/*
* Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/cppInterpreter.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterGenerator.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "oops/arrayOop.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/timer.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/debug.hpp"
#include "utilities/macros.hpp"
#ifdef SHARK
#include "shark/shark_globals.hpp"
#endif
#ifdef CC_INTERP
// Routine exists to make tracebacks look decent in debugger
// while we are recursed in the frame manager/c++ interpreter.
// We could use an address in the frame manager but having
// frames look natural in the debugger is a plus.
extern "C" void RecursiveInterpreterActivation(interpreterState istate )
{
//
ShouldNotReachHere();
}
#define __ _masm->
#define STATE(field_name) (Address(state, byte_offset_of(BytecodeInterpreter, field_name)))
Label fast_accessor_slow_entry_path; // fast accessor methods need to be able to jmp to unsynchronized
// c++ interpreter entry point this holds that entry point label.
// default registers for state and sender_sp
// state and sender_sp are the same on 32bit because we have no choice.
// state could be rsi on 64bit but it is an arg reg and not callee save
// so r13 is better choice.
const Register state = NOT_LP64(rsi) LP64_ONLY(r13);
const Register sender_sp_on_entry = NOT_LP64(rsi) LP64_ONLY(r13);
// NEEDED for JVMTI?
// address AbstractInterpreter::_remove_activation_preserving_args_entry;
static address unctrap_frame_manager_entry = NULL;
static address deopt_frame_manager_return_atos = NULL;
static address deopt_frame_manager_return_btos = NULL;
static address deopt_frame_manager_return_itos = NULL;
static address deopt_frame_manager_return_ltos = NULL;
static address deopt_frame_manager_return_ftos = NULL;
static address deopt_frame_manager_return_dtos = NULL;
static address deopt_frame_manager_return_vtos = NULL;
int AbstractInterpreter::BasicType_as_index(BasicType type) {
int i = 0;
switch (type) {
case T_BOOLEAN: i = 0; break;
case T_CHAR : i = 1; break;
case T_BYTE : i = 2; break;
case T_SHORT : i = 3; break;
case T_INT : i = 4; break;
case T_VOID : i = 5; break;
case T_FLOAT : i = 8; break;
case T_LONG : i = 9; break;
case T_DOUBLE : i = 6; break;
case T_OBJECT : // fall through
case T_ARRAY : i = 7; break;
default : ShouldNotReachHere();
}
assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
return i;
}
// Is this pc anywhere within code owned by the interpreter?
// This only works for pc that might possibly be exposed to frame
// walkers. It clearly misses all of the actual c++ interpreter
// implementation
bool CppInterpreter::contains(address pc) {
return (_code->contains(pc) ||
pc == CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
}
address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
address entry = __ pc();
switch (type) {
case T_BOOLEAN: __ c2bool(rax); break;
case T_CHAR : __ andl(rax, 0xFFFF); break;
case T_BYTE : __ sign_extend_byte (rax); break;
case T_SHORT : __ sign_extend_short(rax); break;
case T_VOID : // fall thru
case T_LONG : // fall thru
case T_INT : /* nothing to do */ break;
case T_DOUBLE :
case T_FLOAT :
{
const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
__ pop(t); // remove return address first
// Must return a result for interpreter or compiler. In SSE
// mode, results are returned in xmm0 and the FPU stack must
// be empty.
if (type == T_FLOAT && UseSSE >= 1) {
#ifndef _LP64
// Load ST0
__ fld_d(Address(rsp, 0));
// Store as float and empty fpu stack
__ fstp_s(Address(rsp, 0));
#endif // !_LP64
// and reload
__ movflt(xmm0, Address(rsp, 0));
} else if (type == T_DOUBLE && UseSSE >= 2 ) {
__ movdbl(xmm0, Address(rsp, 0));
} else {
// restore ST0
__ fld_d(Address(rsp, 0));
}
// and pop the temp
__ addptr(rsp, 2 * wordSize);
__ push(t); // restore return address
}
break;
case T_OBJECT :
// retrieve result from frame
__ movptr(rax, STATE(_oop_temp));
// and verify it
__ verify_oop(rax);
break;
default : ShouldNotReachHere();
}
__ ret(0); // return from result handler
return entry;
}
// tosca based result to c++ interpreter stack based result.
// Result goes to top of native stack.
#undef EXTEND // SHOULD NOT BE NEEDED
address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
// A result is in the tosca (abi result) from either a native method call or compiled
// code. Place this result on the java expression stack so C++ interpreter can use it.
address entry = __ pc();
const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
__ pop(t); // remove return address first
switch (type) {
case T_VOID:
break;
case T_BOOLEAN:
#ifdef EXTEND
__ c2bool(rax);
#endif
__ push(rax);
break;
case T_CHAR :
#ifdef EXTEND
__ andl(rax, 0xFFFF);
#endif
__ push(rax);
break;
case T_BYTE :
#ifdef EXTEND
__ sign_extend_byte (rax);
#endif
__ push(rax);
break;
case T_SHORT :
#ifdef EXTEND
__ sign_extend_short(rax);
#endif
__ push(rax);
break;
case T_LONG :
__ push(rdx); // pushes useless junk on 64bit
__ push(rax);
break;
case T_INT :
__ push(rax);
break;
case T_FLOAT :
// Result is in ST(0)/xmm0
__ subptr(rsp, wordSize);
if ( UseSSE < 1) {
__ fstp_s(Address(rsp, 0));
} else {
__ movflt(Address(rsp, 0), xmm0);
}
break;
case T_DOUBLE :
__ subptr(rsp, 2*wordSize);
if ( UseSSE < 2 ) {
__ fstp_d(Address(rsp, 0));
} else {
__ movdbl(Address(rsp, 0), xmm0);
}
break;
case T_OBJECT :
__ verify_oop(rax); // verify it
__ push(rax);
break;
default : ShouldNotReachHere();
}
__ jmp(t); // return from result handler
return entry;
}
address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
// A result is in the java expression stack of the interpreted method that has just
// returned. Place this result on the java expression stack of the caller.
//
// The current interpreter activation in rsi/r13 is for the method just returning its
// result. So we know that the result of this method is on the top of the current
// execution stack (which is pre-pushed) and will be return to the top of the caller
// stack. The top of the callers stack is the bottom of the locals of the current
// activation.
// Because of the way activation are managed by the frame manager the value of rsp is
// below both the stack top of the current activation and naturally the stack top
// of the calling activation. This enable this routine to leave the return address
// to the frame manager on the stack and do a vanilla return.
//
// On entry: rsi/r13 - interpreter state of activation returning a (potential) result
// On Return: rsi/r13 - unchanged
// rax - new stack top for caller activation (i.e. activation in _prev_link)
//
// Can destroy rdx, rcx.
//
address entry = __ pc();
const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
switch (type) {
case T_VOID:
__ movptr(rax, STATE(_locals)); // pop parameters get new stack value
__ addptr(rax, wordSize); // account for prepush before we return
break;
case T_FLOAT :
case T_BOOLEAN:
case T_CHAR :
case T_BYTE :
case T_SHORT :
case T_INT :
// 1 word result
__ movptr(rdx, STATE(_stack));
__ movptr(rax, STATE(_locals)); // address for result
__ movl(rdx, Address(rdx, wordSize)); // get result
__ movptr(Address(rax, 0), rdx); // and store it
break;
case T_LONG :
case T_DOUBLE :
// return top two words on current expression stack to caller's expression stack
// The caller's expression stack is adjacent to the current frame manager's intepretState
// except we allocated one extra word for this intepretState so we won't overwrite it
// when we return a two word result.
__ movptr(rax, STATE(_locals)); // address for result
__ movptr(rcx, STATE(_stack));
__ subptr(rax, wordSize); // need addition word besides locals[0]
__ movptr(rdx, Address(rcx, 2*wordSize)); // get result word (junk in 64bit)
__ movptr(Address(rax, wordSize), rdx); // and store it
__ movptr(rdx, Address(rcx, wordSize)); // get result word
__ movptr(Address(rax, 0), rdx); // and store it
break;
case T_OBJECT :
__ movptr(rdx, STATE(_stack));
__ movptr(rax, STATE(_locals)); // address for result
__ movptr(rdx, Address(rdx, wordSize)); // get result
__ verify_oop(rdx); // verify it
__ movptr(Address(rax, 0), rdx); // and store it
break;
default : ShouldNotReachHere();
}
__ ret(0);
return entry;
}
address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
// A result is in the java expression stack of the interpreted method that has just
// returned. Place this result in the native abi that the caller expects.
//
// Similar to generate_stack_to_stack_converter above. Called at a similar time from the
// frame manager execept in this situation the caller is native code (c1/c2/call_stub)
// and so rather than return result onto caller's java expression stack we return the
// result in the expected location based on the native abi.
// On entry: rsi/r13 - interpreter state of activation returning a (potential) result
// On Return: rsi/r13 - unchanged
// Other registers changed [rax/rdx/ST(0) as needed for the result returned]
address entry = __ pc();
switch (type) {
case T_VOID:
break;
case T_BOOLEAN:
case T_CHAR :
case T_BYTE :
case T_SHORT :
case T_INT :
__ movptr(rdx, STATE(_stack)); // get top of stack
__ movl(rax, Address(rdx, wordSize)); // get result word 1
break;
case T_LONG :
__ movptr(rdx, STATE(_stack)); // get top of stack
__ movptr(rax, Address(rdx, wordSize)); // get result low word
NOT_LP64(__ movl(rdx, Address(rdx, 2*wordSize));) // get result high word
break;
case T_FLOAT :
__ movptr(rdx, STATE(_stack)); // get top of stack
if ( UseSSE >= 1) {
__ movflt(xmm0, Address(rdx, wordSize));
} else {
__ fld_s(Address(rdx, wordSize)); // pushd float result
}
break;
case T_DOUBLE :
__ movptr(rdx, STATE(_stack)); // get top of stack
if ( UseSSE > 1) {
__ movdbl(xmm0, Address(rdx, wordSize));
} else {
__ fld_d(Address(rdx, wordSize)); // push double result
}
break;
case T_OBJECT :
__ movptr(rdx, STATE(_stack)); // get top of stack
__ movptr(rax, Address(rdx, wordSize)); // get result word 1
__ verify_oop(rax); // verify it
break;
default : ShouldNotReachHere();
}
__ ret(0);
return entry;
}
address CppInterpreter::return_entry(TosState state, int length) {
// make it look good in the debugger
return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation);
}
address CppInterpreter::deopt_entry(TosState state, int length) {
address ret = NULL;
if (length != 0) {
switch (state) {
case atos: ret = deopt_frame_manager_return_atos; break;
case btos: ret = deopt_frame_manager_return_btos; break;
case ctos:
case stos:
case itos: ret = deopt_frame_manager_return_itos; break;
case ltos: ret = deopt_frame_manager_return_ltos; break;
case ftos: ret = deopt_frame_manager_return_ftos; break;
case dtos: ret = deopt_frame_manager_return_dtos; break;
case vtos: ret = deopt_frame_manager_return_vtos; break;
}
} else {
ret = unctrap_frame_manager_entry; // re-execute the bytecode ( e.g. uncommon trap)
}
assert(ret != NULL, "Not initialized");
return ret;
}
// C++ Interpreter
void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
const Register locals,
const Register sender_sp,
bool native) {
// On entry the "locals" argument points to locals[0] (or where it would be in case no locals in
// a static method). "state" contains any previous frame manager state which we must save a link
// to in the newly generated state object. On return "state" is a pointer to the newly allocated
// state object. We must allocate and initialize a new interpretState object and the method
// expression stack. Because the returned result (if any) of the method will be placed on the caller's
// expression stack and this will overlap with locals[0] (and locals[1] if double/long) we must
// be sure to leave space on the caller's stack so that this result will not overwrite values when
// locals[0] and locals[1] do not exist (and in fact are return address and saved rbp). So when
// we are non-native we in essence ensure that locals[0-1] exist. We play an extra trick in
// non-product builds and initialize this last local with the previous interpreterState as
// this makes things look real nice in the debugger.
// State on entry
// Assumes locals == &locals[0]
// Assumes state == any previous frame manager state (assuming call path from c++ interpreter)
// Assumes rax = return address
// rcx == senders_sp
// rbx == method
// Modifies rcx, rdx, rax
// Returns:
// state == address of new interpreterState
// rsp == bottom of method's expression stack.
const Address const_offset (rbx, Method::const_offset());
// On entry sp is the sender's sp. This includes the space for the arguments
// that the sender pushed. If the sender pushed no args (a static) and the
// caller returns a long then we need two words on the sender's stack which
// are not present (although when we return a restore full size stack the
// space will be present). If we didn't allocate two words here then when
// we "push" the result of the caller's stack we would overwrite the return
// address and the saved rbp. Not good. So simply allocate 2 words now
// just to be safe. This is the "static long no_params() method" issue.
// See Lo.java for a testcase.
// We don't need this for native calls because they return result in
// register and the stack is expanded in the caller before we store
// the results on the stack.
if (!native) {
#ifdef PRODUCT
__ subptr(rsp, 2*wordSize);
#else /* PRODUCT */
__ push((int32_t)NULL_WORD);
__ push(state); // make it look like a real argument
#endif /* PRODUCT */
}
// Now that we are assure of space for stack result, setup typical linkage
__ push(rax);
__ enter();
__ mov(rax, state); // save current state
__ lea(rsp, Address(rsp, -(int)sizeof(BytecodeInterpreter)));
__ mov(state, rsp);
// rsi/r13 == state/locals rax == prevstate
// initialize the "shadow" frame so that use since C++ interpreter not directly
// recursive. Simpler to recurse but we can't trim expression stack as we call
// new methods.
__ movptr(STATE(_locals), locals); // state->_locals = locals()
__ movptr(STATE(_self_link), state); // point to self
__ movptr(STATE(_prev_link), rax); // state->_link = state on entry (NULL or previous state)
__ movptr(STATE(_sender_sp), sender_sp); // state->_sender_sp = sender_sp
#ifdef _LP64
__ movptr(STATE(_thread), r15_thread); // state->_bcp = codes()
#else
__ get_thread(rax); // get vm's javathread*
__ movptr(STATE(_thread), rax); // state->_bcp = codes()
#endif // _LP64
__ movptr(rdx, Address(rbx, Method::const_offset())); // get constantMethodOop
__ lea(rdx, Address(rdx, ConstMethod::codes_offset())); // get code base
if (native) {
__ movptr(STATE(_bcp), (int32_t)NULL_WORD); // state->_bcp = NULL
} else {
__ movptr(STATE(_bcp), rdx); // state->_bcp = codes()
}
__ xorptr(rdx, rdx);
__ movptr(STATE(_oop_temp), rdx); // state->_oop_temp = NULL (only really needed for native)
__ movptr(STATE(_mdx), rdx); // state->_mdx = NULL
__ movptr(rdx, Address(rbx, Method::const_offset()));
__ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
__ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
__ movptr(STATE(_constants), rdx); // state->_constants = constants()
__ movptr(STATE(_method), rbx); // state->_method = method()
__ movl(STATE(_msg), (int32_t) BytecodeInterpreter::method_entry); // state->_msg = initial method entry
__ movptr(STATE(_result._to_call._callee), (int32_t) NULL_WORD); // state->_result._to_call._callee_callee = NULL
__ movptr(STATE(_monitor_base), rsp); // set monitor block bottom (grows down) this would point to entry [0]
// entries run from -1..x where &monitor[x] ==
{
// Must not attempt to lock method until we enter interpreter as gc won't be able to find the
// initial frame. However we allocate a free monitor so we don't have to shuffle the expression stack
// immediately.
// synchronize method
const Address access_flags (rbx, Method::access_flags_offset());
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
Label not_synced;
__ movl(rax, access_flags);
__ testl(rax, JVM_ACC_SYNCHRONIZED);
__ jcc(Assembler::zero, not_synced);
// Allocate initial monitor and pre initialize it
// get synchronization object
Label done;
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
__ movl(rax, access_flags);
__ testl(rax, JVM_ACC_STATIC);
__ movptr(rax, Address(locals, 0)); // get receiver (assume this is frequent case)
__ jcc(Assembler::zero, done);
__ movptr(rax, Address(rbx, Method::const_offset()));
__ movptr(rax, Address(rax, ConstMethod::constants_offset()));
__ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
__ movptr(rax, Address(rax, mirror_offset));
__ bind(done);
// add space for monitor & lock
__ subptr(rsp, entry_size); // add space for a monitor entry
__ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
__ bind(not_synced);
}
__ movptr(STATE(_stack_base), rsp); // set expression stack base ( == &monitors[-count])
if (native) {
__ movptr(STATE(_stack), rsp); // set current expression stack tos
__ movptr(STATE(_stack_limit), rsp);
} else {
__ subptr(rsp, wordSize); // pre-push stack
__ movptr(STATE(_stack), rsp); // set current expression stack tos
// compute full expression stack limit
__ movptr(rdx, Address(rbx, Method::const_offset()));
__ load_unsigned_short(rdx, Address(rdx, ConstMethod::max_stack_offset())); // get size of expression stack in words
__ negptr(rdx); // so we can subtract in next step
// Allocate expression stack
__ lea(rsp, Address(rsp, rdx, Address::times_ptr, -Method::extra_stack_words()));
__ movptr(STATE(_stack_limit), rsp);
}
#ifdef _LP64
// Make sure stack is properly aligned and sized for the abi
__ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
__ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
#endif // _LP64
}
// Helpers for commoning out cases in the various type of method entries.
//
// increment invocation count & check for overflow
//
// Note: checking for negative value instead of overflow
// so we have a 'sticky' overflow test
//
// rbx,: method
// rcx: invocation counter
//
void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
Label done;
const Address invocation_counter(rax,
MethodCounters::invocation_counter_offset() +
InvocationCounter::counter_offset());
const Address backedge_counter (rax,
MethodCounter::backedge_counter_offset() +
InvocationCounter::counter_offset());
__ get_method_counters(rbx, rax, done);
if (ProfileInterpreter) {
__ incrementl(Address(rax,
MethodCounters::interpreter_invocation_counter_offset()));
}
// Update standard invocation counters
__ movl(rcx, invocation_counter);
__ increment(rcx, InvocationCounter::count_increment);
__ movl(invocation_counter, rcx); // save invocation count
__ movl(rax, backedge_counter); // load backedge counter
__ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
__ addl(rcx, rax); // add both counters
// profile_method is non-null only for interpreted method so
// profile_method != NULL == !native_call
// BytecodeInterpreter only calls for native so code is elided.
__ cmp32(rcx,
ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
__ jcc(Assembler::aboveEqual, *overflow);
__ bind(done);
}
void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
// C++ interpreter on entry
// rsi/r13 - new interpreter state pointer
// rbp - interpreter frame pointer
// rbx - method
// On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
// rbx, - method
// rcx - rcvr (assuming there is one)
// top of stack return address of interpreter caller
// rsp - sender_sp
// C++ interpreter only
// rsi/r13 - previous interpreter state pointer
// InterpreterRuntime::frequency_counter_overflow takes one argument
// indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
// The call returns the address of the verified entry point for the method or NULL
// if the compilation did not complete (either went background or bailed out).
__ movptr(rax, (int32_t)false);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
// for c++ interpreter can rsi really be munged?
__ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter))); // restore state
__ movptr(rbx, Address(state, byte_offset_of(BytecodeInterpreter, _method))); // restore method
__ movptr(rdi, Address(state, byte_offset_of(BytecodeInterpreter, _locals))); // get locals pointer
__ jmp(*do_continue, relocInfo::none);
}
void InterpreterGenerator::generate_stack_overflow_check(void) {
// see if we've got enough room on the stack for locals plus overhead.
// the expression stack grows down incrementally, so the normal guard
// page mechanism will work for that.
//
// Registers live on entry:
//
// Asm interpreter
// rdx: number of additional locals this frame needs (what we must check)
// rbx,: Method*
// C++ Interpreter
// rsi/r13: previous interpreter frame state object
// rdi: &locals[0]
// rcx: # of locals
// rdx: number of additional locals this frame needs (what we must check)
// rbx: Method*
// destroyed on exit
// rax,
// NOTE: since the additional locals are also always pushed (wasn't obvious in
// generate_method_entry) so the guard should work for them too.
//
// monitor entry size: see picture of stack set (generate_method_entry) and frame_i486.hpp
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
// total overhead size: entry_size + (saved rbp, thru expr stack bottom).
// be sure to change this if you add/subtract anything to/from the overhead area
const int overhead_size = (int)sizeof(BytecodeInterpreter);
const int page_size = os::vm_page_size();
Label after_frame_check;
// compute rsp as if this were going to be the last frame on
// the stack before the red zone
Label after_frame_check_pop;
// save rsi == caller's bytecode ptr (c++ previous interp. state)
// QQQ problem here?? rsi overload????
__ push(state);
const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rsi);
NOT_LP64(__ get_thread(thread));
const Address stack_base(thread, Thread::stack_base_offset());
const Address stack_size(thread, Thread::stack_size_offset());
// locals + overhead, in bytes
// Always give one monitor to allow us to start interp if sync method.
// Any additional monitors need a check when moving the expression stack
const int one_monitor = frame::interpreter_frame_monitor_size() * wordSize;
__ movptr(rax, Address(rbx, Method::const_offset()));
__ load_unsigned_short(rax, Address(rax, ConstMethod::max_stack_offset())); // get size of expression stack in words
__ lea(rax, Address(noreg, rax, Interpreter::stackElementScale(), one_monitor+Method::extra_stack_words()));
__ lea(rax, Address(rax, rdx, Interpreter::stackElementScale(), overhead_size));
#ifdef ASSERT
Label stack_base_okay, stack_size_okay;
// verify that thread stack base is non-zero
__ cmpptr(stack_base, (int32_t)0);
__ jcc(Assembler::notEqual, stack_base_okay);
__ stop("stack base is zero");
__ bind(stack_base_okay);
// verify that thread stack size is non-zero
__ cmpptr(stack_size, (int32_t)0);
__ jcc(Assembler::notEqual, stack_size_okay);
__ stop("stack size is zero");
__ bind(stack_size_okay);
#endif
// Add stack base to locals and subtract stack size
__ addptr(rax, stack_base);
__ subptr(rax, stack_size);
// We should have a magic number here for the size of the c++ interpreter frame.
// We can't actually tell this ahead of time. The debug version size is around 3k
// product is 1k and fastdebug is 4k
const int slop = 6 * K;
// Use the maximum number of pages we might bang.
const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
(StackRedPages+StackYellowPages);
// Only need this if we are stack banging which is temporary while
// we're debugging.
__ addptr(rax, slop + 2*max_pages * page_size);
// check against the current stack bottom
__ cmpptr(rsp, rax);
__ jcc(Assembler::above, after_frame_check_pop);
__ pop(state); // get c++ prev state.
// throw exception return address becomes throwing pc
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
// all done with frame size check
__ bind(after_frame_check_pop);
__ pop(state);
__ bind(after_frame_check);
}
// Find preallocated monitor and lock method (C++ interpreter)
// rbx - Method*
//
void InterpreterGenerator::lock_method(void) {
// assumes state == rsi/r13 == pointer to current interpreterState
// minimally destroys rax, rdx|c_rarg1, rdi
//
// synchronize method
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
const Address access_flags (rbx, Method::access_flags_offset());
const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
// find initial monitor i.e. monitors[-1]
__ movptr(monitor, STATE(_monitor_base)); // get monitor bottom limit
__ subptr(monitor, entry_size); // point to initial monitor
#ifdef ASSERT
{ Label L;
__ movl(rax, access_flags);
__ testl(rax, JVM_ACC_SYNCHRONIZED);
__ jcc(Assembler::notZero, L);
__ stop("method doesn't need synchronization");
__ bind(L);
}
#endif // ASSERT
// get synchronization object
{ Label done;
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
__ movl(rax, access_flags);
__ movptr(rdi, STATE(_locals)); // prepare to get receiver (assume common case)
__ testl(rax, JVM_ACC_STATIC);
__ movptr(rax, Address(rdi, 0)); // get receiver (assume this is frequent case)
__ jcc(Assembler::zero, done);
__ movptr(rax, Address(rbx, Method::const_offset()));
__ movptr(rax, Address(rax, ConstMethod::constants_offset()));
__ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
__ movptr(rax, Address(rax, mirror_offset));
__ bind(done);
}
#ifdef ASSERT
{ Label L;
__ cmpptr(rax, Address(monitor, BasicObjectLock::obj_offset_in_bytes())); // correct object?
__ jcc(Assembler::equal, L);
__ stop("wrong synchronization lobject");
__ bind(L);
}
#endif // ASSERT
// can destroy rax, rdx|c_rarg1, rcx, and (via call_VM) rdi!
__ lock_object(monitor);
}
// Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
address InterpreterGenerator::generate_accessor_entry(void) {
// rbx: Method*
// rsi/r13: senderSP must preserved for slow path, set SP to it on fast path
Label xreturn_path;
// do fastpath for resolved accessor methods
if (UseFastAccessorMethods) {
address entry_point = __ pc();
Label slow_path;
// If we need a safepoint check, generate full interpreter entry.
ExternalAddress state(SafepointSynchronize::address_of_state());
__ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
SafepointSynchronize::_not_synchronized);
__ jcc(Assembler::notEqual, slow_path);
// ASM/C++ Interpreter
// Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
// Note: We can only use this code if the getfield has been resolved
// and if we don't have a null-pointer exception => check for
// these conditions first and use slow path if necessary.
// rbx,: method
// rcx: receiver
__ movptr(rax, Address(rsp, wordSize));
// check if local 0 != NULL and read field
__ testptr(rax, rax);
__ jcc(Assembler::zero, slow_path);
// read first instruction word and extract bytecode @ 1 and index @ 2
__ movptr(rdx, Address(rbx, Method::const_offset()));
__ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
__ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
// Shift codes right to get the index on the right.
// The bytecode fetched looks like <index><0xb4><0x2a>
__ shrl(rdx, 2*BitsPerByte);
__ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
__ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
// rax,: local 0
// rbx,: method
// rcx: receiver - do not destroy since it is needed for slow path!
// rcx: scratch
// rdx: constant pool cache index
// rdi: constant pool cache
// rsi/r13: sender sp
// check if getfield has been resolved and read constant pool cache entry
// check the validity of the cache entry by testing whether _indices field
// contains Bytecode::_getfield in b1 byte.
assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
__ movl(rcx,
Address(rdi,
rdx,
Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
__ shrl(rcx, 2*BitsPerByte);
__ andl(rcx, 0xFF);
__ cmpl(rcx, Bytecodes::_getfield);
__ jcc(Assembler::notEqual, slow_path);
// Note: constant pool entry is not valid before bytecode is resolved
__ movptr(rcx,
Address(rdi,
rdx,
Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
__ movl(rdx,
Address(rdi,
rdx,
Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
Label notByte, notShort, notChar;
const Address field_address (rax, rcx, Address::times_1);
// Need to differentiate between igetfield, agetfield, bgetfield etc.
// because they are different sizes.
// Use the type from the constant pool cache
__ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
// Make sure we don't need to mask rdx after the above shift
ConstantPoolCacheEntry::verify_tos_state_shift();
#ifdef _LP64
Label notObj;
__ cmpl(rdx, atos);
__ jcc(Assembler::notEqual, notObj);
// atos
__ movptr(rax, field_address);
__ jmp(xreturn_path);
__ bind(notObj);
#endif // _LP64
__ cmpl(rdx, btos);
__ jcc(Assembler::notEqual, notByte);
__ load_signed_byte(rax, field_address);
__ jmp(xreturn_path);
__ bind(notByte);
__ cmpl(rdx, stos);
__ jcc(Assembler::notEqual, notShort);
__ load_signed_short(rax, field_address);
__ jmp(xreturn_path);
__ bind(notShort);
__ cmpl(rdx, ctos);
__ jcc(Assembler::notEqual, notChar);
__ load_unsigned_short(rax, field_address);
__ jmp(xreturn_path);
__ bind(notChar);
#ifdef ASSERT
Label okay;
#ifndef _LP64
__ cmpl(rdx, atos);
__ jcc(Assembler::equal, okay);
#endif // _LP64
__ cmpl(rdx, itos);
__ jcc(Assembler::equal, okay);
__ stop("what type is this?");
__ bind(okay);
#endif // ASSERT
// All the rest are a 32 bit wordsize
__ movl(rax, field_address);
__ bind(xreturn_path);
// _ireturn/_areturn
__ pop(rdi); // get return address
__ mov(rsp, sender_sp_on_entry); // set sp to sender sp
__ jmp(rdi);
// generate a vanilla interpreter entry as the slow path
__ bind(slow_path);
// We will enter c++ interpreter looking like it was
// called by the call_stub this will cause it to return
// a tosca result to the invoker which might have been
// the c++ interpreter itself.
__ jmp(fast_accessor_slow_entry_path);
return entry_point;
} else {
return NULL;
}
}
address InterpreterGenerator::generate_Reference_get_entry(void) {
#if INCLUDE_ALL_GCS
if (UseG1GC) {
// We need to generate have a routine that generates code to:
// * load the value in the referent field
// * passes that value to the pre-barrier.
//
// In the case of G1 this will record the value of the
// referent in an SATB buffer if marking is active.
// This will cause concurrent marking to mark the referent
// field as live.
Unimplemented();
}
#endif // INCLUDE_ALL_GCS
// If G1 is not enabled then attempt to go through the accessor entry point
// Reference.get is an accessor
return generate_accessor_entry();
}
//
// C++ Interpreter stub for calling a native method.
// This sets up a somewhat different looking stack for calling the native method
// than the typical interpreter frame setup but still has the pointer to
// an interpreter state.
//
address InterpreterGenerator::generate_native_entry(bool synchronized) {
// determine code generation flags
bool inc_counter = UseCompiler || CountCompiledCalls;
// rbx: Method*
// rcx: receiver (unused)
// rsi/r13: previous interpreter state (if called from C++ interpreter) must preserve
// in any case. If called via c1/c2/call_stub rsi/r13 is junk (to use) but harmless
// to save/restore.
address entry_point = __ pc();
const Address constMethod (rbx, Method::const_offset());
const Address access_flags (rbx, Method::access_flags_offset());
const Address size_of_parameters(rcx, ConstMethod::size_of_parameters_offset());
// rsi/r13 == state/locals rdi == prevstate
const Register locals = rdi;
// get parameter size (always needed)
__ movptr(rcx, constMethod);
__ load_unsigned_short(rcx, size_of_parameters);
// rbx: Method*
// rcx: size of parameters
__ pop(rax); // get return address
// for natives the size of locals is zero
// compute beginning of parameters /locals
__ lea(locals, Address(rsp, rcx, Address::times_ptr, -wordSize));
// initialize fixed part of activation frame
// Assumes rax = return address
// allocate and initialize new interpreterState and method expression stack
// IN(locals) -> locals
// IN(state) -> previous frame manager state (NULL from stub/c1/c2)
// destroys rax, rcx, rdx
// OUT (state) -> new interpreterState
// OUT(rsp) -> bottom of methods expression stack
// save sender_sp
__ mov(rcx, sender_sp_on_entry);
// start with NULL previous state
__ movptr(state, (int32_t)NULL_WORD);
generate_compute_interpreter_state(state, locals, rcx, true);
#ifdef ASSERT
{ Label L;
__ movptr(rax, STATE(_stack_base));
#ifdef _LP64
// duplicate the alignment rsp got after setting stack_base
__ subptr(rax, frame::arg_reg_save_area_bytes); // windows
__ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
#endif // _LP64
__ cmpptr(rax, rsp);
__ jcc(Assembler::equal, L);
__ stop("broken stack frame setup in interpreter");
__ bind(L);
}
#endif
const Register unlock_thread = LP64_ONLY(r15_thread) NOT_LP64(rax);
NOT_LP64(__ movptr(unlock_thread, STATE(_thread));) // get thread
// Since at this point in the method invocation the exception handler
// would try to exit the monitor of synchronized methods which hasn't
// been entered yet, we set the thread local variable
// _do_not_unlock_if_synchronized to true. The remove_activation will
// check this flag.
const Address do_not_unlock_if_synchronized(unlock_thread,
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
__ movbool(do_not_unlock_if_synchronized, true);
// make sure method is native & not abstract
#ifdef ASSERT
__ movl(rax, access_flags);
{
Label L;
__ testl(rax, JVM_ACC_NATIVE);
__ jcc(Assembler::notZero, L);
__ stop("tried to execute non-native method as native");
__ bind(L);
}
{ Label L;
__ testl(rax, JVM_ACC_ABSTRACT);
__ jcc(Assembler::zero, L);
__ stop("tried to execute abstract method in interpreter");
__ bind(L);
}
#endif
// increment invocation count & check for overflow
Label invocation_counter_overflow;
if (inc_counter) {
generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
}
Label continue_after_compile;
__ bind(continue_after_compile);
bang_stack_shadow_pages(true);
// reset the _do_not_unlock_if_synchronized flag
NOT_LP64(__ movl(rax, STATE(_thread));) // get thread
__ movbool(do_not_unlock_if_synchronized, false);
// check for synchronized native methods
//
// Note: This must happen *after* invocation counter check, since
// when overflow happens, the method should not be locked.
if (synchronized) {
// potentially kills rax, rcx, rdx, rdi
lock_method();
} else {
// no synchronization necessary
#ifdef ASSERT
{ Label L;
__ movl(rax, access_flags);
__ testl(rax, JVM_ACC_SYNCHRONIZED);
__ jcc(Assembler::zero, L);
__ stop("method needs synchronization");
__ bind(L);
}
#endif
}
// start execution
// jvmti support
__ notify_method_entry();
// work registers
const Register method = rbx;
const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rdi);
const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp(); // rcx|rscratch1
const Address constMethod (method, Method::const_offset());
const Address size_of_parameters(t, ConstMethod::size_of_parameters_offset());
// allocate space for parameters
__ movptr(method, STATE(_method));
__ verify_method_ptr(method);
__ movptr(t, constMethod);
__ load_unsigned_short(t, size_of_parameters);
__ shll(t, 2);
#ifdef _LP64
__ subptr(rsp, t);
__ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
__ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
#else
__ addptr(t, 2*wordSize); // allocate two more slots for JNIEnv and possible mirror
__ subptr(rsp, t);
__ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
#endif // _LP64
// get signature handler
Label pending_exception_present;
{ Label L;
__ movptr(t, Address(method, Method::signature_handler_offset()));
__ testptr(t, t);
__ jcc(Assembler::notZero, L);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method, false);
__ movptr(method, STATE(_method));
__ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
__ jcc(Assembler::notEqual, pending_exception_present);
__ verify_method_ptr(method);
__ movptr(t, Address(method, Method::signature_handler_offset()));
__ bind(L);
}
#ifdef ASSERT
{
Label L;
__ push(t);
__ get_thread(t); // get vm's javathread*
__ cmpptr(t, STATE(_thread));
__ jcc(Assembler::equal, L);
__ int3();
__ bind(L);
__ pop(t);
}
#endif //
const Register from_ptr = InterpreterRuntime::SignatureHandlerGenerator::from();
// call signature handler
assert(InterpreterRuntime::SignatureHandlerGenerator::to () == rsp, "adjust this code");
// The generated handlers do not touch RBX (the method oop).
// However, large signatures cannot be cached and are generated
// each time here. The slow-path generator will blow RBX
// sometime, so we must reload it after the call.
__ movptr(from_ptr, STATE(_locals)); // get the from pointer
__ call(t);
__ movptr(method, STATE(_method));
__ verify_method_ptr(method);
// result handler is in rax
// set result handler
__ movptr(STATE(_result_handler), rax);
// get native function entry point
{ Label L;
__ movptr(rax, Address(method, Method::native_function_offset()));
__ testptr(rax, rax);
__ jcc(Assembler::notZero, L);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
__ movptr(method, STATE(_method));
__ verify_method_ptr(method);
__ movptr(rax, Address(method, Method::native_function_offset()));
__ bind(L);
}
// pass mirror handle if static call
{ Label L;
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
__ movl(t, Address(method, Method::access_flags_offset()));
__ testl(t, JVM_ACC_STATIC);
__ jcc(Assembler::zero, L);
// get mirror
__ movptr(t, Address(method, Method:: const_offset()));
__ movptr(t, Address(t, ConstMethod::constants_offset()));
__ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
__ movptr(t, Address(t, mirror_offset));
// copy mirror into activation object
__ movptr(STATE(_oop_temp), t);
// pass handle to mirror
#ifdef _LP64
__ lea(c_rarg1, STATE(_oop_temp));
#else
__ lea(t, STATE(_oop_temp));
__ movptr(Address(rsp, wordSize), t);
#endif // _LP64
__ bind(L);
}
#ifdef ASSERT
{
Label L;
__ push(t);
__ get_thread(t); // get vm's javathread*
__ cmpptr(t, STATE(_thread));
__ jcc(Assembler::equal, L);
__ int3();
__ bind(L);
__ pop(t);
}
#endif //
// pass JNIEnv
#ifdef _LP64
__ lea(c_rarg0, Address(thread, JavaThread::jni_environment_offset()));
#else
__ movptr(thread, STATE(_thread)); // get thread
__ lea(t, Address(thread, JavaThread::jni_environment_offset()));
__ movptr(Address(rsp, 0), t);
#endif // _LP64
#ifdef ASSERT
{
Label L;
__ push(t);
__ get_thread(t); // get vm's javathread*
__ cmpptr(t, STATE(_thread));
__ jcc(Assembler::equal, L);
__ int3();
__ bind(L);
__ pop(t);
}
#endif //
#ifdef ASSERT
{ Label L;
__ movl(t, Address(thread, JavaThread::thread_state_offset()));
__ cmpl(t, _thread_in_Java);
__ jcc(Assembler::equal, L);
__ stop("Wrong thread state in native stub");
__ bind(L);
}
#endif
// Change state to native (we save the return address in the thread, since it might not
// be pushed on the stack when we do a a stack traversal). It is enough that the pc()
// points into the right code segment. It does not have to be the correct return pc.
__ set_last_Java_frame(thread, noreg, rbp, __ pc());
__ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
__ call(rax);
// result potentially in rdx:rax or ST0
__ movptr(method, STATE(_method));
NOT_LP64(__ movptr(thread, STATE(_thread));) // get thread
// The potential result is in ST(0) & rdx:rax
// With C++ interpreter we leave any possible result in ST(0) until we are in result handler and then
// we do the appropriate stuff for returning the result. rdx:rax must always be saved because just about
// anything we do here will destroy it, st(0) is only saved if we re-enter the vm where it would
// be destroyed.
// It is safe to do these pushes because state is _thread_in_native and return address will be found
// via _last_native_pc and not via _last_jave_sp
// Must save the value of ST(0)/xmm0 since it could be destroyed before we get to result handler
{ Label Lpush, Lskip;
ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
__ cmpptr(STATE(_result_handler), float_handler.addr());
__ jcc(Assembler::equal, Lpush);
__ cmpptr(STATE(_result_handler), double_handler.addr());
__ jcc(Assembler::notEqual, Lskip);
__ bind(Lpush);
__ subptr(rsp, 2*wordSize);
if ( UseSSE < 2 ) {
__ fstp_d(Address(rsp, 0));
} else {
__ movdbl(Address(rsp, 0), xmm0);
}
__ bind(Lskip);
}
// save rax:rdx for potential use by result handler.
__ push(rax);
#ifndef _LP64
__ push(rdx);
#endif // _LP64
// Verify or restore cpu control state after JNI call
__ restore_cpu_control_state_after_jni();
// change thread state
__ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
if(os::is_MP()) {
// Write serialization page so VM thread can do a pseudo remote membar.
// We use the current thread pointer to calculate a thread specific
// offset to write to within the page. This minimizes bus traffic
// due to cache line collision.
__ serialize_memory(thread, rcx);
}
// check for safepoint operation in progress and/or pending suspend requests
{ Label Continue;
__ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
SafepointSynchronize::_not_synchronized);
// threads running native code and they are expected to self-suspend
// when leaving the _thread_in_native state. We need to check for
// pending suspend requests here.
Label L;
__ jcc(Assembler::notEqual, L);
__ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
__ jcc(Assembler::equal, Continue);
__ bind(L);
// Don't use call_VM as it will see a possible pending exception and forward it
// and never return here preventing us from clearing _last_native_pc down below.
// Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
// preserved and correspond to the bcp/locals pointers.
//
((MacroAssembler*)_masm)->call_VM_leaf(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
thread);
__ increment(rsp, wordSize);
__ movptr(method, STATE(_method));
__ verify_method_ptr(method);
__ movptr(thread, STATE(_thread)); // get thread
__ bind(Continue);
}
// change thread state
__ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
__ reset_last_Java_frame(thread, true, true);
// reset handle block
__ movptr(t, Address(thread, JavaThread::active_handles_offset()));
__ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
// If result was an oop then unbox and save it in the frame
{ Label L;
Label no_oop, store_result;
ExternalAddress oop_handler(AbstractInterpreter::result_handler(T_OBJECT));
__ cmpptr(STATE(_result_handler), oop_handler.addr());
__ jcc(Assembler::notEqual, no_oop);
#ifndef _LP64
__ pop(rdx);
#endif // _LP64
__ pop(rax);
__ testptr(rax, rax);
__ jcc(Assembler::zero, store_result);
// unbox
__ movptr(rax, Address(rax, 0));
__ bind(store_result);
__ movptr(STATE(_oop_temp), rax);
// keep stack depth as expected by pushing oop which will eventually be discarded
__ push(rax);
#ifndef _LP64
__ push(rdx);
#endif // _LP64
__ bind(no_oop);
}
{
Label no_reguard;
__ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
__ jcc(Assembler::notEqual, no_reguard);
__ pusha();
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
__ popa();
__ bind(no_reguard);
}
// QQQ Seems like for native methods we simply return and the caller will see the pending
// exception and do the right thing. Certainly the interpreter will, don't know about
// compiled methods.
// Seems that the answer to above is no this is wrong. The old code would see the exception
// and forward it before doing the unlocking and notifying jvmdi that method has exited.
// This seems wrong need to investigate the spec.
// handle exceptions (exception handling will handle unlocking!)
{ Label L;
__ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
__ jcc(Assembler::zero, L);
__ bind(pending_exception_present);
// There are potential results on the stack (rax/rdx, ST(0)) we ignore these and simply
// return and let caller deal with exception. This skips the unlocking here which
// seems wrong but seems to be what asm interpreter did. Can't find this in the spec.
// Note: must preverve method in rbx
//
// remove activation
__ movptr(t, STATE(_sender_sp));
__ leave(); // remove frame anchor
__ pop(rdi); // get return address
__ movptr(state, STATE(_prev_link)); // get previous state for return
__ mov(rsp, t); // set sp to sender sp
__ push(rdi); // push throwing pc
// The skips unlocking!! This seems to be what asm interpreter does but seems
// very wrong. Not clear if this violates the spec.
__ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
__ bind(L);
}
// do unlocking if necessary
{ Label L;
__ movl(t, Address(method, Method::access_flags_offset()));
__ testl(t, JVM_ACC_SYNCHRONIZED);
__ jcc(Assembler::zero, L);
// the code below should be shared with interpreter macro assembler implementation
{ Label unlock;
const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
// BasicObjectLock will be first in list, since this is a synchronized method. However, need
// to check that the object has not been unlocked by an explicit monitorexit bytecode.
__ movptr(monitor, STATE(_monitor_base));
__ subptr(monitor, frame::interpreter_frame_monitor_size() * wordSize); // address of initial monitor
__ movptr(t, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));
__ testptr(t, t);
__ jcc(Assembler::notZero, unlock);
// Entry already unlocked, need to throw exception
__ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
__ should_not_reach_here();
__ bind(unlock);
__ unlock_object(monitor);
// unlock can blow rbx so restore it for path that needs it below
__ movptr(method, STATE(_method));
}
__ bind(L);
}
// jvmti support
// Note: This must happen _after_ handling/throwing any exceptions since
// the exception handler code notifies the runtime of method exits
// too. If this happens before, method entry/exit notifications are
// not properly paired (was bug - gri 11/22/99).
__ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
// restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
#ifndef _LP64
__ pop(rdx);
#endif // _LP64
__ pop(rax);
__ movptr(t, STATE(_result_handler)); // get result handler
__ call(t); // call result handler to convert to tosca form
// remove activation
__ movptr(t, STATE(_sender_sp));
__ leave(); // remove frame anchor
__ pop(rdi); // get return address
__ movptr(state, STATE(_prev_link)); // get previous state for return (if c++ interpreter was caller)
__ mov(rsp, t); // set sp to sender sp
__ jmp(rdi);
// invocation counter overflow
if (inc_counter) {
// Handle overflow of counter and compile method
__ bind(invocation_counter_overflow);
generate_counter_overflow(&continue_after_compile);
}
return entry_point;
}
// Generate entries that will put a result type index into rcx
void CppInterpreterGenerator::generate_deopt_handling() {
Label return_from_deopt_common;
// Generate entries that will put a result type index into rcx
// deopt needs to jump to here to enter the interpreter (return a result)
deopt_frame_manager_return_atos = __ pc();
// rax is live here
__ movl(rcx, AbstractInterpreter::BasicType_as_index(T_OBJECT)); // Result stub address array index
__ jmp(return_from_deopt_common);
// deopt needs to jump to here to enter the interpreter (return a result)
deopt_frame_manager_return_btos = __ pc();
// rax is live here
__ movl(rcx, AbstractInterpreter::BasicType_as_index(T_BOOLEAN)); // Result stub address array index
__ jmp(return_from_deopt_common);
// deopt needs to jump to here to enter the interpreter (return a result)
deopt_frame_manager_return_itos = __ pc();
// rax is live here
__ movl(rcx, AbstractInterpreter::BasicType_as_index(T_INT)); // Result stub address array index
__ jmp(return_from_deopt_common);
// deopt needs to jump to here to enter the interpreter (return a result)
deopt_frame_manager_return_ltos = __ pc();
// rax,rdx are live here
__ movl(rcx, AbstractInterpreter::BasicType_as_index(T_LONG)); // Result stub address array index
__ jmp(return_from_deopt_common);
// deopt needs to jump to here to enter the interpreter (return a result)
deopt_frame_manager_return_ftos = __ pc();
// st(0) is live here
__ movl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT)); // Result stub address array index
__ jmp(return_from_deopt_common);
// deopt needs to jump to here to enter the interpreter (return a result)
deopt_frame_manager_return_dtos = __ pc();
// st(0) is live here
__ movl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE)); // Result stub address array index
__ jmp(return_from_deopt_common);
// deopt needs to jump to here to enter the interpreter (return a result)
deopt_frame_manager_return_vtos = __ pc();
__ movl(rcx, AbstractInterpreter::BasicType_as_index(T_VOID));
// Deopt return common
// an index is present in rcx that lets us move any possible result being
// return to the interpreter's stack
//
// Because we have a full sized interpreter frame on the youngest
// activation the stack is pushed too deep to share the tosca to
// stack converters directly. We shrink the stack to the desired
// amount and then push result and then re-extend the stack.
// We could have the code in size_activation layout a short
// frame for the top activation but that would look different
// than say sparc (which needs a full size activation because
// the windows are in the way. Really it could be short? QQQ
//
__ bind(return_from_deopt_common);
__ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
// setup rsp so we can push the "result" as needed.
__ movptr(rsp, STATE(_stack)); // trim stack (is prepushed)
__ addptr(rsp, wordSize); // undo prepush
ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
// Address index(noreg, rcx, Address::times_ptr);
__ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
// __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
__ call(rcx); // call result converter
__ movl(STATE(_msg), (int)BytecodeInterpreter::deopt_resume);
__ lea(rsp, Address(rsp, -wordSize)); // prepush stack (result if any already present)
__ movptr(STATE(_stack), rsp); // inform interpreter of new stack depth (parameters removed,
// result if any on stack already )
__ movptr(rsp, STATE(_stack_limit)); // restore expression stack to full depth
}
// Generate the code to handle a more_monitors message from the c++ interpreter
void CppInterpreterGenerator::generate_more_monitors() {
Label entry, loop;
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
// 1. compute new pointers // rsp: old expression stack top
__ movptr(rdx, STATE(_stack_base)); // rdx: old expression stack bottom
__ subptr(rsp, entry_size); // move expression stack top limit
__ subptr(STATE(_stack), entry_size); // update interpreter stack top
__ subptr(STATE(_stack_limit), entry_size); // inform interpreter
__ subptr(rdx, entry_size); // move expression stack bottom
__ movptr(STATE(_stack_base), rdx); // inform interpreter
__ movptr(rcx, STATE(_stack)); // set start value for copy loop
__ jmp(entry);
// 2. move expression stack contents
__ bind(loop);
__ movptr(rbx, Address(rcx, entry_size)); // load expression stack word from old location
__ movptr(Address(rcx, 0), rbx); // and store it at new location
__ addptr(rcx, wordSize); // advance to next word
__ bind(entry);
__ cmpptr(rcx, rdx); // check if bottom reached
__ jcc(Assembler::notEqual, loop); // if not at bottom then copy next word
// now zero the slot so we can find it.
__ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
__ movl(STATE(_msg), (int)BytecodeInterpreter::got_monitors);
}
// Initial entry to C++ interpreter from the call_stub.
// This entry point is called the frame manager since it handles the generation
// of interpreter activation frames via requests directly from the vm (via call_stub)
// and via requests from the interpreter. The requests from the call_stub happen
// directly thru the entry point. Requests from the interpreter happen via returning
// from the interpreter and examining the message the interpreter has returned to
// the frame manager. The frame manager can take the following requests:
// NO_REQUEST - error, should never happen.
// MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
// allocate a new monitor.
// CALL_METHOD - setup a new activation to call a new method. Very similar to what
// happens during entry during the entry via the call stub.
// RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
//
// Arguments:
//
// rbx: Method*
// rcx: receiver - unused (retrieved from stack as needed)
// rsi/r13: previous frame manager state (NULL from the call_stub/c1/c2)
//
//
// Stack layout at entry
//
// [ return address ] <--- rsp
// [ parameter n ]
// ...
// [ parameter 1 ]
// [ expression stack ]
//
//
// We are free to blow any registers we like because the call_stub which brought us here
// initially has preserved the callee save registers already.
//
//
static address interpreter_frame_manager = NULL;
address InterpreterGenerator::generate_normal_entry(bool synchronized) {
// rbx: Method*
// rsi/r13: sender sp
// Because we redispatch "recursive" interpreter entries thru this same entry point
// the "input" register usage is a little strange and not what you expect coming
// from the call_stub. From the call stub rsi/rdi (current/previous) interpreter
// state are NULL but on "recursive" dispatches they are what you'd expect.
// rsi: current interpreter state (C++ interpreter) must preserve (null from call_stub/c1/c2)
// A single frame manager is plenty as we don't specialize for synchronized. We could and
// the code is pretty much ready. Would need to change the test below and for good measure
// modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
// routines. Not clear this is worth it yet.
if (interpreter_frame_manager) return interpreter_frame_manager;
address entry_point = __ pc();
// Fast accessor methods share this entry point.
// This works because frame manager is in the same codelet
if (UseFastAccessorMethods && !synchronized) __ bind(fast_accessor_slow_entry_path);
Label dispatch_entry_2;
__ movptr(rcx, sender_sp_on_entry);
__ movptr(state, (int32_t)NULL_WORD); // no current activation
__ jmp(dispatch_entry_2);
const Register locals = rdi;
Label re_dispatch;
__ bind(re_dispatch);
// save sender sp (doesn't include return address
__ lea(rcx, Address(rsp, wordSize));
__ bind(dispatch_entry_2);
// save sender sp
__ push(rcx);
const Address constMethod (rbx, Method::const_offset());
const Address access_flags (rbx, Method::access_flags_offset());
const Address size_of_parameters(rdx, ConstMethod::size_of_parameters_offset());
const Address size_of_locals (rdx, ConstMethod::size_of_locals_offset());
// const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
// const Address monitor_block_bot (rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
// const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
// get parameter size (always needed)
__ movptr(rdx, constMethod);
__ load_unsigned_short(rcx, size_of_parameters);
// rbx: Method*
// rcx: size of parameters
__ load_unsigned_short(rdx, size_of_locals); // get size of locals in words
__ subptr(rdx, rcx); // rdx = no. of additional locals
// see if we've got enough room on the stack for locals plus overhead.
generate_stack_overflow_check(); // C++
// c++ interpreter does not use stack banging or any implicit exceptions
// leave for now to verify that check is proper.
bang_stack_shadow_pages(false);
// compute beginning of parameters (rdi)
__ lea(locals, Address(rsp, rcx, Address::times_ptr, wordSize));
// save sender's sp
// __ movl(rcx, rsp);
// get sender's sp
__ pop(rcx);
// get return address
__ pop(rax);
// rdx - # of additional locals
// allocate space for locals
// explicitly initialize locals
{
Label exit, loop;
__ testl(rdx, rdx); // (32bit ok)
__ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
__ bind(loop);
__ push((int32_t)NULL_WORD); // initialize local variables
__ decrement(rdx); // until everything initialized
__ jcc(Assembler::greater, loop);
__ bind(exit);
}
// Assumes rax = return address
// allocate and initialize new interpreterState and method expression stack
// IN(locals) -> locals
// IN(state) -> any current interpreter activation
// destroys rax, rcx, rdx, rdi
// OUT (state) -> new interpreterState
// OUT(rsp) -> bottom of methods expression stack
generate_compute_interpreter_state(state, locals, rcx, false);
// Call interpreter
Label call_interpreter;
__ bind(call_interpreter);
// c++ interpreter does not use stack banging or any implicit exceptions
// leave for now to verify that check is proper.
bang_stack_shadow_pages(false);
// Call interpreter enter here if message is
// set and we know stack size is valid
Label call_interpreter_2;
__ bind(call_interpreter_2);
{
const Register thread = NOT_LP64(rcx) LP64_ONLY(r15_thread);
#ifdef _LP64
__ mov(c_rarg0, state);
#else
__ push(state); // push arg to interpreter
__ movptr(thread, STATE(_thread));
#endif // _LP64
// We can setup the frame anchor with everything we want at this point
// as we are thread_in_Java and no safepoints can occur until we go to
// vm mode. We do have to clear flags on return from vm but that is it
//
__ movptr(Address(thread, JavaThread::last_Java_fp_offset()), rbp);
__ movptr(Address(thread, JavaThread::last_Java_sp_offset()), rsp);
// Call the interpreter
RuntimeAddress normal(CAST_FROM_FN_PTR(address, BytecodeInterpreter::run));
RuntimeAddress checking(CAST_FROM_FN_PTR(address, BytecodeInterpreter::runWithChecks));
__ call(JvmtiExport::can_post_interpreter_events() ? checking : normal);
NOT_LP64(__ pop(rax);) // discard parameter to run
//
// state is preserved since it is callee saved
//
// reset_last_Java_frame
NOT_LP64(__ movl(thread, STATE(_thread));)
__ reset_last_Java_frame(thread, true, true);
}
// examine msg from interpreter to determine next action
__ movl(rdx, STATE(_msg)); // Get new message
Label call_method;
Label return_from_interpreted_method;
Label throw_exception;
Label bad_msg;
Label do_OSR;
__ cmpl(rdx, (int32_t)BytecodeInterpreter::call_method);
__ jcc(Assembler::equal, call_method);
__ cmpl(rdx, (int32_t)BytecodeInterpreter::return_from_method);
__ jcc(Assembler::equal, return_from_interpreted_method);
__ cmpl(rdx, (int32_t)BytecodeInterpreter::do_osr);
__ jcc(Assembler::equal, do_OSR);
__ cmpl(rdx, (int32_t)BytecodeInterpreter::throwing_exception);
__ jcc(Assembler::equal, throw_exception);
__ cmpl(rdx, (int32_t)BytecodeInterpreter::more_monitors);
__ jcc(Assembler::notEqual, bad_msg);
// Allocate more monitor space, shuffle expression stack....
generate_more_monitors();
__ jmp(call_interpreter);
// uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
unctrap_frame_manager_entry = __ pc();
//
// Load the registers we need.
__ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
__ movptr(rsp, STATE(_stack_limit)); // restore expression stack to full depth
__ jmp(call_interpreter_2);
//=============================================================================
// Returning from a compiled method into a deopted method. The bytecode at the
// bcp has completed. The result of the bytecode is in the native abi (the tosca
// for the template based interpreter). Any stack space that was used by the
// bytecode that has completed has been removed (e.g. parameters for an invoke)
// so all that we have to do is place any pending result on the expression stack
// and resume execution on the next bytecode.
generate_deopt_handling();
__ jmp(call_interpreter);
// Current frame has caught an exception we need to dispatch to the
// handler. We can get here because a native interpreter frame caught
// an exception in which case there is no handler and we must rethrow
// If it is a vanilla interpreted frame the we simply drop into the
// interpreter and let it do the lookup.
Interpreter::_rethrow_exception_entry = __ pc();
// rax: exception
// rdx: return address/pc that threw exception
Label return_with_exception;
Label unwind_and_forward;
// restore state pointer.
__ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
__ movptr(rbx, STATE(_method)); // get method
#ifdef _LP64
__ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
#else
__ movl(rcx, STATE(_thread)); // get thread
// Store exception with interpreter will expect it
__ movptr(Address(rcx, Thread::pending_exception_offset()), rax);
#endif // _LP64
// is current frame vanilla or native?
__ movl(rdx, access_flags);
__ testl(rdx, JVM_ACC_NATIVE);
__ jcc(Assembler::zero, return_with_exception); // vanilla interpreted frame, handle directly
// We drop thru to unwind a native interpreted frame with a pending exception
// We jump here for the initial interpreter frame with exception pending
// We unwind the current acivation and forward it to our caller.
__ bind(unwind_and_forward);
// unwind rbp, return stack to unextended value and re-push return address
__ movptr(rcx, STATE(_sender_sp));
__ leave();
__ pop(rdx);
__ mov(rsp, rcx);
__ push(rdx);
__ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
// Return point from a call which returns a result in the native abi
// (c1/c2/jni-native). This result must be processed onto the java
// expression stack.
//
// A pending exception may be present in which case there is no result present
Label resume_interpreter;
Label do_float;
Label do_double;
Label done_conv;
// The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
if (UseSSE < 2) {
__ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
__ movptr(rbx, STATE(_result._to_call._callee)); // get method just executed
__ movl(rcx, Address(rbx, Method::result_index_offset()));
__ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT)); // Result stub address array index
__ jcc(Assembler::equal, do_float);
__ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE)); // Result stub address array index
__ jcc(Assembler::equal, do_double);
#if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
__ empty_FPU_stack();
#endif // COMPILER2
__ jmp(done_conv);
__ bind(do_float);
#ifdef COMPILER2
for (int i = 1; i < 8; i++) {
__ ffree(i);
}
#endif // COMPILER2
__ jmp(done_conv);
__ bind(do_double);
#ifdef COMPILER2
for (int i = 1; i < 8; i++) {
__ ffree(i);
}
#endif // COMPILER2
__ jmp(done_conv);
} else {
__ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
__ jmp(done_conv);
}
// Return point to interpreter from compiled/native method
InternalAddress return_from_native_method(__ pc());
__ bind(done_conv);
// Result if any is in tosca. The java expression stack is in the state that the
// calling convention left it (i.e. params may or may not be present)
// Copy the result from tosca and place it on java expression stack.
// Restore rsi/r13 as compiled code may not preserve it
__ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
// restore stack to what we had when we left (in case i2c extended it)
__ movptr(rsp, STATE(_stack));
__ lea(rsp, Address(rsp, wordSize));
// If there is a pending exception then we don't really have a result to process
#ifdef _LP64
__ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
#else
__ movptr(rcx, STATE(_thread)); // get thread
__ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
#endif // _LP64
__ jcc(Assembler::notZero, return_with_exception);
// get method just executed
__ movptr(rbx, STATE(_result._to_call._callee));
// callee left args on top of expression stack, remove them
__ movptr(rcx, constMethod);
__ load_unsigned_short(rcx, Address(rcx, ConstMethod::size_of_parameters_offset()));
__ lea(rsp, Address(rsp, rcx, Address::times_ptr));
__ movl(rcx, Address(rbx, Method::result_index_offset()));
ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
// Address index(noreg, rax, Address::times_ptr);
__ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
// __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
__ call(rcx); // call result converter
__ jmp(resume_interpreter);
// An exception is being caught on return to a vanilla interpreter frame.
// Empty the stack and resume interpreter
__ bind(return_with_exception);
// Exception present, empty stack
__ movptr(rsp, STATE(_stack_base));
__ jmp(resume_interpreter);
// Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
// interpreter call, or native) and unwind this interpreter activation.
// All monitors should be unlocked.
__ bind(return_from_interpreted_method);
Label return_to_initial_caller;
__ movptr(rbx, STATE(_method)); // get method just executed
__ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD); // returning from "recursive" interpreter call?
__ movl(rax, Address(rbx, Method::result_index_offset())); // get result type index
__ jcc(Assembler::equal, return_to_initial_caller); // back to native code (call_stub/c1/c2)
// Copy result to callers java stack
ExternalAddress stack_to_stack((address)CppInterpreter::_stack_to_stack);
// Address index(noreg, rax, Address::times_ptr);
__ movptr(rax, ArrayAddress(stack_to_stack, Address(noreg, rax, Address::times_ptr)));
// __ movl(rax, Address(noreg, rax, Address::times_ptr, int(AbstractInterpreter::_stack_to_stack)));
__ call(rax); // call result converter
Label unwind_recursive_activation;
__ bind(unwind_recursive_activation);
// returning to interpreter method from "recursive" interpreter call
// result converter left rax pointing to top of the java stack for method we are returning
// to. Now all we must do is unwind the state from the completed call
__ movptr(state, STATE(_prev_link)); // unwind state
__ leave(); // pop the frame
__ mov(rsp, rax); // unwind stack to remove args
// Resume the interpreter. The current frame contains the current interpreter
// state object.
//
__ bind(resume_interpreter);
// state == interpreterState object for method we are resuming
__ movl(STATE(_msg), (int)BytecodeInterpreter::method_resume);
__ lea(rsp, Address(rsp, -wordSize)); // prepush stack (result if any already present)
__ movptr(STATE(_stack), rsp); // inform interpreter of new stack depth (parameters removed,
// result if any on stack already )
__ movptr(rsp, STATE(_stack_limit)); // restore expression stack to full depth
__ jmp(call_interpreter_2); // No need to bang
// interpreter returning to native code (call_stub/c1/c2)
// convert result and unwind initial activation
// rax - result index
__ bind(return_to_initial_caller);
ExternalAddress stack_to_native((address)CppInterpreter::_stack_to_native_abi);
// Address index(noreg, rax, Address::times_ptr);
__ movptr(rax, ArrayAddress(stack_to_native, Address(noreg, rax, Address::times_ptr)));
__ call(rax); // call result converter
Label unwind_initial_activation;
__ bind(unwind_initial_activation);
// RETURN TO CALL_STUB/C1/C2 code (result if any in rax/rdx ST(0))
/* Current stack picture
[ incoming parameters ]
[ extra locals ]
[ return address to CALL_STUB/C1/C2]
fp -> [ CALL_STUB/C1/C2 fp ]
BytecodeInterpreter object
expression stack
sp ->
*/
// return restoring the stack to the original sender_sp value
__ movptr(rcx, STATE(_sender_sp));
__ leave();
__ pop(rdi); // get return address
// set stack to sender's sp
__ mov(rsp, rcx);
__ jmp(rdi); // return to call_stub
// OSR request, adjust return address to make current frame into adapter frame
// and enter OSR nmethod
__ bind(do_OSR);
Label remove_initial_frame;
// We are going to pop this frame. Is there another interpreter frame underneath
// it or is it callstub/compiled?
// Move buffer to the expected parameter location
__ movptr(rcx, STATE(_result._osr._osr_buf));
__ movptr(rax, STATE(_result._osr._osr_entry));
__ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD); // returning from "recursive" interpreter call?
__ jcc(Assembler::equal, remove_initial_frame); // back to native code (call_stub/c1/c2)
__ movptr(sender_sp_on_entry, STATE(_sender_sp)); // get sender's sp in expected register
__ leave(); // pop the frame
__ mov(rsp, sender_sp_on_entry); // trim any stack expansion
// We know we are calling compiled so push specialized return
// method uses specialized entry, push a return so we look like call stub setup
// this path will handle fact that result is returned in registers and not
// on the java stack.
__ pushptr(return_from_native_method.addr());
__ jmp(rax);
__ bind(remove_initial_frame);
__ movptr(rdx, STATE(_sender_sp));
__ leave();
// get real return
__ pop(rsi);
// set stack to sender's sp
__ mov(rsp, rdx);
// repush real return
__ push(rsi);
// Enter OSR nmethod
__ jmp(rax);
// Call a new method. All we do is (temporarily) trim the expression stack
// push a return address to bring us back to here and leap to the new entry.
__ bind(call_method);
// stack points to next free location and not top element on expression stack
// method expects sp to be pointing to topmost element
__ movptr(rsp, STATE(_stack)); // pop args to c++ interpreter, set sp to java stack top
__ lea(rsp, Address(rsp, wordSize));
__ movptr(rbx, STATE(_result._to_call._callee)); // get method to execute
// don't need a return address if reinvoking interpreter
// Make it look like call_stub calling conventions
// Get (potential) receiver
// get size of parameters in words
__ movptr(rcx, constMethod);
__ load_unsigned_short(rcx, Address(rcx, ConstMethod::size_of_parameters_offset()));
ExternalAddress recursive(CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
__ pushptr(recursive.addr()); // make it look good in the debugger
InternalAddress entry(entry_point);
__ cmpptr(STATE(_result._to_call._callee_entry_point), entry.addr()); // returning to interpreter?
__ jcc(Assembler::equal, re_dispatch); // yes
__ pop(rax); // pop dummy address
// get specialized entry
__ movptr(rax, STATE(_result._to_call._callee_entry_point));
// set sender SP
__ mov(sender_sp_on_entry, rsp);
// method uses specialized entry, push a return so we look like call stub setup
// this path will handle fact that result is returned in registers and not
// on the java stack.
__ pushptr(return_from_native_method.addr());
__ jmp(rax);
__ bind(bad_msg);
__ stop("Bad message from interpreter");
// Interpreted method "returned" with an exception pass it on...
// Pass result, unwind activation and continue/return to interpreter/call_stub
// We handle result (if any) differently based on return to interpreter or call_stub
Label unwind_initial_with_pending_exception;
__ bind(throw_exception);
__ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD); // returning from recursive interpreter call?
__ jcc(Assembler::equal, unwind_initial_with_pending_exception); // no, back to native code (call_stub/c1/c2)
__ movptr(rax, STATE(_locals)); // pop parameters get new stack value
__ addptr(rax, wordSize); // account for prepush before we return
__ jmp(unwind_recursive_activation);
__ bind(unwind_initial_with_pending_exception);
// We will unwind the current (initial) interpreter frame and forward
// the exception to the caller. We must put the exception in the
// expected register and clear pending exception and then forward.
__ jmp(unwind_and_forward);
interpreter_frame_manager = entry_point;
return entry_point;
}
address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
// determine code generation flags
bool synchronized = false;
address entry_point = NULL;
switch (kind) {
case Interpreter::zerolocals : break;
case Interpreter::zerolocals_synchronized: synchronized = true; break;
case Interpreter::native : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false); break;
case Interpreter::native_synchronized : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true); break;
case Interpreter::empty : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry(); break;
case Interpreter::accessor : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry(); break;
case Interpreter::abstract : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry(); break;
case Interpreter::method_handle : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
case Interpreter::java_lang_math_sin : // fall thru
case Interpreter::java_lang_math_cos : // fall thru
case Interpreter::java_lang_math_tan : // fall thru
case Interpreter::java_lang_math_abs : // fall thru
case Interpreter::java_lang_math_log : // fall thru
case Interpreter::java_lang_math_log10 : // fall thru
case Interpreter::java_lang_math_sqrt : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind); break;
case Interpreter::java_lang_ref_reference_get
: entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
default : ShouldNotReachHere(); break;
}
if (entry_point) return entry_point;
return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
}
InterpreterGenerator::InterpreterGenerator(StubQueue* code)
: CppInterpreterGenerator(code) {
generate_all(); // down here so it can be "virtual"
}
// Deoptimization helpers for C++ interpreter
// How much stack a method activation needs in words.
int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
const int stub_code = 4; // see generate_call_stub
// Save space for one monitor to get into the interpreted method in case
// the method is synchronized
int monitor_size = method->is_synchronized() ?
1*frame::interpreter_frame_monitor_size() : 0;
// total static overhead size. Account for interpreter state object, return
// address, saved rbp and 2 words for a "static long no_params() method" issue.
const int overhead_size = sizeof(BytecodeInterpreter)/wordSize +
( frame::sender_sp_offset - frame::link_offset) + 2;
const int method_stack = (method->max_locals() + method->max_stack()) *
Interpreter::stackElementWords;
return overhead_size + method_stack + stub_code;
}
// returns the activation size.
static int size_activation_helper(int extra_locals_size, int monitor_size) {
return (extra_locals_size + // the addition space for locals
2*BytesPerWord + // return address and saved rbp
2*BytesPerWord + // "static long no_params() method" issue
sizeof(BytecodeInterpreter) + // interpreterState
monitor_size); // monitors
}
void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
frame* caller,
frame* current,
Method* method,
intptr_t* locals,
intptr_t* stack,
intptr_t* stack_base,
intptr_t* monitor_base,
intptr_t* frame_bottom,
bool is_top_frame
)
{
// What about any vtable?
//
to_fill->_thread = JavaThread::current();
// This gets filled in later but make it something recognizable for now
to_fill->_bcp = method->code_base();
to_fill->_locals = locals;
to_fill->_constants = method->constants()->cache();
to_fill->_method = method;
to_fill->_mdx = NULL;
to_fill->_stack = stack;
if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
to_fill->_msg = deopt_resume2;
} else {
to_fill->_msg = method_resume;
}
to_fill->_result._to_call._bcp_advance = 0;
to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
to_fill->_prev_link = NULL;
to_fill->_sender_sp = caller->unextended_sp();
if (caller->is_interpreted_frame()) {
interpreterState prev = caller->get_interpreterState();
to_fill->_prev_link = prev;
// *current->register_addr(GR_Iprev_state) = (intptr_t) prev;
// Make the prev callee look proper
prev->_result._to_call._callee = method;
if (*prev->_bcp == Bytecodes::_invokeinterface) {
prev->_result._to_call._bcp_advance = 5;
} else {
prev->_result._to_call._bcp_advance = 3;
}
}
to_fill->_oop_temp = NULL;
to_fill->_stack_base = stack_base;
// Need +1 here because stack_base points to the word just above the first expr stack entry
// and stack_limit is supposed to point to the word just below the last expr stack entry.
// See generate_compute_interpreter_state.
to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
to_fill->_self_link = to_fill;
assert(stack >= to_fill->_stack_limit && stack < to_fill->_stack_base,
"Stack top out of range");
}
int AbstractInterpreter::layout_activation(Method* method,
int tempcount, //
int popframe_extra_args,
int moncount,
int caller_actual_parameters,
int callee_param_count,
int callee_locals,
frame* caller,
frame* interpreter_frame,
bool is_top_frame,
bool is_bottom_frame) {
assert(popframe_extra_args == 0, "FIX ME");
// NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
// does as far as allocating an interpreter frame.
// If interpreter_frame!=NULL, set up the method, locals, and monitors.
// The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
// as determined by a previous call to this method.
// It is also guaranteed to be walkable even though it is in a skeletal state
// NOTE: return size is in words not bytes
// NOTE: tempcount is the current size of the java expression stack. For top most
// frames we will allocate a full sized expression stack and not the curback
// version that non-top frames have.
// Calculate the amount our frame will be adjust by the callee. For top frame
// this is zero.
// NOTE: ia64 seems to do this wrong (or at least backwards) in that it
// calculates the extra locals based on itself. Not what the callee does
// to it. So it ignores last_frame_adjust value. Seems suspicious as far
// as getting sender_sp correct.
int extra_locals_size = (callee_locals - callee_param_count) * BytesPerWord;
int monitor_size = sizeof(BasicObjectLock) * moncount;
// First calculate the frame size without any java expression stack
int short_frame_size = size_activation_helper(extra_locals_size,
monitor_size);
// Now with full size expression stack
int full_frame_size = short_frame_size + method->max_stack() * BytesPerWord;
// and now with only live portion of the expression stack
short_frame_size = short_frame_size + tempcount * BytesPerWord;
// the size the activation is right now. Only top frame is full size
int frame_size = (is_top_frame ? full_frame_size : short_frame_size);
if (interpreter_frame != NULL) {
#ifdef ASSERT
assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
#endif
// MUCHO HACK
intptr_t* frame_bottom = (intptr_t*) ((intptr_t)interpreter_frame->sp() - (full_frame_size - frame_size));
/* Now fillin the interpreterState object */
// The state object is the first thing on the frame and easily located
interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
// Find the locals pointer. This is rather simple on x86 because there is no
// confusing rounding at the callee to account for. We can trivially locate
// our locals based on the current fp().
// Note: the + 2 is for handling the "static long no_params() method" issue.
// (too bad I don't really remember that issue well...)
intptr_t* locals;
// If the caller is interpreted we need to make sure that locals points to the first
// argument that the caller passed and not in an area where the stack might have been extended.
// because the stack to stack to converter needs a proper locals value in order to remove the
// arguments from the caller and place the result in the proper location. Hmm maybe it'd be
// simpler if we simply stored the result in the BytecodeInterpreter object and let the c++ code
// adjust the stack?? HMMM QQQ
//
if (caller->is_interpreted_frame()) {
// locals must agree with the caller because it will be used to set the
// caller's tos when we return.
interpreterState prev = caller->get_interpreterState();
// stack() is prepushed.
locals = prev->stack() + method->size_of_parameters();
// locals = caller->unextended_sp() + (method->size_of_parameters() - 1);
if (locals != interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2) {
// os::breakpoint();
}
} else {
// this is where a c2i would have placed locals (except for the +2)
locals = interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2;
}
intptr_t* monitor_base = (intptr_t*) cur_state;
intptr_t* stack_base = (intptr_t*) ((intptr_t) monitor_base - monitor_size);
/* +1 because stack is always prepushed */
intptr_t* stack = (intptr_t*) ((intptr_t) stack_base - (tempcount + 1) * BytesPerWord);
BytecodeInterpreter::layout_interpreterState(cur_state,
caller,
interpreter_frame,
method,
locals,
stack,
stack_base,
monitor_base,
frame_bottom,
is_top_frame);
// BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
}
return frame_size/BytesPerWord;
}
#endif // CC_INTERP (all)