8136421: JEP 243: Java-Level JVM Compiler Interface
Reviewed-by: ihse, alanb, roland, coleenp, iveresov, kvn, kbarrett
/*
* Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_X86_VM_NATIVEINST_X86_HPP
#define CPU_X86_VM_NATIVEINST_X86_HPP
#include "asm/assembler.hpp"
#include "memory/allocation.hpp"
#include "runtime/icache.hpp"
#include "runtime/os.hpp"
#include "utilities/top.hpp"
// We have interfaces for the following instructions:
// - NativeInstruction
// - - NativeCall
// - - NativeMovConstReg
// - - NativeMovConstRegPatching
// - - NativeMovRegMem
// - - NativeMovRegMemPatching
// - - NativeJump
// - - NativeIllegalOpCode
// - - NativeGeneralJump
// - - NativeReturn
// - - NativeReturnX (return with argument)
// - - NativePushConst
// - - NativeTstRegMem
// The base class for different kinds of native instruction abstractions.
// Provides the primitive operations to manipulate code relative to this.
class NativeInstruction VALUE_OBJ_CLASS_SPEC {
friend class Relocation;
public:
enum Intel_specific_constants {
nop_instruction_code = 0x90,
nop_instruction_size = 1
};
bool is_nop() { return ubyte_at(0) == nop_instruction_code; }
inline bool is_call();
inline bool is_call_reg();
inline bool is_illegal();
inline bool is_return();
inline bool is_jump();
inline bool is_cond_jump();
inline bool is_safepoint_poll();
inline bool is_mov_literal64();
protected:
address addr_at(int offset) const { return address(this) + offset; }
s_char sbyte_at(int offset) const { return *(s_char*) addr_at(offset); }
u_char ubyte_at(int offset) const { return *(u_char*) addr_at(offset); }
jint int_at(int offset) const { return *(jint*) addr_at(offset); }
intptr_t ptr_at(int offset) const { return *(intptr_t*) addr_at(offset); }
oop oop_at (int offset) const { return *(oop*) addr_at(offset); }
void set_char_at(int offset, char c) { *addr_at(offset) = (u_char)c; wrote(offset); }
void set_int_at(int offset, jint i) { *(jint*)addr_at(offset) = i; wrote(offset); }
void set_ptr_at (int offset, intptr_t ptr) { *(intptr_t*) addr_at(offset) = ptr; wrote(offset); }
void set_oop_at (int offset, oop o) { *(oop*) addr_at(offset) = o; wrote(offset); }
// This doesn't really do anything on Intel, but it is the place where
// cache invalidation belongs, generically:
void wrote(int offset);
public:
// unit test stuff
static void test() {} // override for testing
inline friend NativeInstruction* nativeInstruction_at(address address);
};
inline NativeInstruction* nativeInstruction_at(address address) {
NativeInstruction* inst = (NativeInstruction*)address;
#ifdef ASSERT
//inst->verify();
#endif
return inst;
}
inline NativeCall* nativeCall_at(address address);
// The NativeCall is an abstraction for accessing/manipulating native call imm32/rel32off
// instructions (used to manipulate inline caches, primitive & dll calls, etc.).
class NativeCall: public NativeInstruction {
public:
enum Intel_specific_constants {
instruction_code = 0xE8,
instruction_size = 5,
instruction_offset = 0,
displacement_offset = 1,
return_address_offset = 5
};
enum { cache_line_size = BytesPerWord }; // conservative estimate!
address instruction_address() const { return addr_at(instruction_offset); }
address next_instruction_address() const { return addr_at(return_address_offset); }
int displacement() const { return (jint) int_at(displacement_offset); }
address displacement_address() const { return addr_at(displacement_offset); }
address return_address() const { return addr_at(return_address_offset); }
address destination() const;
void set_destination(address dest) {
#ifdef AMD64
assert((labs((intptr_t) dest - (intptr_t) return_address()) &
0xFFFFFFFF00000000) == 0,
"must be 32bit offset");
#endif // AMD64
set_int_at(displacement_offset, dest - return_address());
}
void set_destination_mt_safe(address dest);
void verify_alignment() { assert((intptr_t)addr_at(displacement_offset) % BytesPerInt == 0, "must be aligned"); }
void verify();
void print();
// Creation
inline friend NativeCall* nativeCall_at(address address);
inline friend NativeCall* nativeCall_before(address return_address);
static bool is_call_at(address instr) {
return ((*instr) & 0xFF) == NativeCall::instruction_code;
}
static bool is_call_before(address return_address) {
return is_call_at(return_address - NativeCall::return_address_offset);
}
static bool is_call_to(address instr, address target) {
return nativeInstruction_at(instr)->is_call() &&
nativeCall_at(instr)->destination() == target;
}
// MT-safe patching of a call instruction.
static void insert(address code_pos, address entry);
static void replace_mt_safe(address instr_addr, address code_buffer);
};
inline NativeCall* nativeCall_at(address address) {
NativeCall* call = (NativeCall*)(address - NativeCall::instruction_offset);
#ifdef ASSERT
call->verify();
#endif
return call;
}
inline NativeCall* nativeCall_before(address return_address) {
NativeCall* call = (NativeCall*)(return_address - NativeCall::return_address_offset);
#ifdef ASSERT
call->verify();
#endif
return call;
}
class NativeCallReg: public NativeInstruction {
public:
enum Intel_specific_constants {
instruction_code = 0xFF,
instruction_offset = 0,
return_address_offset_norex = 2,
return_address_offset_rex = 3
};
int next_instruction_offset() const {
if (ubyte_at(0) == NativeCallReg::instruction_code) {
return return_address_offset_norex;
} else {
return return_address_offset_rex;
}
}
};
// An interface for accessing/manipulating native mov reg, imm32 instructions.
// (used to manipulate inlined 32bit data dll calls, etc.)
class NativeMovConstReg: public NativeInstruction {
#ifdef AMD64
static const bool has_rex = true;
static const int rex_size = 1;
#else
static const bool has_rex = false;
static const int rex_size = 0;
#endif // AMD64
public:
enum Intel_specific_constants {
instruction_code = 0xB8,
instruction_size = 1 + rex_size + wordSize,
instruction_offset = 0,
data_offset = 1 + rex_size,
next_instruction_offset = instruction_size,
register_mask = 0x07
};
address instruction_address() const { return addr_at(instruction_offset); }
address next_instruction_address() const { return addr_at(next_instruction_offset); }
intptr_t data() const { return ptr_at(data_offset); }
void set_data(intptr_t x) { set_ptr_at(data_offset, x); }
void verify();
void print();
// unit test stuff
static void test() {}
// Creation
inline friend NativeMovConstReg* nativeMovConstReg_at(address address);
inline friend NativeMovConstReg* nativeMovConstReg_before(address address);
};
inline NativeMovConstReg* nativeMovConstReg_at(address address) {
NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_offset);
#ifdef ASSERT
test->verify();
#endif
return test;
}
inline NativeMovConstReg* nativeMovConstReg_before(address address) {
NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_size - NativeMovConstReg::instruction_offset);
#ifdef ASSERT
test->verify();
#endif
return test;
}
class NativeMovConstRegPatching: public NativeMovConstReg {
private:
friend NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address) {
NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)(address - instruction_offset);
#ifdef ASSERT
test->verify();
#endif
return test;
}
};
// An interface for accessing/manipulating native moves of the form:
// mov[b/w/l/q] [reg + offset], reg (instruction_code_reg2mem)
// mov[b/w/l/q] reg, [reg+offset] (instruction_code_mem2reg
// mov[s/z]x[w/b/q] [reg + offset], reg
// fld_s [reg+offset]
// fld_d [reg+offset]
// fstp_s [reg + offset]
// fstp_d [reg + offset]
// mov_literal64 scratch,<pointer> ; mov[b/w/l/q] 0(scratch),reg | mov[b/w/l/q] reg,0(scratch)
//
// Warning: These routines must be able to handle any instruction sequences
// that are generated as a result of the load/store byte,word,long
// macros. For example: The load_unsigned_byte instruction generates
// an xor reg,reg inst prior to generating the movb instruction. This
// class must skip the xor instruction.
class NativeMovRegMem: public NativeInstruction {
public:
enum Intel_specific_constants {
instruction_prefix_wide_lo = Assembler::REX,
instruction_prefix_wide_hi = Assembler::REX_WRXB,
instruction_code_xor = 0x33,
instruction_extended_prefix = 0x0F,
instruction_code_mem2reg_movslq = 0x63,
instruction_code_mem2reg_movzxb = 0xB6,
instruction_code_mem2reg_movsxb = 0xBE,
instruction_code_mem2reg_movzxw = 0xB7,
instruction_code_mem2reg_movsxw = 0xBF,
instruction_operandsize_prefix = 0x66,
instruction_code_reg2mem = 0x89,
instruction_code_mem2reg = 0x8b,
instruction_code_reg2memb = 0x88,
instruction_code_mem2regb = 0x8a,
instruction_code_float_s = 0xd9,
instruction_code_float_d = 0xdd,
instruction_code_long_volatile = 0xdf,
instruction_code_xmm_ss_prefix = 0xf3,
instruction_code_xmm_sd_prefix = 0xf2,
instruction_code_xmm_code = 0x0f,
instruction_code_xmm_load = 0x10,
instruction_code_xmm_store = 0x11,
instruction_code_xmm_lpd = 0x12,
instruction_VEX_prefix_2bytes = Assembler::VEX_2bytes,
instruction_VEX_prefix_3bytes = Assembler::VEX_3bytes,
instruction_size = 4,
instruction_offset = 0,
data_offset = 2,
next_instruction_offset = 4
};
// helper
int instruction_start() const;
address instruction_address() const;
address next_instruction_address() const;
int offset() const;
void set_offset(int x);
void add_offset_in_bytes(int add_offset) { set_offset ( ( offset() + add_offset ) ); }
void verify();
void print ();
// unit test stuff
static void test() {}
private:
inline friend NativeMovRegMem* nativeMovRegMem_at (address address);
};
inline NativeMovRegMem* nativeMovRegMem_at (address address) {
NativeMovRegMem* test = (NativeMovRegMem*)(address - NativeMovRegMem::instruction_offset);
#ifdef ASSERT
test->verify();
#endif
return test;
}
// An interface for accessing/manipulating native leal instruction of form:
// leal reg, [reg + offset]
class NativeLoadAddress: public NativeMovRegMem {
#ifdef AMD64
static const bool has_rex = true;
static const int rex_size = 1;
#else
static const bool has_rex = false;
static const int rex_size = 0;
#endif // AMD64
public:
enum Intel_specific_constants {
instruction_prefix_wide = Assembler::REX_W,
instruction_prefix_wide_extended = Assembler::REX_WB,
lea_instruction_code = 0x8D,
mov64_instruction_code = 0xB8
};
void verify();
void print ();
// unit test stuff
static void test() {}
private:
friend NativeLoadAddress* nativeLoadAddress_at (address address) {
NativeLoadAddress* test = (NativeLoadAddress*)(address - instruction_offset);
#ifdef ASSERT
test->verify();
#endif
return test;
}
};
// jump rel32off
class NativeJump: public NativeInstruction {
public:
enum Intel_specific_constants {
instruction_code = 0xe9,
instruction_size = 5,
instruction_offset = 0,
data_offset = 1,
next_instruction_offset = 5
};
address instruction_address() const { return addr_at(instruction_offset); }
address next_instruction_address() const { return addr_at(next_instruction_offset); }
address jump_destination() const {
address dest = (int_at(data_offset)+next_instruction_address());
// 32bit used to encode unresolved jmp as jmp -1
// 64bit can't produce this so it used jump to self.
// Now 32bit and 64bit use jump to self as the unresolved address
// which the inline cache code (and relocs) know about
// return -1 if jump to self
dest = (dest == (address) this) ? (address) -1 : dest;
return dest;
}
void set_jump_destination(address dest) {
intptr_t val = dest - next_instruction_address();
if (dest == (address) -1) {
val = -5; // jump to self
}
#ifdef AMD64
assert((labs(val) & 0xFFFFFFFF00000000) == 0 || dest == (address)-1, "must be 32bit offset or -1");
#endif // AMD64
set_int_at(data_offset, (jint)val);
}
// Creation
inline friend NativeJump* nativeJump_at(address address);
void verify();
// Unit testing stuff
static void test() {}
// Insertion of native jump instruction
static void insert(address code_pos, address entry);
// MT-safe insertion of native jump at verified method entry
static void check_verified_entry_alignment(address entry, address verified_entry);
static void patch_verified_entry(address entry, address verified_entry, address dest);
};
inline NativeJump* nativeJump_at(address address) {
NativeJump* jump = (NativeJump*)(address - NativeJump::instruction_offset);
#ifdef ASSERT
jump->verify();
#endif
return jump;
}
// Handles all kinds of jump on Intel. Long/far, conditional/unconditional
class NativeGeneralJump: public NativeInstruction {
public:
enum Intel_specific_constants {
// Constants does not apply, since the lengths and offsets depends on the actual jump
// used
// Instruction codes:
// Unconditional jumps: 0xE9 (rel32off), 0xEB (rel8off)
// Conditional jumps: 0x0F8x (rel32off), 0x7x (rel8off)
unconditional_long_jump = 0xe9,
unconditional_short_jump = 0xeb,
instruction_size = 5
};
address instruction_address() const { return addr_at(0); }
address jump_destination() const;
// Creation
inline friend NativeGeneralJump* nativeGeneralJump_at(address address);
// Insertion of native general jump instruction
static void insert_unconditional(address code_pos, address entry);
static void replace_mt_safe(address instr_addr, address code_buffer);
void verify();
};
inline NativeGeneralJump* nativeGeneralJump_at(address address) {
NativeGeneralJump* jump = (NativeGeneralJump*)(address);
debug_only(jump->verify();)
return jump;
}
class NativePopReg : public NativeInstruction {
public:
enum Intel_specific_constants {
instruction_code = 0x58,
instruction_size = 1,
instruction_offset = 0,
data_offset = 1,
next_instruction_offset = 1
};
// Insert a pop instruction
static void insert(address code_pos, Register reg);
};
class NativeIllegalInstruction: public NativeInstruction {
public:
enum Intel_specific_constants {
instruction_code = 0x0B0F, // Real byte order is: 0x0F, 0x0B
instruction_size = 2,
instruction_offset = 0,
next_instruction_offset = 2
};
// Insert illegal opcode as specific address
static void insert(address code_pos);
};
// return instruction that does not pop values of the stack
class NativeReturn: public NativeInstruction {
public:
enum Intel_specific_constants {
instruction_code = 0xC3,
instruction_size = 1,
instruction_offset = 0,
next_instruction_offset = 1
};
};
// return instruction that does pop values of the stack
class NativeReturnX: public NativeInstruction {
public:
enum Intel_specific_constants {
instruction_code = 0xC2,
instruction_size = 2,
instruction_offset = 0,
next_instruction_offset = 2
};
};
// Simple test vs memory
class NativeTstRegMem: public NativeInstruction {
public:
enum Intel_specific_constants {
instruction_rex_prefix_mask = 0xF0,
instruction_rex_prefix = Assembler::REX,
instruction_code_memXregl = 0x85,
modrm_mask = 0x38, // select reg from the ModRM byte
modrm_reg = 0x00 // rax
};
};
inline bool NativeInstruction::is_illegal() { return (short)int_at(0) == (short)NativeIllegalInstruction::instruction_code; }
inline bool NativeInstruction::is_call() { return ubyte_at(0) == NativeCall::instruction_code; }
inline bool NativeInstruction::is_call_reg() { return ubyte_at(0) == NativeCallReg::instruction_code ||
(ubyte_at(1) == NativeCallReg::instruction_code &&
(ubyte_at(0) == Assembler::REX || ubyte_at(0) == Assembler::REX_B)); }
inline bool NativeInstruction::is_return() { return ubyte_at(0) == NativeReturn::instruction_code ||
ubyte_at(0) == NativeReturnX::instruction_code; }
inline bool NativeInstruction::is_jump() { return ubyte_at(0) == NativeJump::instruction_code ||
ubyte_at(0) == 0xEB; /* short jump */ }
inline bool NativeInstruction::is_cond_jump() { return (int_at(0) & 0xF0FF) == 0x800F /* long jump */ ||
(ubyte_at(0) & 0xF0) == 0x70; /* short jump */ }
inline bool NativeInstruction::is_safepoint_poll() {
#ifdef AMD64
// Try decoding a near safepoint first:
if (ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
ubyte_at(1) == 0x05) { // 00 rax 101
address fault = addr_at(6) + int_at(2);
NOT_JVMCI(assert(!Assembler::is_polling_page_far(), "unexpected poll encoding");)
return os::is_poll_address(fault);
}
// Now try decoding a far safepoint:
// two cases, depending on the choice of the base register in the address.
if (((ubyte_at(0) & NativeTstRegMem::instruction_rex_prefix_mask) == NativeTstRegMem::instruction_rex_prefix &&
ubyte_at(1) == NativeTstRegMem::instruction_code_memXregl &&
(ubyte_at(2) & NativeTstRegMem::modrm_mask) == NativeTstRegMem::modrm_reg) ||
ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
(ubyte_at(1) & NativeTstRegMem::modrm_mask) == NativeTstRegMem::modrm_reg) {
NOT_JVMCI(assert(Assembler::is_polling_page_far(), "unexpected poll encoding");)
return true;
}
return false;
#else
return ( ubyte_at(0) == NativeMovRegMem::instruction_code_mem2reg ||
ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl ) &&
(ubyte_at(1)&0xC7) == 0x05 && /* Mod R/M == disp32 */
(os::is_poll_address((address)int_at(2)));
#endif // AMD64
}
inline bool NativeInstruction::is_mov_literal64() {
#ifdef AMD64
return ((ubyte_at(0) == Assembler::REX_W || ubyte_at(0) == Assembler::REX_WB) &&
(ubyte_at(1) & (0xff ^ NativeMovConstReg::register_mask)) == 0xB8);
#else
return false;
#endif // AMD64
}
#endif // CPU_X86_VM_NATIVEINST_X86_HPP