);
} else {
cmpptr(iCache, Address(receiver, oopDesc::klass_offset_in_bytes()));
}
// if icache check fails, then jump to runtime routine
// Note: RECEIVER must still contain the receiver!
jump_cc(Assembler::notEqual,
RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
assert(UseCompressedClassPointers || offset() - start_offset == ic_cmp_size, "check alignment in emit_method_entry");
}
void C1_MacroAssembler::build_frame(int frame_size_in_bytes, int bang_size_in_bytes) {
assert(bang_size_in_bytes >= frame_size_in_bytes, "stack bang size incorrect");
// Make sure there is enough stack space for this method's activation.
// Note that we do this before doing an enter(). This matches the
// ordering of C2's stack overflow check / rsp decrement and allows
// the SharedRuntime stack overflow handling to be consistent
// between the two compilers.
generate_stack_overflow_check(bang_size_in_bytes);
push(rbp);
#ifdef TIERED
// c2 leaves fpu stack dirty. Clean it on entry
if (UseSSE < 2 ) {
empty_FPU_stack();
}
#endif // TIERED
decrement(rsp, frame_size_in_bytes); // does not emit code for frame_size == 0
}
void C1_MacroAssembler::remove_frame(int frame_size_in_bytes) {
increment(rsp, frame_size_in_bytes); // Does not emit code for frame_size == 0
pop(rbp);
}
void C1_MacroAssembler::unverified_entry(Register receiver, Register ic_klass) {
if (C1Breakpoint) int3();
inline_cache_check(receiver, ic_klass);
}
void C1_MacroAssembler::verified_entry() {
if (C1Breakpoint || VerifyFPU || !UseStackBanging) {
// Verified Entry first instruction should be 5 bytes long for correct
// patching by patch_verified_entry().
//
// C1Breakpoint and VerifyFPU have one byte first instruction.
// Also first instruction will be one byte "push(rbp)" if stack banging
// code is not generated (see build_frame() above).
// For all these cases generate long instruction first.
fat_nop();
}
if (C1Breakpoint)int3();
// build frame
verify_FPU(0, "method_entry");
}
#ifndef PRODUCT
void C1_MacroAssembler::verify_stack_oop(int stack_offset) {
if (!VerifyOops) return;
verify_oop_addr(Address(rsp, stack_offset));
}
void C1_MacroAssembler::verify_not_null_oop(Register r) {
if (!VerifyOops) return;
Label not_null;
testptr(r, r);
jcc(Assembler::notZero, not_null);
stop("non-null oop required");
bind(not_null);
verify_oop(r);
}
void C1_MacroAssembler::invalidate_registers(bool inv_rax, bool inv_rbx, bool inv_rcx, bool inv_rdx, bool inv_rsi, bool inv_rdi) {
#ifdef ASSERT
if (inv_rax) movptr(rax, 0xDEAD);
if (inv_rbx) movptr(rbx, 0xDEAD);
if (inv_rcx) movptr(rcx, 0xDEAD);
if (inv_rdx) movptr(rdx, 0xDEAD);
if (inv_rsi) movptr(rsi, 0xDEAD);
if (inv_rdi) movptr(rdi, 0xDEAD);
#endif
}
#endif // ifndef PRODUCT