/*
* Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
#define SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
#include "memory/referencePolicy.hpp"
#include "oops/instanceRefKlass.hpp"
// ReferenceProcessor class encapsulates the per-"collector" processing
// of java.lang.Reference objects for GC. The interface is useful for supporting
// a generational abstraction, in particular when there are multiple
// generations that are being independently collected -- possibly
// concurrently and/or incrementally. Note, however, that the
// ReferenceProcessor class abstracts away from a generational setting
// by using only a heap interval (called "span" below), thus allowing
// its use in a straightforward manner in a general, non-generational
// setting.
//
// The basic idea is that each ReferenceProcessor object concerns
// itself with ("weak") reference processing in a specific "span"
// of the heap of interest to a specific collector. Currently,
// the span is a convex interval of the heap, but, efficiency
// apart, there seems to be no reason it couldn't be extended
// (with appropriate modifications) to any "non-convex interval".
// forward references
class ReferencePolicy;
class AbstractRefProcTaskExecutor;
// List of discovered references.
class DiscoveredList {
public:
DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
oop head() const {
return UseCompressedOops ? oopDesc::decode_heap_oop(_compressed_head) :
_oop_head;
}
HeapWord* adr_head() {
return UseCompressedOops ? (HeapWord*)&_compressed_head :
(HeapWord*)&_oop_head;
}
void set_head(oop o) {
if (UseCompressedOops) {
// Must compress the head ptr.
_compressed_head = oopDesc::encode_heap_oop(o);
} else {
_oop_head = o;
}
}
bool is_empty() const { return head() == NULL; }
size_t length() { return _len; }
void set_length(size_t len) { _len = len; }
void inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
void dec_length(size_t dec) { _len -= dec; }
private:
// Set value depending on UseCompressedOops. This could be a template class
// but then we have to fix all the instantiations and declarations that use this class.
oop _oop_head;
narrowOop _compressed_head;
size_t _len;
};
// Iterator for the list of discovered references.
class DiscoveredListIterator {
private:
DiscoveredList& _refs_list;
HeapWord* _prev_next;
oop _prev;
oop _ref;
HeapWord* _discovered_addr;
oop _next;
HeapWord* _referent_addr;
oop _referent;
OopClosure* _keep_alive;
BoolObjectClosure* _is_alive;
DEBUG_ONLY(
oop _first_seen; // cyclic linked list check
)
NOT_PRODUCT(
size_t _processed;
size_t _removed;
)
public:
inline DiscoveredListIterator(DiscoveredList& refs_list,
OopClosure* keep_alive,
BoolObjectClosure* is_alive):
_refs_list(refs_list),
_prev_next(refs_list.adr_head()),
_prev(NULL),
_ref(refs_list.head()),
#ifdef ASSERT
_first_seen(refs_list.head()),
#endif
#ifndef PRODUCT
_processed(0),
_removed(0),
#endif
_next(NULL),
_keep_alive(keep_alive),
_is_alive(is_alive)
{ }
// End Of List.
inline bool has_next() const { return _ref != NULL; }
// Get oop to the Reference object.
inline oop obj() const { return _ref; }
// Get oop to the referent object.
inline oop referent() const { return _referent; }
// Returns true if referent is alive.
inline bool is_referent_alive() const {
return _is_alive->do_object_b(_referent);
}
// Loads data for the current reference.
// The "allow_null_referent" argument tells us to allow for the possibility
// of a NULL referent in the discovered Reference object. This typically
// happens in the case of concurrent collectors that may have done the
// discovery concurrently, or interleaved, with mutator execution.
void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
// Move to the next discovered reference.
inline void next() {
_prev_next = _discovered_addr;
_prev = _ref;
move_to_next();
}
// Remove the current reference from the list
void remove();
// Make the Reference object active again.
void make_active();
// Make the referent alive.
inline void make_referent_alive() {
if (UseCompressedOops) {
_keep_alive->do_oop((narrowOop*)_referent_addr);
} else {
_keep_alive->do_oop((oop*)_referent_addr);
}
}
// Update the discovered field.
inline void update_discovered() {
// First _prev_next ref actually points into DiscoveredList (gross).
if (UseCompressedOops) {
if (!oopDesc::is_null(*(narrowOop*)_prev_next)) {
_keep_alive->do_oop((narrowOop*)_prev_next);
}
} else {
if (!oopDesc::is_null(*(oop*)_prev_next)) {
_keep_alive->do_oop((oop*)_prev_next);
}
}
}
// NULL out referent pointer.
void clear_referent();
// Statistics
NOT_PRODUCT(
inline size_t processed() const { return _processed; }
inline size_t removed() const { return _removed; }
)
inline void move_to_next() {
if (_ref == _next) {
// End of the list.
_ref = NULL;
} else {
_ref = _next;
}
assert(_ref != _first_seen, "cyclic ref_list found");
NOT_PRODUCT(_processed++);
}
};
class ReferenceProcessor : public CHeapObj<mtGC> {
protected:
// Compatibility with pre-4965777 JDK's
static bool _pending_list_uses_discovered_field;
// The SoftReference master timestamp clock
static jlong _soft_ref_timestamp_clock;
MemRegion _span; // (right-open) interval of heap
// subject to wkref discovery
bool _discovering_refs; // true when discovery enabled
bool _discovery_is_atomic; // if discovery is atomic wrt
// other collectors in configuration
bool _discovery_is_mt; // true if reference discovery is MT.
// If true, setting "next" field of a discovered refs list requires
// write barrier(s). (Must be true if used in a collector in which
// elements of a discovered list may be moved during discovery: for
// example, a collector like Garbage-First that moves objects during a
// long-term concurrent marking phase that does weak reference
// discovery.)
bool _discovered_list_needs_barrier;
BarrierSet* _bs; // Cached copy of BarrierSet.
bool _enqueuing_is_done; // true if all weak references enqueued
bool _processing_is_mt; // true during phases when
// reference processing is MT.
uint _next_id; // round-robin mod _num_q counter in
// support of work distribution
// For collectors that do not keep GC liveness information
// in the object header, this field holds a closure that
// helps the reference processor determine the reachability
// of an oop. It is currently initialized to NULL for all
// collectors except for CMS and G1.
BoolObjectClosure* _is_alive_non_header;
// Soft ref clearing policies
// . the default policy
static ReferencePolicy* _default_soft_ref_policy;
// . the "clear all" policy
static ReferencePolicy* _always_clear_soft_ref_policy;
// . the current policy below is either one of the above
ReferencePolicy* _current_soft_ref_policy;
// The discovered ref lists themselves
// The active MT'ness degree of the queues below
uint _num_q;
// The maximum MT'ness degree of the queues below
uint _max_num_q;
// Master array of discovered oops
DiscoveredList* _discovered_refs;
// Arrays of lists of oops, one per thread (pointers into master array above)
DiscoveredList* _discoveredSoftRefs;
DiscoveredList* _discoveredWeakRefs;
DiscoveredList* _discoveredFinalRefs;
DiscoveredList* _discoveredPhantomRefs;
public:
static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); }
uint num_q() { return _num_q; }
uint max_num_q() { return _max_num_q; }
void set_active_mt_degree(uint v) { _num_q = v; }
DiscoveredList* discovered_refs() { return _discovered_refs; }
ReferencePolicy* setup_policy(bool always_clear) {
_current_soft_ref_policy = always_clear ?
_always_clear_soft_ref_policy : _default_soft_ref_policy;
_current_soft_ref_policy->setup(); // snapshot the policy threshold
return _current_soft_ref_policy;
}
// Process references with a certain reachability level.
void process_discovered_reflist(DiscoveredList refs_lists[],
ReferencePolicy* policy,
bool clear_referent,
BoolObjectClosure* is_alive,
OopClosure* keep_alive,
VoidClosure* complete_gc,
AbstractRefProcTaskExecutor* task_executor);
void process_phaseJNI(BoolObjectClosure* is_alive,
OopClosure* keep_alive,
VoidClosure* complete_gc);
// Work methods used by the method process_discovered_reflist
// Phase1: keep alive all those referents that are otherwise
// dead but which must be kept alive by policy (and their closure).
void process_phase1(DiscoveredList& refs_list,
ReferencePolicy* policy,
BoolObjectClosure* is_alive,
OopClosure* keep_alive,
VoidClosure* complete_gc);
// Phase2: remove all those references whose referents are
// reachable.
inline void process_phase2(DiscoveredList& refs_list,
BoolObjectClosure* is_alive,
OopClosure* keep_alive,
VoidClosure* complete_gc) {
if (discovery_is_atomic()) {
// complete_gc is ignored in this case for this phase
pp2_work(refs_list, is_alive, keep_alive);
} else {
assert(complete_gc != NULL, "Error");
pp2_work_concurrent_discovery(refs_list, is_alive,
keep_alive, complete_gc);
}
}
// Work methods in support of process_phase2
void pp2_work(DiscoveredList& refs_list,
BoolObjectClosure* is_alive,
OopClosure* keep_alive);
void pp2_work_concurrent_discovery(
DiscoveredList& refs_list,
BoolObjectClosure* is_alive,
OopClosure* keep_alive,
VoidClosure* complete_gc);
// Phase3: process the referents by either clearing them
// or keeping them alive (and their closure)
void process_phase3(DiscoveredList& refs_list,
bool clear_referent,
BoolObjectClosure* is_alive,
OopClosure* keep_alive,
VoidClosure* complete_gc);
// Enqueue references with a certain reachability level
void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
// "Preclean" all the discovered reference lists
// by removing references with strongly reachable referents.
// The first argument is a predicate on an oop that indicates
// its (strong) reachability and the second is a closure that
// may be used to incrementalize or abort the precleaning process.
// The caller is responsible for taking care of potential
// interference with concurrent operations on these lists
// (or predicates involved) by other threads. Currently
// only used by the CMS collector.
void preclean_discovered_references(BoolObjectClosure* is_alive,
OopClosure* keep_alive,
VoidClosure* complete_gc,
YieldClosure* yield);
// Delete entries in the discovered lists that have
// either a null referent or are not active. Such
// Reference objects can result from the clearing
// or enqueueing of Reference objects concurrent
// with their discovery by a (concurrent) collector.
// For a definition of "active" see java.lang.ref.Reference;
// Refs are born active, become inactive when enqueued,
// and never become active again. The state of being
// active is encoded as follows: A Ref is active
// if and only if its "next" field is NULL.
void clean_up_discovered_references();
void clean_up_discovered_reflist(DiscoveredList& refs_list);
// Returns the name of the discovered reference list
// occupying the i / _num_q slot.
const char* list_name(uint i);
void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
protected:
// Set the 'discovered' field of the given reference to
// the given value - emitting barriers depending upon
// the value of _discovered_list_needs_barrier.
void set_discovered(oop ref, oop value);
// "Preclean" the given discovered reference list
// by removing references with strongly reachable referents.
// Currently used in support of CMS only.
void preclean_discovered_reflist(DiscoveredList& refs_list,
BoolObjectClosure* is_alive,
OopClosure* keep_alive,
VoidClosure* complete_gc,
YieldClosure* yield);
// round-robin mod _num_q (not: _not_ mode _max_num_q)
uint next_id() {
uint id = _next_id;
if (++_next_id == _num_q) {
_next_id = 0;
}
return id;
}
DiscoveredList* get_discovered_list(ReferenceType rt);
inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
HeapWord* discovered_addr);
void verify_ok_to_handle_reflists() PRODUCT_RETURN;
void clear_discovered_references(DiscoveredList& refs_list);
void abandon_partial_discovered_list(DiscoveredList& refs_list);
// Calculate the number of jni handles.
unsigned int count_jni_refs();
// Balances reference queues.
void balance_queues(DiscoveredList ref_lists[]);
// Update (advance) the soft ref master clock field.
void update_soft_ref_master_clock();
public:
// constructor
ReferenceProcessor():
_span((HeapWord*)NULL, (HeapWord*)NULL),
_discovered_refs(NULL),
_discoveredSoftRefs(NULL), _discoveredWeakRefs(NULL),
_discoveredFinalRefs(NULL), _discoveredPhantomRefs(NULL),
_discovering_refs(false),
_discovery_is_atomic(true),
_enqueuing_is_done(false),
_discovery_is_mt(false),
_discovered_list_needs_barrier(false),
_bs(NULL),
_is_alive_non_header(NULL),
_num_q(0),
_max_num_q(0),
_processing_is_mt(false),
_next_id(0)
{ }
// Default parameters give you a vanilla reference processor.
ReferenceProcessor(MemRegion span,
bool mt_processing = false, uint mt_processing_degree = 1,
bool mt_discovery = false, uint mt_discovery_degree = 1,
bool atomic_discovery = true,
BoolObjectClosure* is_alive_non_header = NULL,
bool discovered_list_needs_barrier = false);
// RefDiscoveryPolicy values
enum DiscoveryPolicy {
ReferenceBasedDiscovery = 0,
ReferentBasedDiscovery = 1,
DiscoveryPolicyMin = ReferenceBasedDiscovery,
DiscoveryPolicyMax = ReferentBasedDiscovery
};
static void init_statics();
public:
// get and set "is_alive_non_header" field
BoolObjectClosure* is_alive_non_header() {
return _is_alive_non_header;
}
void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
_is_alive_non_header = is_alive_non_header;
}
// get and set span
MemRegion span() { return _span; }
void set_span(MemRegion span) { _span = span; }
// start and stop weak ref discovery
void enable_discovery(bool verify_disabled, bool check_no_refs);
void disable_discovery() { _discovering_refs = false; }
bool discovery_enabled() { return _discovering_refs; }
// whether discovery is atomic wrt other collectors
bool discovery_is_atomic() const { return _discovery_is_atomic; }
void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
// whether the JDK in which we are embedded is a pre-4965777 JDK,
// and thus whether or not it uses the discovered field to chain
// the entries in the pending list.
static bool pending_list_uses_discovered_field() {
return _pending_list_uses_discovered_field;
}
// whether discovery is done by multiple threads same-old-timeously
bool discovery_is_mt() const { return _discovery_is_mt; }
void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
// Whether we are in a phase when _processing_ is MT.
bool processing_is_mt() const { return _processing_is_mt; }
void set_mt_processing(bool mt) { _processing_is_mt = mt; }
// whether all enqueuing of weak references is complete
bool enqueuing_is_done() { return _enqueuing_is_done; }
void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
// iterate over oops
void weak_oops_do(OopClosure* f); // weak roots
// Balance each of the discovered lists.
void balance_all_queues();
void verify_list(DiscoveredList& ref_list);
// Discover a Reference object, using appropriate discovery criteria
bool discover_reference(oop obj, ReferenceType rt);
// Process references found during GC (called by the garbage collector)
void process_discovered_references(BoolObjectClosure* is_alive,
OopClosure* keep_alive,
VoidClosure* complete_gc,
AbstractRefProcTaskExecutor* task_executor);
public:
// Enqueue references at end of GC (called by the garbage collector)
bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
// If a discovery is in process that is being superceded, abandon it: all
// the discovered lists will be empty, and all the objects on them will
// have NULL discovered fields. Must be called only at a safepoint.
void abandon_partial_discovery();
// debugging
void verify_no_references_recorded() PRODUCT_RETURN;
void verify_referent(oop obj) PRODUCT_RETURN;
// clear the discovered lists (unlinking each entry).
void clear_discovered_references() PRODUCT_RETURN;
};
// A utility class to disable reference discovery in
// the scope which contains it, for given ReferenceProcessor.
class NoRefDiscovery: StackObj {
private:
ReferenceProcessor* _rp;
bool _was_discovering_refs;
public:
NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
_was_discovering_refs = _rp->discovery_enabled();
if (_was_discovering_refs) {
_rp->disable_discovery();
}
}
~NoRefDiscovery() {
if (_was_discovering_refs) {
_rp->enable_discovery(true /*verify_disabled*/, false /*check_no_refs*/);
}
}
};
// A utility class to temporarily mutate the span of the
// given ReferenceProcessor in the scope that contains it.
class ReferenceProcessorSpanMutator: StackObj {
private:
ReferenceProcessor* _rp;
MemRegion _saved_span;
public:
ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
MemRegion span):
_rp(rp) {
_saved_span = _rp->span();
_rp->set_span(span);
}
~ReferenceProcessorSpanMutator() {
_rp->set_span(_saved_span);
}
};
// A utility class to temporarily change the MT'ness of
// reference discovery for the given ReferenceProcessor
// in the scope that contains it.
class ReferenceProcessorMTDiscoveryMutator: StackObj {
private:
ReferenceProcessor* _rp;
bool _saved_mt;
public:
ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
bool mt):
_rp(rp) {
_saved_mt = _rp->discovery_is_mt();
_rp->set_mt_discovery(mt);
}
~ReferenceProcessorMTDiscoveryMutator() {
_rp->set_mt_discovery(_saved_mt);
}
};
// A utility class to temporarily change the disposition
// of the "is_alive_non_header" closure field of the
// given ReferenceProcessor in the scope that contains it.
class ReferenceProcessorIsAliveMutator: StackObj {
private:
ReferenceProcessor* _rp;
BoolObjectClosure* _saved_cl;
public:
ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
BoolObjectClosure* cl):
_rp(rp) {
_saved_cl = _rp->is_alive_non_header();
_rp->set_is_alive_non_header(cl);
}
~ReferenceProcessorIsAliveMutator() {
_rp->set_is_alive_non_header(_saved_cl);
}
};
// A utility class to temporarily change the disposition
// of the "discovery_is_atomic" field of the
// given ReferenceProcessor in the scope that contains it.
class ReferenceProcessorAtomicMutator: StackObj {
private:
ReferenceProcessor* _rp;
bool _saved_atomic_discovery;
public:
ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
bool atomic):
_rp(rp) {
_saved_atomic_discovery = _rp->discovery_is_atomic();
_rp->set_atomic_discovery(atomic);
}
~ReferenceProcessorAtomicMutator() {
_rp->set_atomic_discovery(_saved_atomic_discovery);
}
};
// A utility class to temporarily change the MT processing
// disposition of the given ReferenceProcessor instance
// in the scope that contains it.
class ReferenceProcessorMTProcMutator: StackObj {
private:
ReferenceProcessor* _rp;
bool _saved_mt;
public:
ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
bool mt):
_rp(rp) {
_saved_mt = _rp->processing_is_mt();
_rp->set_mt_processing(mt);
}
~ReferenceProcessorMTProcMutator() {
_rp->set_mt_processing(_saved_mt);
}
};
// This class is an interface used to implement task execution for the
// reference processing.
class AbstractRefProcTaskExecutor {
public:
// Abstract tasks to execute.
class ProcessTask;
class EnqueueTask;
// Executes a task using worker threads.
virtual void execute(ProcessTask& task) = 0;
virtual void execute(EnqueueTask& task) = 0;
// Switch to single threaded mode.
virtual void set_single_threaded_mode() { };
};
// Abstract reference processing task to execute.
class AbstractRefProcTaskExecutor::ProcessTask {
protected:
ProcessTask(ReferenceProcessor& ref_processor,
DiscoveredList refs_lists[],
bool marks_oops_alive)
: _ref_processor(ref_processor),
_refs_lists(refs_lists),
_marks_oops_alive(marks_oops_alive)
{ }
public:
virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
OopClosure& keep_alive,
VoidClosure& complete_gc) = 0;
// Returns true if a task marks some oops as alive.
bool marks_oops_alive() const
{ return _marks_oops_alive; }
protected:
ReferenceProcessor& _ref_processor;
DiscoveredList* _refs_lists;
const bool _marks_oops_alive;
};
// Abstract reference processing task to execute.
class AbstractRefProcTaskExecutor::EnqueueTask {
protected:
EnqueueTask(ReferenceProcessor& ref_processor,
DiscoveredList refs_lists[],
HeapWord* pending_list_addr,
int n_queues)
: _ref_processor(ref_processor),
_refs_lists(refs_lists),
_pending_list_addr(pending_list_addr),
_n_queues(n_queues)
{ }
public:
virtual void work(unsigned int work_id) = 0;
protected:
ReferenceProcessor& _ref_processor;
DiscoveredList* _refs_lists;
HeapWord* _pending_list_addr;
int _n_queues;
};
#endif // SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP