/*
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/classLoader.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "code/codeCache.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/compilerOracle.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "memory/genCollectedHeap.hpp"
#include "memory/oopFactory.hpp"
#include "memory/universe.hpp"
#include "oops/constantPool.hpp"
#include "oops/generateOopMap.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/instanceOop.hpp"
#include "oops/method.hpp"
#include "oops/objArrayOop.hpp"
#include "oops/oop.inline.hpp"
#include "oops/symbol.hpp"
#include "prims/jvmtiExport.hpp"
#include "runtime/aprofiler.hpp"
#include "runtime/arguments.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/compilationPolicy.hpp"
#include "runtime/fprofiler.hpp"
#include "runtime/init.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/java.hpp"
#include "runtime/memprofiler.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/statSampler.hpp"
#include "runtime/task.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/timer.hpp"
#include "runtime/vm_operations.hpp"
#include "services/memReporter.hpp"
#include "services/memTracker.hpp"
#include "trace/tracing.hpp"
#include "trace/traceEventTypes.hpp"
#include "utilities/dtrace.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/histogram.hpp"
#include "utilities/macros.hpp"
#include "utilities/vmError.hpp"
#ifdef TARGET_ARCH_x86
# include "vm_version_x86.hpp"
#endif
#ifdef TARGET_ARCH_sparc
# include "vm_version_sparc.hpp"
#endif
#ifdef TARGET_ARCH_zero
# include "vm_version_zero.hpp"
#endif
#ifdef TARGET_ARCH_arm
# include "vm_version_arm.hpp"
#endif
#ifdef TARGET_ARCH_ppc
# include "vm_version_ppc.hpp"
#endif
#if INCLUDE_ALL_GCS
#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
#include "gc_implementation/parallelScavenge/psScavenge.hpp"
#include "gc_implementation/parallelScavenge/psScavenge.inline.hpp"
#endif // INCLUDE_ALL_GCS
#ifdef COMPILER1
#include "c1/c1_Compiler.hpp"
#include "c1/c1_Runtime1.hpp"
#endif
#ifdef COMPILER2
#include "code/compiledIC.hpp"
#include "compiler/methodLiveness.hpp"
#include "opto/compile.hpp"
#include "opto/indexSet.hpp"
#include "opto/runtime.hpp"
#endif
#ifndef USDT2
HS_DTRACE_PROBE_DECL(hotspot, vm__shutdown);
#endif /* !USDT2 */
#ifndef PRODUCT
// Statistics printing (method invocation histogram)
GrowableArray<Method*>* collected_invoked_methods;
void collect_invoked_methods(Method* m) {
if (m->invocation_count() + m->compiled_invocation_count() >= 1 ) {
collected_invoked_methods->push(m);
}
}
GrowableArray<Method*>* collected_profiled_methods;
void collect_profiled_methods(Method* m) {
Thread* thread = Thread::current();
// This HandleMark prevents a huge amount of handles from being added
// to the metadata_handles() array on the thread.
HandleMark hm(thread);
methodHandle mh(thread, m);
if ((m->method_data() != NULL) &&
(PrintMethodData || CompilerOracle::should_print(mh))) {
collected_profiled_methods->push(m);
}
}
int compare_methods(Method** a, Method** b) {
// %%% there can be 32-bit overflow here
return ((*b)->invocation_count() + (*b)->compiled_invocation_count())
- ((*a)->invocation_count() + (*a)->compiled_invocation_count());
}
void print_method_invocation_histogram() {
ResourceMark rm;
HandleMark hm;
collected_invoked_methods = new GrowableArray<Method*>(1024);
SystemDictionary::methods_do(collect_invoked_methods);
collected_invoked_methods->sort(&compare_methods);
//
tty->cr();
tty->print_cr("Histogram Over MethodOop Invocation Counters (cutoff = %d):", MethodHistogramCutoff);
tty->cr();
tty->print_cr("____Count_(I+C)____Method________________________Module_________________");
unsigned total = 0, int_total = 0, comp_total = 0, static_total = 0, final_total = 0,
synch_total = 0, nativ_total = 0, acces_total = 0;
for (int index = 0; index < collected_invoked_methods->length(); index++) {
Method* m = collected_invoked_methods->at(index);
int c = m->invocation_count() + m->compiled_invocation_count();
if (c >= MethodHistogramCutoff) m->print_invocation_count();
int_total += m->invocation_count();
comp_total += m->compiled_invocation_count();
if (m->is_final()) final_total += c;
if (m->is_static()) static_total += c;
if (m->is_synchronized()) synch_total += c;
if (m->is_native()) nativ_total += c;
if (m->is_accessor()) acces_total += c;
}
tty->cr();
total = int_total + comp_total;
tty->print_cr("Invocations summary:");
tty->print_cr("\t%9d (%4.1f%%) interpreted", int_total, 100.0 * int_total / total);
tty->print_cr("\t%9d (%4.1f%%) compiled", comp_total, 100.0 * comp_total / total);
tty->print_cr("\t%9d (100%%) total", total);
tty->print_cr("\t%9d (%4.1f%%) synchronized", synch_total, 100.0 * synch_total / total);
tty->print_cr("\t%9d (%4.1f%%) final", final_total, 100.0 * final_total / total);
tty->print_cr("\t%9d (%4.1f%%) static", static_total, 100.0 * static_total / total);
tty->print_cr("\t%9d (%4.1f%%) native", nativ_total, 100.0 * nativ_total / total);
tty->print_cr("\t%9d (%4.1f%%) accessor", acces_total, 100.0 * acces_total / total);
tty->cr();
SharedRuntime::print_call_statistics(comp_total);
}
void print_method_profiling_data() {
ResourceMark rm;
HandleMark hm;
collected_profiled_methods = new GrowableArray<Method*>(1024);
SystemDictionary::methods_do(collect_profiled_methods);
collected_profiled_methods->sort(&compare_methods);
int count = collected_profiled_methods->length();
if (count > 0) {
for (int index = 0; index < count; index++) {
Method* m = collected_profiled_methods->at(index);
ttyLocker ttyl;
tty->print_cr("------------------------------------------------------------------------");
//m->print_name(tty);
m->print_invocation_count();
tty->cr();
m->print_codes();
}
tty->print_cr("------------------------------------------------------------------------");
}
}
void print_bytecode_count() {
if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
tty->print_cr("[BytecodeCounter::counter_value = %d]", BytecodeCounter::counter_value());
}
}
AllocStats alloc_stats;
// General statistics printing (profiling ...)
void print_statistics() {
#ifdef ASSERT
if (CountRuntimeCalls) {
extern Histogram *RuntimeHistogram;
RuntimeHistogram->print();
}
if (CountJNICalls) {
extern Histogram *JNIHistogram;
JNIHistogram->print();
}
if (CountJVMCalls) {
extern Histogram *JVMHistogram;
JVMHistogram->print();
}
#endif
if (MemProfiling) {
MemProfiler::disengage();
}
if (CITime) {
CompileBroker::print_times();
}
#ifdef COMPILER1
if ((PrintC1Statistics || LogVMOutput || LogCompilation) && UseCompiler) {
FlagSetting fs(DisplayVMOutput, DisplayVMOutput && PrintC1Statistics);
Runtime1::print_statistics();
Deoptimization::print_statistics();
SharedRuntime::print_statistics();
nmethod::print_statistics();
}
#endif /* COMPILER1 */
#ifdef COMPILER2
if ((PrintOptoStatistics || LogVMOutput || LogCompilation) && UseCompiler) {
FlagSetting fs(DisplayVMOutput, DisplayVMOutput && PrintOptoStatistics);
Compile::print_statistics();
#ifndef COMPILER1
Deoptimization::print_statistics();
nmethod::print_statistics();
SharedRuntime::print_statistics();
#endif //COMPILER1
os::print_statistics();
}
if (PrintLockStatistics || PrintPreciseBiasedLockingStatistics) {
OptoRuntime::print_named_counters();
}
if (TimeLivenessAnalysis) {
MethodLiveness::print_times();
}
#ifdef ASSERT
if (CollectIndexSetStatistics) {
IndexSet::print_statistics();
}
#endif // ASSERT
#endif // COMPILER2
if (CountCompiledCalls) {
print_method_invocation_histogram();
}
if (ProfileInterpreter COMPILER1_PRESENT(|| C1UpdateMethodData)) {
print_method_profiling_data();
}
if (TimeCompiler) {
COMPILER2_PRESENT(Compile::print_timers();)
}
if (TimeCompilationPolicy) {
CompilationPolicy::policy()->print_time();
}
if (TimeOopMap) {
GenerateOopMap::print_time();
}
if (ProfilerCheckIntervals) {
PeriodicTask::print_intervals();
}
if (PrintSymbolTableSizeHistogram) {
SymbolTable::print_histogram();
}
if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
BytecodeCounter::print();
}
if (PrintBytecodePairHistogram) {
BytecodePairHistogram::print();
}
if (PrintCodeCache) {
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
CodeCache::print();
}
if (PrintCodeCache2) {
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
CodeCache::print_internals();
}
if (PrintClassStatistics) {
SystemDictionary::print_class_statistics();
}
if (PrintMethodStatistics) {
SystemDictionary::print_method_statistics();
}
if (PrintVtableStats) {
klassVtable::print_statistics();
klassItable::print_statistics();
}
if (VerifyOops) {
tty->print_cr("+VerifyOops count: %d", StubRoutines::verify_oop_count());
}
print_bytecode_count();
if (PrintMallocStatistics) {
tty->print("allocation stats: ");
alloc_stats.print();
tty->cr();
}
if (PrintSystemDictionaryAtExit) {
SystemDictionary::print();
}
if (PrintBiasedLockingStatistics) {
BiasedLocking::print_counters();
}
#ifdef ENABLE_ZAP_DEAD_LOCALS
#ifdef COMPILER2
if (ZapDeadCompiledLocals) {
tty->print_cr("Compile::CompiledZap_count = %d", Compile::CompiledZap_count);
tty->print_cr("OptoRuntime::ZapDeadCompiledLocals_count = %d", OptoRuntime::ZapDeadCompiledLocals_count);
}
#endif // COMPILER2
#endif // ENABLE_ZAP_DEAD_LOCALS
// Native memory tracking data
if (PrintNMTStatistics) {
if (MemTracker::is_on()) {
BaselineTTYOutputer outputer(tty);
MemTracker::print_memory_usage(outputer, K, false);
} else {
tty->print_cr(MemTracker::reason());
}
}
}
#else // PRODUCT MODE STATISTICS
void print_statistics() {
if (CITime) {
CompileBroker::print_times();
}
if (PrintCodeCache) {
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
CodeCache::print();
}
#ifdef COMPILER2
if (PrintPreciseBiasedLockingStatistics) {
OptoRuntime::print_named_counters();
}
#endif
if (PrintBiasedLockingStatistics) {
BiasedLocking::print_counters();
}
// Native memory tracking data
if (PrintNMTStatistics) {
if (MemTracker::is_on()) {
BaselineTTYOutputer outputer(tty);
MemTracker::print_memory_usage(outputer, K, false);
} else {
tty->print_cr(MemTracker::reason());
}
}
}
#endif
// Helper class for registering on_exit calls through JVM_OnExit
extern "C" {
typedef void (*__exit_proc)(void);
}
class ExitProc : public CHeapObj<mtInternal> {
private:
__exit_proc _proc;
// void (*_proc)(void);
ExitProc* _next;
public:
// ExitProc(void (*proc)(void)) {
ExitProc(__exit_proc proc) {
_proc = proc;
_next = NULL;
}
void evaluate() { _proc(); }
ExitProc* next() const { return _next; }
void set_next(ExitProc* next) { _next = next; }
};
// Linked list of registered on_exit procedures
static ExitProc* exit_procs = NULL;
extern "C" {
void register_on_exit_function(void (*func)(void)) {
ExitProc *entry = new ExitProc(func);
// Classic vm does not throw an exception in case the allocation failed,
if (entry != NULL) {
entry->set_next(exit_procs);
exit_procs = entry;
}
}
}
// Note: before_exit() can be executed only once, if more than one threads
// are trying to shutdown the VM at the same time, only one thread
// can run before_exit() and all other threads must wait.
void before_exit(JavaThread * thread) {
#define BEFORE_EXIT_NOT_RUN 0
#define BEFORE_EXIT_RUNNING 1
#define BEFORE_EXIT_DONE 2
static jint volatile _before_exit_status = BEFORE_EXIT_NOT_RUN;
// Note: don't use a Mutex to guard the entire before_exit(), as
// JVMTI post_thread_end_event and post_vm_death_event will run native code.
// A CAS or OSMutex would work just fine but then we need to manipulate
// thread state for Safepoint. Here we use Monitor wait() and notify_all()
// for synchronization.
{ MutexLocker ml(BeforeExit_lock);
switch (_before_exit_status) {
case BEFORE_EXIT_NOT_RUN:
_before_exit_status = BEFORE_EXIT_RUNNING;
break;
case BEFORE_EXIT_RUNNING:
while (_before_exit_status == BEFORE_EXIT_RUNNING) {
BeforeExit_lock->wait();
}
assert(_before_exit_status == BEFORE_EXIT_DONE, "invalid state");
return;
case BEFORE_EXIT_DONE:
return;
}
}
// The only difference between this and Win32's _onexit procs is that
// this version is invoked before any threads get killed.
ExitProc* current = exit_procs;
while (current != NULL) {
ExitProc* next = current->next();
current->evaluate();
delete current;
current = next;
}
// Hang forever on exit if we're reporting an error.
if (ShowMessageBoxOnError && is_error_reported()) {
os::infinite_sleep();
}
// Terminate watcher thread - must before disenrolling any periodic task
if (PeriodicTask::num_tasks() > 0)
WatcherThread::stop();
// Print statistics gathered (profiling ...)
if (Arguments::has_profile()) {
FlatProfiler::disengage();
FlatProfiler::print(10);
}
// shut down the StatSampler task
StatSampler::disengage();
StatSampler::destroy();
// We do not need to explicitly stop concurrent GC threads because the
// JVM will be taken down at a safepoint when such threads are inactive --
// except for some concurrent G1 threads, see (comment in)
// Threads::destroy_vm().
// Print GC/heap related information.
if (PrintGCDetails) {
Universe::print();
AdaptiveSizePolicyOutput(0);
if (Verbose) {
ClassLoaderDataGraph::dump_on(gclog_or_tty);
}
}
if (Arguments::has_alloc_profile()) {
HandleMark hm;
// Do one last collection to enumerate all the objects
// allocated since the last one.
Universe::heap()->collect(GCCause::_allocation_profiler);
AllocationProfiler::disengage();
AllocationProfiler::print(0);
}
if (PrintBytecodeHistogram) {
BytecodeHistogram::print();
}
if (JvmtiExport::should_post_thread_life()) {
JvmtiExport::post_thread_end(thread);
}
EVENT_BEGIN(TraceEventThreadEnd, event);
EVENT_COMMIT(event,
EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(thread->threadObj())));
// Always call even when there are not JVMTI environments yet, since environments
// may be attached late and JVMTI must track phases of VM execution
JvmtiExport::post_vm_death();
Threads::shutdown_vm_agents();
// Terminate the signal thread
// Note: we don't wait until it actually dies.
os::terminate_signal_thread();
print_statistics();
Universe::heap()->print_tracing_info();
{ MutexLocker ml(BeforeExit_lock);
_before_exit_status = BEFORE_EXIT_DONE;
BeforeExit_lock->notify_all();
}
// Shutdown NMT before exit. Otherwise,
// it will run into trouble when system destroys static variables.
MemTracker::shutdown(MemTracker::NMT_normal);
#undef BEFORE_EXIT_NOT_RUN
#undef BEFORE_EXIT_RUNNING
#undef BEFORE_EXIT_DONE
}
void vm_exit(int code) {
Thread* thread = ThreadLocalStorage::is_initialized() ?
ThreadLocalStorage::get_thread_slow() : NULL;
if (thread == NULL) {
// we have serious problems -- just exit
vm_direct_exit(code);
}
if (VMThread::vm_thread() != NULL) {
// Fire off a VM_Exit operation to bring VM to a safepoint and exit
VM_Exit op(code);
if (thread->is_Java_thread())
((JavaThread*)thread)->set_thread_state(_thread_in_vm);
VMThread::execute(&op);
// should never reach here; but in case something wrong with VM Thread.
vm_direct_exit(code);
} else {
// VM thread is gone, just exit
vm_direct_exit(code);
}
ShouldNotReachHere();
}
void notify_vm_shutdown() {
// For now, just a dtrace probe.
#ifndef USDT2
HS_DTRACE_PROBE(hotspot, vm__shutdown);
HS_DTRACE_WORKAROUND_TAIL_CALL_BUG();
#else /* USDT2 */
HOTSPOT_VM_SHUTDOWN();
#endif /* USDT2 */
}
void vm_direct_exit(int code) {
notify_vm_shutdown();
os::wait_for_keypress_at_exit();
::exit(code);
}
void vm_perform_shutdown_actions() {
// Warning: do not call 'exit_globals()' here. All threads are still running.
// Calling 'exit_globals()' will disable thread-local-storage and cause all
// kinds of assertions to trigger in debug mode.
if (is_init_completed()) {
Thread* thread = ThreadLocalStorage::is_initialized() ?
ThreadLocalStorage::get_thread_slow() : NULL;
if (thread != NULL && thread->is_Java_thread()) {
// We are leaving the VM, set state to native (in case any OS exit
// handlers call back to the VM)
JavaThread* jt = (JavaThread*)thread;
// Must always be walkable or have no last_Java_frame when in
// thread_in_native
jt->frame_anchor()->make_walkable(jt);
jt->set_thread_state(_thread_in_native);
}
}
notify_vm_shutdown();
}
void vm_shutdown()
{
vm_perform_shutdown_actions();
os::wait_for_keypress_at_exit();
os::shutdown();
}
void vm_abort(bool dump_core) {
vm_perform_shutdown_actions();
os::wait_for_keypress_at_exit();
os::abort(dump_core);
ShouldNotReachHere();
}
void vm_notify_during_shutdown(const char* error, const char* message) {
if (error != NULL) {
tty->print_cr("Error occurred during initialization of VM");
tty->print("%s", error);
if (message != NULL) {
tty->print_cr(": %s", message);
}
else {
tty->cr();
}
}
if (ShowMessageBoxOnError && WizardMode) {
fatal("Error occurred during initialization of VM");
}
}
void vm_exit_during_initialization(Handle exception) {
tty->print_cr("Error occurred during initialization of VM");
// If there are exceptions on this thread it must be cleared
// first and here. Any future calls to EXCEPTION_MARK requires
// that no pending exceptions exist.
Thread *THREAD = Thread::current();
if (HAS_PENDING_EXCEPTION) {
CLEAR_PENDING_EXCEPTION;
}
java_lang_Throwable::print(exception, tty);
tty->cr();
java_lang_Throwable::print_stack_trace(exception(), tty);
tty->cr();
vm_notify_during_shutdown(NULL, NULL);
// Failure during initialization, we don't want to dump core
vm_abort(false);
}
void vm_exit_during_initialization(Symbol* ex, const char* message) {
ResourceMark rm;
vm_notify_during_shutdown(ex->as_C_string(), message);
// Failure during initialization, we don't want to dump core
vm_abort(false);
}
void vm_exit_during_initialization(const char* error, const char* message) {
vm_notify_during_shutdown(error, message);
// Failure during initialization, we don't want to dump core
vm_abort(false);
}
void vm_shutdown_during_initialization(const char* error, const char* message) {
vm_notify_during_shutdown(error, message);
vm_shutdown();
}
JDK_Version JDK_Version::_current;
const char* JDK_Version::_runtime_name;
const char* JDK_Version::_runtime_version;
void JDK_Version::initialize() {
jdk_version_info info;
assert(!_current.is_valid(), "Don't initialize twice");
void *lib_handle = os::native_java_library();
jdk_version_info_fn_t func = CAST_TO_FN_PTR(jdk_version_info_fn_t,
os::dll_lookup(lib_handle, "JDK_GetVersionInfo0"));
if (func == NULL) {
// JDK older than 1.6
_current._partially_initialized = true;
} else {
(*func)(&info, sizeof(info));
int major = JDK_VERSION_MAJOR(info.jdk_version);
int minor = JDK_VERSION_MINOR(info.jdk_version);
int micro = JDK_VERSION_MICRO(info.jdk_version);
int build = JDK_VERSION_BUILD(info.jdk_version);
if (major == 1 && minor > 4) {
// We represent "1.5.0" as "5.0", but 1.4.2 as itself.
major = minor;
minor = micro;
micro = 0;
}
_current = JDK_Version(major, minor, micro, info.update_version,
info.special_update_version, build,
info.thread_park_blocker == 1,
info.post_vm_init_hook_enabled == 1,
info.pending_list_uses_discovered_field == 1);
}
}
void JDK_Version::fully_initialize(
uint8_t major, uint8_t minor, uint8_t micro, uint8_t update) {
// This is only called when current is less than 1.6 and we've gotten
// far enough in the initialization to determine the exact version.
assert(major < 6, "not needed for JDK version >= 6");
assert(is_partially_initialized(), "must not initialize");
if (major < 5) {
// JDK verison sequence: 1.2.x, 1.3.x, 1.4.x, 5.0.x, 6.0.x, etc.
micro = minor;
minor = major;
major = 1;
}
_current = JDK_Version(major, minor, micro, update);
}
void JDK_Version_init() {
JDK_Version::initialize();
}
static int64_t encode_jdk_version(const JDK_Version& v) {
return
((int64_t)v.major_version() << (BitsPerByte * 5)) |
((int64_t)v.minor_version() << (BitsPerByte * 4)) |
((int64_t)v.micro_version() << (BitsPerByte * 3)) |
((int64_t)v.update_version() << (BitsPerByte * 2)) |
((int64_t)v.special_update_version() << (BitsPerByte * 1)) |
((int64_t)v.build_number() << (BitsPerByte * 0));
}
int JDK_Version::compare(const JDK_Version& other) const {
assert(is_valid() && other.is_valid(), "Invalid version (uninitialized?)");
if (!is_partially_initialized() && other.is_partially_initialized()) {
return -(other.compare(*this)); // flip the comparators
}
assert(!other.is_partially_initialized(), "Not initialized yet");
if (is_partially_initialized()) {
assert(other.major_version() >= 6,
"Invalid JDK version comparison during initialization");
return -1;
} else {
uint64_t e = encode_jdk_version(*this);
uint64_t o = encode_jdk_version(other);
return (e > o) ? 1 : ((e == o) ? 0 : -1);
}
}
void JDK_Version::to_string(char* buffer, size_t buflen) const {
size_t index = 0;
if (!is_valid()) {
jio_snprintf(buffer, buflen, "%s", "(uninitialized)");
} else if (is_partially_initialized()) {
jio_snprintf(buffer, buflen, "%s", "(uninitialized) pre-1.6.0");
} else {
index += jio_snprintf(
&buffer[index], buflen - index, "%d.%d", _major, _minor);
if (_micro > 0) {
index += jio_snprintf(&buffer[index], buflen - index, ".%d", _micro);
}
if (_update > 0) {
index += jio_snprintf(&buffer[index], buflen - index, "_%02d", _update);
}
if (_special > 0) {
index += jio_snprintf(&buffer[index], buflen - index, "%c", _special);
}
if (_build > 0) {
index += jio_snprintf(&buffer[index], buflen - index, "-b%02d", _build);
}
}
}