8198445: Access API for primitive/native arraycopy
Reviewed-by: pliden, eosterlund, dholmes
/*
* Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_RUNTIME_ACCESS_INLINE_HPP
#define SHARE_VM_RUNTIME_ACCESS_INLINE_HPP
#include "gc/shared/barrierSetConfig.inline.hpp"
#include "metaprogramming/conditional.hpp"
#include "metaprogramming/isFloatingPoint.hpp"
#include "metaprogramming/isIntegral.hpp"
#include "metaprogramming/isPointer.hpp"
#include "metaprogramming/isVolatile.hpp"
#include "oops/access.hpp"
#include "oops/accessBackend.inline.hpp"
#include "runtime/atomic.hpp"
#include "runtime/orderAccess.inline.hpp"
// This file outlines the template pipeline of accesses going through the Access
// API. There are essentially 5 steps for each access.
// * Step 1: Set default decorators and decay types. This step gets rid of CV qualifiers
// and sets default decorators to sensible values.
// * Step 2: Reduce types. This step makes sure there is only a single T type and not
// multiple types. The P type of the address and T type of the value must
// match.
// * Step 3: Pre-runtime dispatch. This step checks whether a runtime call can be
// avoided, and in that case avoids it (calling raw accesses or
// primitive accesses in a build that does not require primitive GC barriers)
// * Step 4: Runtime-dispatch. This step performs a runtime dispatch to the corresponding
// BarrierSet::AccessBarrier accessor that attaches GC-required barriers
// to the access.
// * Step 5: Post-runtime dispatch. This step now casts previously unknown types such
// as the address type of an oop on the heap (is it oop* or narrowOop*) to
// the appropriate type. It also splits sufficiently orthogonal accesses into
// different functions, such as whether the access involves oops or primitives
// and whether the access is performed on the heap or outside. Then the
// appropriate BarrierSet::AccessBarrier is called to perform the access.
namespace AccessInternal {
// Step 5: Post-runtime dispatch.
// This class is the last step before calling the BarrierSet::AccessBarrier.
// Here we make sure to figure out types that were not known prior to the
// runtime dispatch, such as whether an oop on the heap is oop or narrowOop.
// We also split orthogonal barriers such as handling primitives vs oops
// and on-heap vs off-heap into different calls to the barrier set.
template <class GCBarrierType, BarrierType type, DecoratorSet decorators>
struct PostRuntimeDispatch: public AllStatic { };
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_STORE, decorators>: public AllStatic {
template <typename T>
static void access_barrier(void* addr, T value) {
GCBarrierType::store_in_heap(reinterpret_cast<T*>(addr), value);
}
static void oop_access_barrier(void* addr, oop value) {
typedef typename HeapOopType<decorators>::type OopType;
if (HasDecorator<decorators, IN_HEAP>::value) {
GCBarrierType::oop_store_in_heap(reinterpret_cast<OopType*>(addr), value);
} else {
GCBarrierType::oop_store_not_in_heap(reinterpret_cast<OopType*>(addr), value);
}
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_LOAD, decorators>: public AllStatic {
template <typename T>
static T access_barrier(void* addr) {
return GCBarrierType::load_in_heap(reinterpret_cast<T*>(addr));
}
static oop oop_access_barrier(void* addr) {
typedef typename HeapOopType<decorators>::type OopType;
if (HasDecorator<decorators, IN_HEAP>::value) {
return GCBarrierType::oop_load_in_heap(reinterpret_cast<OopType*>(addr));
} else {
return GCBarrierType::oop_load_not_in_heap(reinterpret_cast<OopType*>(addr));
}
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_ATOMIC_XCHG, decorators>: public AllStatic {
template <typename T>
static T access_barrier(T new_value, void* addr) {
return GCBarrierType::atomic_xchg_in_heap(new_value, reinterpret_cast<T*>(addr));
}
static oop oop_access_barrier(oop new_value, void* addr) {
typedef typename HeapOopType<decorators>::type OopType;
if (HasDecorator<decorators, IN_HEAP>::value) {
return GCBarrierType::oop_atomic_xchg_in_heap(new_value, reinterpret_cast<OopType*>(addr));
} else {
return GCBarrierType::oop_atomic_xchg_not_in_heap(new_value, reinterpret_cast<OopType*>(addr));
}
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_ATOMIC_CMPXCHG, decorators>: public AllStatic {
template <typename T>
static T access_barrier(T new_value, void* addr, T compare_value) {
return GCBarrierType::atomic_cmpxchg_in_heap(new_value, reinterpret_cast<T*>(addr), compare_value);
}
static oop oop_access_barrier(oop new_value, void* addr, oop compare_value) {
typedef typename HeapOopType<decorators>::type OopType;
if (HasDecorator<decorators, IN_HEAP>::value) {
return GCBarrierType::oop_atomic_cmpxchg_in_heap(new_value, reinterpret_cast<OopType*>(addr), compare_value);
} else {
return GCBarrierType::oop_atomic_cmpxchg_not_in_heap(new_value, reinterpret_cast<OopType*>(addr), compare_value);
}
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_ARRAYCOPY, decorators>: public AllStatic {
template <typename T>
static bool access_barrier(arrayOop src_obj, arrayOop dst_obj, T* src, T* dst, size_t length) {
GCBarrierType::arraycopy_in_heap(src_obj, dst_obj, src, dst, length);
return true;
}
template <typename T>
static bool oop_access_barrier(arrayOop src_obj, arrayOop dst_obj, T* src, T* dst, size_t length) {
typedef typename HeapOopType<decorators>::type OopType;
return GCBarrierType::oop_arraycopy_in_heap(src_obj, dst_obj,
reinterpret_cast<OopType*>(src),
reinterpret_cast<OopType*>(dst), length);
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_STORE_AT, decorators>: public AllStatic {
template <typename T>
static void access_barrier(oop base, ptrdiff_t offset, T value) {
GCBarrierType::store_in_heap_at(base, offset, value);
}
static void oop_access_barrier(oop base, ptrdiff_t offset, oop value) {
GCBarrierType::oop_store_in_heap_at(base, offset, value);
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_LOAD_AT, decorators>: public AllStatic {
template <typename T>
static T access_barrier(oop base, ptrdiff_t offset) {
return GCBarrierType::template load_in_heap_at<T>(base, offset);
}
static oop oop_access_barrier(oop base, ptrdiff_t offset) {
return GCBarrierType::oop_load_in_heap_at(base, offset);
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_ATOMIC_XCHG_AT, decorators>: public AllStatic {
template <typename T>
static T access_barrier(T new_value, oop base, ptrdiff_t offset) {
return GCBarrierType::atomic_xchg_in_heap_at(new_value, base, offset);
}
static oop oop_access_barrier(oop new_value, oop base, ptrdiff_t offset) {
return GCBarrierType::oop_atomic_xchg_in_heap_at(new_value, base, offset);
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_ATOMIC_CMPXCHG_AT, decorators>: public AllStatic {
template <typename T>
static T access_barrier(T new_value, oop base, ptrdiff_t offset, T compare_value) {
return GCBarrierType::atomic_cmpxchg_in_heap_at(new_value, base, offset, compare_value);
}
static oop oop_access_barrier(oop new_value, oop base, ptrdiff_t offset, oop compare_value) {
return GCBarrierType::oop_atomic_cmpxchg_in_heap_at(new_value, base, offset, compare_value);
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_CLONE, decorators>: public AllStatic {
static void access_barrier(oop src, oop dst, size_t size) {
GCBarrierType::clone_in_heap(src, dst, size);
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_RESOLVE, decorators>: public AllStatic {
static oop access_barrier(oop obj) {
return GCBarrierType::resolve(obj);
}
};
// Resolving accessors with barriers from the barrier set happens in two steps.
// 1. Expand paths with runtime-decorators, e.g. is UseCompressedOops on or off.
// 2. Expand paths for each BarrierSet available in the system.
template <DecoratorSet decorators, typename FunctionPointerT, BarrierType barrier_type>
struct BarrierResolver: public AllStatic {
template <DecoratorSet ds>
static typename EnableIf<
HasDecorator<ds, INTERNAL_VALUE_IS_OOP>::value,
FunctionPointerT>::type
resolve_barrier_gc() {
BarrierSet* bs = BarrierSet::barrier_set();
assert(bs != NULL, "GC barriers invoked before BarrierSet is set");
switch (bs->kind()) {
#define BARRIER_SET_RESOLVE_BARRIER_CLOSURE(bs_name) \
case BarrierSet::bs_name: { \
return PostRuntimeDispatch<typename BarrierSet::GetType<BarrierSet::bs_name>::type:: \
AccessBarrier<ds>, barrier_type, ds>::oop_access_barrier; \
} \
break;
FOR_EACH_CONCRETE_BARRIER_SET_DO(BARRIER_SET_RESOLVE_BARRIER_CLOSURE)
#undef BARRIER_SET_RESOLVE_BARRIER_CLOSURE
default:
fatal("BarrierSet AccessBarrier resolving not implemented");
return NULL;
};
}
template <DecoratorSet ds>
static typename EnableIf<
!HasDecorator<ds, INTERNAL_VALUE_IS_OOP>::value,
FunctionPointerT>::type
resolve_barrier_gc() {
BarrierSet* bs = BarrierSet::barrier_set();
assert(bs != NULL, "GC barriers invoked before BarrierSet is set");
switch (bs->kind()) {
#define BARRIER_SET_RESOLVE_BARRIER_CLOSURE(bs_name) \
case BarrierSet::bs_name: { \
return PostRuntimeDispatch<typename BarrierSet::GetType<BarrierSet::bs_name>::type:: \
AccessBarrier<ds>, barrier_type, ds>::access_barrier; \
} \
break;
FOR_EACH_CONCRETE_BARRIER_SET_DO(BARRIER_SET_RESOLVE_BARRIER_CLOSURE)
#undef BARRIER_SET_RESOLVE_BARRIER_CLOSURE
default:
fatal("BarrierSet AccessBarrier resolving not implemented");
return NULL;
};
}
static FunctionPointerT resolve_barrier_rt() {
if (UseCompressedOops) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_RT_USE_COMPRESSED_OOPS;
return resolve_barrier_gc<expanded_decorators>();
} else {
return resolve_barrier_gc<decorators>();
}
}
static FunctionPointerT resolve_barrier() {
return resolve_barrier_rt();
}
};
// Step 4: Runtime dispatch
// The RuntimeDispatch class is responsible for performing a runtime dispatch of the
// accessor. This is required when the access either depends on whether compressed oops
// is being used, or it depends on which GC implementation was chosen (e.g. requires GC
// barriers). The way it works is that a function pointer initially pointing to an
// accessor resolution function gets called for each access. Upon first invocation,
// it resolves which accessor to be used in future invocations and patches the
// function pointer to this new accessor.
template <DecoratorSet decorators, typename T, BarrierType type>
struct RuntimeDispatch: AllStatic {};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_STORE>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_STORE>::type func_t;
static func_t _store_func;
static void store_init(void* addr, T value) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_STORE>::resolve_barrier();
_store_func = function;
function(addr, value);
}
static inline void store(void* addr, T value) {
_store_func(addr, value);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_STORE_AT>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_STORE_AT>::type func_t;
static func_t _store_at_func;
static void store_at_init(oop base, ptrdiff_t offset, T value) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_STORE_AT>::resolve_barrier();
_store_at_func = function;
function(base, offset, value);
}
static inline void store_at(oop base, ptrdiff_t offset, T value) {
_store_at_func(base, offset, value);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_LOAD>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_LOAD>::type func_t;
static func_t _load_func;
static T load_init(void* addr) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_LOAD>::resolve_barrier();
_load_func = function;
return function(addr);
}
static inline T load(void* addr) {
return _load_func(addr);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_LOAD_AT>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_LOAD_AT>::type func_t;
static func_t _load_at_func;
static T load_at_init(oop base, ptrdiff_t offset) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_LOAD_AT>::resolve_barrier();
_load_at_func = function;
return function(base, offset);
}
static inline T load_at(oop base, ptrdiff_t offset) {
return _load_at_func(base, offset);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_ATOMIC_CMPXCHG>::type func_t;
static func_t _atomic_cmpxchg_func;
static T atomic_cmpxchg_init(T new_value, void* addr, T compare_value) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_ATOMIC_CMPXCHG>::resolve_barrier();
_atomic_cmpxchg_func = function;
return function(new_value, addr, compare_value);
}
static inline T atomic_cmpxchg(T new_value, void* addr, T compare_value) {
return _atomic_cmpxchg_func(new_value, addr, compare_value);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG_AT>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_ATOMIC_CMPXCHG_AT>::type func_t;
static func_t _atomic_cmpxchg_at_func;
static T atomic_cmpxchg_at_init(T new_value, oop base, ptrdiff_t offset, T compare_value) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_ATOMIC_CMPXCHG_AT>::resolve_barrier();
_atomic_cmpxchg_at_func = function;
return function(new_value, base, offset, compare_value);
}
static inline T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
return _atomic_cmpxchg_at_func(new_value, base, offset, compare_value);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_ATOMIC_XCHG>::type func_t;
static func_t _atomic_xchg_func;
static T atomic_xchg_init(T new_value, void* addr) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_ATOMIC_XCHG>::resolve_barrier();
_atomic_xchg_func = function;
return function(new_value, addr);
}
static inline T atomic_xchg(T new_value, void* addr) {
return _atomic_xchg_func(new_value, addr);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG_AT>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_ATOMIC_XCHG_AT>::type func_t;
static func_t _atomic_xchg_at_func;
static T atomic_xchg_at_init(T new_value, oop base, ptrdiff_t offset) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_ATOMIC_XCHG_AT>::resolve_barrier();
_atomic_xchg_at_func = function;
return function(new_value, base, offset);
}
static inline T atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
return _atomic_xchg_at_func(new_value, base, offset);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_ARRAYCOPY>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_ARRAYCOPY>::type func_t;
static func_t _arraycopy_func;
static bool arraycopy_init(arrayOop src_obj, arrayOop dst_obj, T *src, T* dst, size_t length) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_ARRAYCOPY>::resolve_barrier();
_arraycopy_func = function;
return function(src_obj, dst_obj, src, dst, length);
}
static inline bool arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T* dst, size_t length) {
return _arraycopy_func(src_obj, dst_obj, src, dst, length);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_CLONE>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_CLONE>::type func_t;
static func_t _clone_func;
static void clone_init(oop src, oop dst, size_t size) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_CLONE>::resolve_barrier();
_clone_func = function;
function(src, dst, size);
}
static inline void clone(oop src, oop dst, size_t size) {
_clone_func(src, dst, size);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_RESOLVE>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_RESOLVE>::type func_t;
static func_t _resolve_func;
static oop resolve_init(oop obj) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_RESOLVE>::resolve_barrier();
_resolve_func = function;
return function(obj);
}
static inline oop resolve(oop obj) {
return _resolve_func(obj);
}
};
// Initialize the function pointers to point to the resolving function.
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_STORE>::type
RuntimeDispatch<decorators, T, BARRIER_STORE>::_store_func = &store_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_STORE_AT>::type
RuntimeDispatch<decorators, T, BARRIER_STORE_AT>::_store_at_func = &store_at_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_LOAD>::type
RuntimeDispatch<decorators, T, BARRIER_LOAD>::_load_func = &load_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_LOAD_AT>::type
RuntimeDispatch<decorators, T, BARRIER_LOAD_AT>::_load_at_func = &load_at_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_ATOMIC_CMPXCHG>::type
RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG>::_atomic_cmpxchg_func = &atomic_cmpxchg_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_ATOMIC_CMPXCHG_AT>::type
RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG_AT>::_atomic_cmpxchg_at_func = &atomic_cmpxchg_at_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_ATOMIC_XCHG>::type
RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG>::_atomic_xchg_func = &atomic_xchg_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_ATOMIC_XCHG_AT>::type
RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG_AT>::_atomic_xchg_at_func = &atomic_xchg_at_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_ARRAYCOPY>::type
RuntimeDispatch<decorators, T, BARRIER_ARRAYCOPY>::_arraycopy_func = &arraycopy_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_CLONE>::type
RuntimeDispatch<decorators, T, BARRIER_CLONE>::_clone_func = &clone_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_RESOLVE>::type
RuntimeDispatch<decorators, T, BARRIER_RESOLVE>::_resolve_func = &resolve_init;
// Step 3: Pre-runtime dispatching.
// The PreRuntimeDispatch class is responsible for filtering the barrier strength
// decorators. That is, for AS_RAW, it hardwires the accesses without a runtime
// dispatch point. Otherwise it goes through a runtime check if hardwiring was
// not possible.
struct PreRuntimeDispatch: AllStatic {
template<DecoratorSet decorators>
struct CanHardwireRaw: public IntegralConstant<
bool,
!HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value || // primitive access
!HasDecorator<decorators, INTERNAL_CONVERT_COMPRESSED_OOP>::value || // don't care about compressed oops (oop* address)
HasDecorator<decorators, INTERNAL_RT_USE_COMPRESSED_OOPS>::value> // we can infer we use compressed oops (narrowOop* address)
{};
static const DecoratorSet convert_compressed_oops = INTERNAL_RT_USE_COMPRESSED_OOPS | INTERNAL_CONVERT_COMPRESSED_OOP;
template<DecoratorSet decorators>
static bool is_hardwired_primitive() {
return !HasDecorator<decorators, INTERNAL_BT_BARRIER_ON_PRIMITIVES>::value &&
!HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value;
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value && CanHardwireRaw<decorators>::value>::type
store(void* addr, T value) {
typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
if (HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value) {
Raw::oop_store(addr, value);
} else {
Raw::store(addr, value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value && !CanHardwireRaw<decorators>::value>::type
store(void* addr, T value) {
if (UseCompressedOops) {
const DecoratorSet expanded_decorators = decorators | convert_compressed_oops;
PreRuntimeDispatch::store<expanded_decorators>(addr, value);
} else {
const DecoratorSet expanded_decorators = decorators & ~convert_compressed_oops;
PreRuntimeDispatch::store<expanded_decorators>(addr, value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value>::type
store(void* addr, T value) {
if (is_hardwired_primitive<decorators>()) {
const DecoratorSet expanded_decorators = decorators | AS_RAW;
PreRuntimeDispatch::store<expanded_decorators>(addr, value);
} else {
RuntimeDispatch<decorators, T, BARRIER_STORE>::store(addr, value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value>::type
store_at(oop base, ptrdiff_t offset, T value) {
store<decorators>(field_addr(base, offset), value);
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value>::type
store_at(oop base, ptrdiff_t offset, T value) {
if (is_hardwired_primitive<decorators>()) {
const DecoratorSet expanded_decorators = decorators | AS_RAW;
PreRuntimeDispatch::store_at<expanded_decorators>(base, offset, value);
} else {
RuntimeDispatch<decorators, T, BARRIER_STORE_AT>::store_at(base, offset, value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value && CanHardwireRaw<decorators>::value, T>::type
load(void* addr) {
typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
if (HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value) {
return Raw::template oop_load<T>(addr);
} else {
return Raw::template load<T>(addr);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value && !CanHardwireRaw<decorators>::value, T>::type
load(void* addr) {
if (UseCompressedOops) {
const DecoratorSet expanded_decorators = decorators | convert_compressed_oops;
return PreRuntimeDispatch::load<expanded_decorators, T>(addr);
} else {
const DecoratorSet expanded_decorators = decorators & ~convert_compressed_oops;
return PreRuntimeDispatch::load<expanded_decorators, T>(addr);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value, T>::type
load(void* addr) {
if (is_hardwired_primitive<decorators>()) {
const DecoratorSet expanded_decorators = decorators | AS_RAW;
return PreRuntimeDispatch::load<expanded_decorators, T>(addr);
} else {
return RuntimeDispatch<decorators, T, BARRIER_LOAD>::load(addr);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value, T>::type
load_at(oop base, ptrdiff_t offset) {
return load<decorators, T>(field_addr(base, offset));
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value, T>::type
load_at(oop base, ptrdiff_t offset) {
if (is_hardwired_primitive<decorators>()) {
const DecoratorSet expanded_decorators = decorators | AS_RAW;
return PreRuntimeDispatch::load_at<expanded_decorators, T>(base, offset);
} else {
return RuntimeDispatch<decorators, T, BARRIER_LOAD_AT>::load_at(base, offset);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value && CanHardwireRaw<decorators>::value, T>::type
atomic_cmpxchg(T new_value, void* addr, T compare_value) {
typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
if (HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value) {
return Raw::oop_atomic_cmpxchg(new_value, addr, compare_value);
} else {
return Raw::atomic_cmpxchg(new_value, addr, compare_value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value && !CanHardwireRaw<decorators>::value, T>::type
atomic_cmpxchg(T new_value, void* addr, T compare_value) {
if (UseCompressedOops) {
const DecoratorSet expanded_decorators = decorators | convert_compressed_oops;
return PreRuntimeDispatch::atomic_cmpxchg<expanded_decorators>(new_value, addr, compare_value);
} else {
const DecoratorSet expanded_decorators = decorators & ~convert_compressed_oops;
return PreRuntimeDispatch::atomic_cmpxchg<expanded_decorators>(new_value, addr, compare_value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value, T>::type
atomic_cmpxchg(T new_value, void* addr, T compare_value) {
typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
if (is_hardwired_primitive<decorators>()) {
const DecoratorSet expanded_decorators = decorators | AS_RAW;
return PreRuntimeDispatch::atomic_cmpxchg<expanded_decorators>(new_value, addr, compare_value);
} else {
return RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG>::atomic_cmpxchg(new_value, addr, compare_value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value, T>::type
atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
return atomic_cmpxchg<decorators>(new_value, field_addr(base, offset), compare_value);
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value, T>::type
atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
if (is_hardwired_primitive<decorators>()) {
const DecoratorSet expanded_decorators = decorators | AS_RAW;
return PreRuntimeDispatch::atomic_cmpxchg_at<expanded_decorators>(new_value, base, offset, compare_value);
} else {
return RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG_AT>::atomic_cmpxchg_at(new_value, base, offset, compare_value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value && CanHardwireRaw<decorators>::value, T>::type
atomic_xchg(T new_value, void* addr) {
typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
if (HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value) {
return Raw::oop_atomic_xchg(new_value, addr);
} else {
return Raw::atomic_xchg(new_value, addr);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value && !CanHardwireRaw<decorators>::value, T>::type
atomic_xchg(T new_value, void* addr) {
if (UseCompressedOops) {
const DecoratorSet expanded_decorators = decorators | convert_compressed_oops;
return PreRuntimeDispatch::atomic_xchg<expanded_decorators>(new_value, addr);
} else {
const DecoratorSet expanded_decorators = decorators & ~convert_compressed_oops;
return PreRuntimeDispatch::atomic_xchg<expanded_decorators>(new_value, addr);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value, T>::type
atomic_xchg(T new_value, void* addr) {
if (is_hardwired_primitive<decorators>()) {
const DecoratorSet expanded_decorators = decorators | AS_RAW;
return PreRuntimeDispatch::atomic_xchg<expanded_decorators>(new_value, addr);
} else {
return RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG>::atomic_xchg(new_value, addr);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value, T>::type
atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
return atomic_xchg<decorators>(new_value, field_addr(base, offset));
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value, T>::type
atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
if (is_hardwired_primitive<decorators>()) {
const DecoratorSet expanded_decorators = decorators | AS_RAW;
return PreRuntimeDispatch::atomic_xchg<expanded_decorators>(new_value, base, offset);
} else {
return RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG_AT>::atomic_xchg_at(new_value, base, offset);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value, bool>::type
arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T* dst, size_t length) {
typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
return Raw::arraycopy(src_obj, dst_obj, src, dst, length);
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value, bool>::type
arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T* dst, size_t length) {
typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
if (is_hardwired_primitive<decorators>()) {
const DecoratorSet expanded_decorators = decorators | AS_RAW;
return PreRuntimeDispatch::arraycopy<expanded_decorators>(src_obj, dst_obj, src, dst, length);
} else {
return RuntimeDispatch<decorators, T, BARRIER_ARRAYCOPY>::arraycopy(src_obj, dst_obj, src, dst, length);
}
}
template <DecoratorSet decorators>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value>::type
clone(oop src, oop dst, size_t size) {
typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
Raw::clone(src, dst, size);
}
template <DecoratorSet decorators>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value>::type
clone(oop src, oop dst, size_t size) {
RuntimeDispatch<decorators, oop, BARRIER_CLONE>::clone(src, dst, size);
}
template <DecoratorSet decorators>
inline static typename EnableIf<
HasDecorator<decorators, INTERNAL_BT_TO_SPACE_INVARIANT>::value, oop>::type
resolve(oop obj) {
typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
return Raw::resolve(obj);
}
template <DecoratorSet decorators>
inline static typename EnableIf<
!HasDecorator<decorators, INTERNAL_BT_TO_SPACE_INVARIANT>::value, oop>::type
resolve(oop obj) {
return RuntimeDispatch<decorators, oop, BARRIER_RESOLVE>::resolve(obj);
}
};
// This class adds implied decorators that follow according to decorator rules.
// For example adding default reference strength and default memory ordering
// semantics.
template <DecoratorSet input_decorators>
struct DecoratorFixup: AllStatic {
// If no reference strength has been picked, then strong will be picked
static const DecoratorSet ref_strength_default = input_decorators |
(((ON_DECORATOR_MASK & input_decorators) == 0 && (INTERNAL_VALUE_IS_OOP & input_decorators) != 0) ?
ON_STRONG_OOP_REF : INTERNAL_EMPTY);
// If no memory ordering has been picked, unordered will be picked
static const DecoratorSet memory_ordering_default = ref_strength_default |
((MO_DECORATOR_MASK & ref_strength_default) == 0 ? MO_UNORDERED : INTERNAL_EMPTY);
// If no barrier strength has been picked, normal will be used
static const DecoratorSet barrier_strength_default = memory_ordering_default |
((AS_DECORATOR_MASK & memory_ordering_default) == 0 ? AS_NORMAL : INTERNAL_EMPTY);
// Heap array accesses imply it is a heap access
static const DecoratorSet heap_array_is_in_heap = barrier_strength_default |
((IN_HEAP_ARRAY & barrier_strength_default) != 0 ? IN_HEAP : INTERNAL_EMPTY);
static const DecoratorSet conc_root_is_root = heap_array_is_in_heap |
((IN_CONCURRENT_ROOT & heap_array_is_in_heap) != 0 ? IN_ROOT : INTERNAL_EMPTY);
static const DecoratorSet archive_root_is_root = conc_root_is_root |
((IN_ARCHIVE_ROOT & conc_root_is_root) != 0 ? IN_ROOT : INTERNAL_EMPTY);
static const DecoratorSet value = archive_root_is_root | BT_BUILDTIME_DECORATORS;
};
// Step 2: Reduce types.
// Enforce that for non-oop types, T and P have to be strictly the same.
// P is the type of the address and T is the type of the values.
// As for oop types, it is allow to send T in {narrowOop, oop} and
// P in {narrowOop, oop, HeapWord*}. The following rules apply according to
// the subsequent table. (columns are P, rows are T)
// | | HeapWord | oop | narrowOop |
// | oop | rt-comp | hw-none | hw-comp |
// | narrowOop | x | x | hw-none |
//
// x means not allowed
// rt-comp means it must be checked at runtime whether the oop is compressed.
// hw-none means it is statically known the oop will not be compressed.
// hw-comp means it is statically known the oop will be compressed.
template <DecoratorSet decorators, typename T>
inline void store_reduce_types(T* addr, T value) {
PreRuntimeDispatch::store<decorators>(addr, value);
}
template <DecoratorSet decorators>
inline void store_reduce_types(narrowOop* addr, oop value) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
INTERNAL_RT_USE_COMPRESSED_OOPS;
PreRuntimeDispatch::store<expanded_decorators>(addr, value);
}
template <DecoratorSet decorators>
inline void store_reduce_types(narrowOop* addr, narrowOop value) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
INTERNAL_RT_USE_COMPRESSED_OOPS;
PreRuntimeDispatch::store<expanded_decorators>(addr, value);
}
template <DecoratorSet decorators>
inline void store_reduce_types(HeapWord* addr, oop value) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP;
PreRuntimeDispatch::store<expanded_decorators>(addr, value);
}
template <DecoratorSet decorators, typename T>
inline T atomic_cmpxchg_reduce_types(T new_value, T* addr, T compare_value) {
return PreRuntimeDispatch::atomic_cmpxchg<decorators>(new_value, addr, compare_value);
}
template <DecoratorSet decorators>
inline oop atomic_cmpxchg_reduce_types(oop new_value, narrowOop* addr, oop compare_value) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
INTERNAL_RT_USE_COMPRESSED_OOPS;
return PreRuntimeDispatch::atomic_cmpxchg<expanded_decorators>(new_value, addr, compare_value);
}
template <DecoratorSet decorators>
inline narrowOop atomic_cmpxchg_reduce_types(narrowOop new_value, narrowOop* addr, narrowOop compare_value) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
INTERNAL_RT_USE_COMPRESSED_OOPS;
return PreRuntimeDispatch::atomic_cmpxchg<expanded_decorators>(new_value, addr, compare_value);
}
template <DecoratorSet decorators>
inline oop atomic_cmpxchg_reduce_types(oop new_value,
HeapWord* addr,
oop compare_value) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP;
return PreRuntimeDispatch::atomic_cmpxchg<expanded_decorators>(new_value, addr, compare_value);
}
template <DecoratorSet decorators, typename T>
inline T atomic_xchg_reduce_types(T new_value, T* addr) {
const DecoratorSet expanded_decorators = decorators;
return PreRuntimeDispatch::atomic_xchg<expanded_decorators>(new_value, addr);
}
template <DecoratorSet decorators>
inline oop atomic_xchg_reduce_types(oop new_value, narrowOop* addr) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
INTERNAL_RT_USE_COMPRESSED_OOPS;
return PreRuntimeDispatch::atomic_xchg<expanded_decorators>(new_value, addr);
}
template <DecoratorSet decorators>
inline narrowOop atomic_xchg_reduce_types(narrowOop new_value, narrowOop* addr) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
INTERNAL_RT_USE_COMPRESSED_OOPS;
return PreRuntimeDispatch::atomic_xchg<expanded_decorators>(new_value, addr);
}
template <DecoratorSet decorators>
inline oop atomic_xchg_reduce_types(oop new_value, HeapWord* addr) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP;
return PreRuntimeDispatch::atomic_xchg<expanded_decorators>(new_value, addr);
}
template <DecoratorSet decorators, typename T>
inline T load_reduce_types(T* addr) {
return PreRuntimeDispatch::load<decorators, T>(addr);
}
template <DecoratorSet decorators, typename T>
inline typename OopOrNarrowOop<T>::type load_reduce_types(narrowOop* addr) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
INTERNAL_RT_USE_COMPRESSED_OOPS;
return PreRuntimeDispatch::load<expanded_decorators, typename OopOrNarrowOop<T>::type>(addr);
}
template <DecoratorSet decorators, typename T>
inline oop load_reduce_types(HeapWord* addr) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP;
return PreRuntimeDispatch::load<expanded_decorators, oop>(addr);
}
// Step 1: Set default decorators. This step remembers if a type was volatile
// and then sets the MO_VOLATILE decorator by default. Otherwise, a default
// memory ordering is set for the access, and the implied decorator rules
// are applied to select sensible defaults for decorators that have not been
// explicitly set. For example, default object referent strength is set to strong.
// This step also decays the types passed in (e.g. getting rid of CV qualifiers
// and references from the types). This step also perform some type verification
// that the passed in types make sense.
template <DecoratorSet decorators, typename T>
static void verify_types(){
// If this fails to compile, then you have sent in something that is
// not recognized as a valid primitive type to a primitive Access function.
STATIC_ASSERT((HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value || // oops have already been validated
(IsPointer<T>::value || IsIntegral<T>::value) ||
IsFloatingPoint<T>::value)); // not allowed primitive type
}
template <DecoratorSet decorators, typename P, typename T>
inline void store(P* addr, T value) {
verify_types<decorators, T>();
typedef typename Decay<P>::type DecayedP;
typedef typename Decay<T>::type DecayedT;
DecayedT decayed_value = value;
// If a volatile address is passed in but no memory ordering decorator,
// set the memory ordering to MO_VOLATILE by default.
const DecoratorSet expanded_decorators = DecoratorFixup<
(IsVolatile<P>::value && !HasDecorator<decorators, MO_DECORATOR_MASK>::value) ?
(MO_VOLATILE | decorators) : decorators>::value;
store_reduce_types<expanded_decorators>(const_cast<DecayedP*>(addr), decayed_value);
}
template <DecoratorSet decorators, typename T>
inline void store_at(oop base, ptrdiff_t offset, T value) {
verify_types<decorators, T>();
typedef typename Decay<T>::type DecayedT;
DecayedT decayed_value = value;
const DecoratorSet expanded_decorators = DecoratorFixup<decorators |
(HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value ?
INTERNAL_CONVERT_COMPRESSED_OOP : INTERNAL_EMPTY)>::value;
PreRuntimeDispatch::store_at<expanded_decorators>(base, offset, decayed_value);
}
template <DecoratorSet decorators, typename P, typename T>
inline T load(P* addr) {
verify_types<decorators, T>();
typedef typename Decay<P>::type DecayedP;
typedef typename Conditional<HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value,
typename OopOrNarrowOop<T>::type,
typename Decay<T>::type>::type DecayedT;
// If a volatile address is passed in but no memory ordering decorator,
// set the memory ordering to MO_VOLATILE by default.
const DecoratorSet expanded_decorators = DecoratorFixup<
(IsVolatile<P>::value && !HasDecorator<decorators, MO_DECORATOR_MASK>::value) ?
(MO_VOLATILE | decorators) : decorators>::value;
return load_reduce_types<expanded_decorators, DecayedT>(const_cast<DecayedP*>(addr));
}
template <DecoratorSet decorators, typename T>
inline T load_at(oop base, ptrdiff_t offset) {
verify_types<decorators, T>();
typedef typename Conditional<HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value,
typename OopOrNarrowOop<T>::type,
typename Decay<T>::type>::type DecayedT;
// Expand the decorators (figure out sensible defaults)
// Potentially remember if we need compressed oop awareness
const DecoratorSet expanded_decorators = DecoratorFixup<decorators |
(HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value ?
INTERNAL_CONVERT_COMPRESSED_OOP : INTERNAL_EMPTY)>::value;
return PreRuntimeDispatch::load_at<expanded_decorators, DecayedT>(base, offset);
}
template <DecoratorSet decorators, typename P, typename T>
inline T atomic_cmpxchg(T new_value, P* addr, T compare_value) {
verify_types<decorators, T>();
typedef typename Decay<P>::type DecayedP;
typedef typename Decay<T>::type DecayedT;
DecayedT new_decayed_value = new_value;
DecayedT compare_decayed_value = compare_value;
const DecoratorSet expanded_decorators = DecoratorFixup<
(!HasDecorator<decorators, MO_DECORATOR_MASK>::value) ?
(MO_SEQ_CST | decorators) : decorators>::value;
return atomic_cmpxchg_reduce_types<expanded_decorators>(new_decayed_value,
const_cast<DecayedP*>(addr),
compare_decayed_value);
}
template <DecoratorSet decorators, typename T>
inline T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
verify_types<decorators, T>();
typedef typename Decay<T>::type DecayedT;
DecayedT new_decayed_value = new_value;
DecayedT compare_decayed_value = compare_value;
// Determine default memory ordering
const DecoratorSet expanded_decorators = DecoratorFixup<
(!HasDecorator<decorators, MO_DECORATOR_MASK>::value) ?
(MO_SEQ_CST | decorators) : decorators>::value;
// Potentially remember that we need compressed oop awareness
const DecoratorSet final_decorators = expanded_decorators |
(HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value ?
INTERNAL_CONVERT_COMPRESSED_OOP : INTERNAL_EMPTY);
return PreRuntimeDispatch::atomic_cmpxchg_at<final_decorators>(new_decayed_value, base,
offset, compare_decayed_value);
}
template <DecoratorSet decorators, typename P, typename T>
inline T atomic_xchg(T new_value, P* addr) {
verify_types<decorators, T>();
typedef typename Decay<P>::type DecayedP;
typedef typename Decay<T>::type DecayedT;
DecayedT new_decayed_value = new_value;
// atomic_xchg is only available in SEQ_CST flavour.
const DecoratorSet expanded_decorators = DecoratorFixup<decorators | MO_SEQ_CST>::value;
return atomic_xchg_reduce_types<expanded_decorators>(new_decayed_value,
const_cast<DecayedP*>(addr));
}
template <DecoratorSet decorators, typename T>
inline T atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
verify_types<decorators, T>();
typedef typename Decay<T>::type DecayedT;
DecayedT new_decayed_value = new_value;
// atomic_xchg is only available in SEQ_CST flavour.
const DecoratorSet expanded_decorators = DecoratorFixup<decorators | MO_SEQ_CST |
(HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value ?
INTERNAL_CONVERT_COMPRESSED_OOP : INTERNAL_EMPTY)>::value;
return PreRuntimeDispatch::atomic_xchg_at<expanded_decorators>(new_decayed_value, base, offset);
}
template <DecoratorSet decorators, typename T>
inline bool arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T *dst, size_t length) {
STATIC_ASSERT((HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value ||
(IsSame<T, void>::value || IsIntegral<T>::value) ||
IsFloatingPoint<T>::value)); // arraycopy allows type erased void elements
typedef typename Decay<T>::type DecayedT;
const DecoratorSet expanded_decorators = DecoratorFixup<decorators | IN_HEAP_ARRAY | IN_HEAP |
(HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value ?
INTERNAL_CONVERT_COMPRESSED_OOP : INTERNAL_EMPTY)>::value;
return PreRuntimeDispatch::arraycopy<expanded_decorators>(src_obj, dst_obj,
const_cast<DecayedT*>(src),
const_cast<DecayedT*>(dst),
length);
}
template <DecoratorSet decorators>
inline void clone(oop src, oop dst, size_t size) {
const DecoratorSet expanded_decorators = DecoratorFixup<decorators>::value;
PreRuntimeDispatch::clone<expanded_decorators>(src, dst, size);
}
template <DecoratorSet decorators>
inline oop resolve(oop obj) {
const DecoratorSet expanded_decorators = DecoratorFixup<decorators>::value;
return PreRuntimeDispatch::resolve<expanded_decorators>(obj);
}
}
template <DecoratorSet decorators>
template <DecoratorSet expected_decorators>
void Access<decorators>::verify_decorators() {
STATIC_ASSERT((~expected_decorators & decorators) == 0); // unexpected decorator used
const DecoratorSet barrier_strength_decorators = decorators & AS_DECORATOR_MASK;
STATIC_ASSERT(barrier_strength_decorators == 0 || ( // make sure barrier strength decorators are disjoint if set
(barrier_strength_decorators ^ AS_NO_KEEPALIVE) == 0 ||
(barrier_strength_decorators ^ AS_DEST_NOT_INITIALIZED) == 0 ||
(barrier_strength_decorators ^ AS_RAW) == 0 ||
(barrier_strength_decorators ^ AS_NORMAL) == 0
));
const DecoratorSet ref_strength_decorators = decorators & ON_DECORATOR_MASK;
STATIC_ASSERT(ref_strength_decorators == 0 || ( // make sure ref strength decorators are disjoint if set
(ref_strength_decorators ^ ON_STRONG_OOP_REF) == 0 ||
(ref_strength_decorators ^ ON_WEAK_OOP_REF) == 0 ||
(ref_strength_decorators ^ ON_PHANTOM_OOP_REF) == 0 ||
(ref_strength_decorators ^ ON_UNKNOWN_OOP_REF) == 0
));
const DecoratorSet memory_ordering_decorators = decorators & MO_DECORATOR_MASK;
STATIC_ASSERT(memory_ordering_decorators == 0 || ( // make sure memory ordering decorators are disjoint if set
(memory_ordering_decorators ^ MO_UNORDERED) == 0 ||
(memory_ordering_decorators ^ MO_VOLATILE) == 0 ||
(memory_ordering_decorators ^ MO_RELAXED) == 0 ||
(memory_ordering_decorators ^ MO_ACQUIRE) == 0 ||
(memory_ordering_decorators ^ MO_RELEASE) == 0 ||
(memory_ordering_decorators ^ MO_SEQ_CST) == 0
));
const DecoratorSet location_decorators = decorators & IN_DECORATOR_MASK;
STATIC_ASSERT(location_decorators == 0 || ( // make sure location decorators are disjoint if set
(location_decorators ^ IN_ROOT) == 0 ||
(location_decorators ^ IN_HEAP) == 0 ||
(location_decorators ^ (IN_HEAP | IN_HEAP_ARRAY)) == 0 ||
(location_decorators ^ (IN_ROOT | IN_CONCURRENT_ROOT)) == 0 ||
(location_decorators ^ (IN_ROOT | IN_ARCHIVE_ROOT)) == 0
));
}
#endif // SHARE_VM_RUNTIME_ACCESS_INLINE_HPP