6684395: Port NUMA-aware allocator to linux
Summary: NUMA-aware allocator port to Linux
Reviewed-by: jmasa, apetrusenko
/*
* Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
// Optimization - Graph Style
class Block;
class CFGLoop;
class MachCallNode;
class Matcher;
class RootNode;
class VectorSet;
struct Tarjan;
//------------------------------Block_Array------------------------------------
// Map dense integer indices to Blocks. Uses classic doubling-array trick.
// Abstractly provides an infinite array of Block*'s, initialized to NULL.
// Note that the constructor just zeros things, and since I use Arena
// allocation I do not need a destructor to reclaim storage.
class Block_Array : public ResourceObj {
uint _size; // allocated size, as opposed to formal limit
debug_only(uint _limit;) // limit to formal domain
protected:
Block **_blocks;
void grow( uint i ); // Grow array node to fit
public:
Arena *_arena; // Arena to allocate in
Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) {
debug_only(_limit=0);
_blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
for( int i = 0; i < OptoBlockListSize; i++ ) {
_blocks[i] = NULL;
}
}
Block *lookup( uint i ) const // Lookup, or NULL for not mapped
{ return (i<Max()) ? _blocks[i] : (Block*)NULL; }
Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
{ assert( i < Max(), "oob" ); return _blocks[i]; }
// Extend the mapping: index i maps to Block *n.
void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
uint Max() const { debug_only(return _limit); return _size; }
};
class Block_List : public Block_Array {
public:
uint _cnt;
Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
void push( Block *b ) { map(_cnt++,b); }
Block *pop() { return _blocks[--_cnt]; }
Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
void remove( uint i );
void insert( uint i, Block *n );
uint size() const { return _cnt; }
void reset() { _cnt = 0; }
};
class CFGElement : public ResourceObj {
public:
float _freq; // Execution frequency (estimate)
CFGElement() : _freq(0.0f) {}
virtual bool is_block() { return false; }
virtual bool is_loop() { return false; }
Block* as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
CFGLoop* as_CFGLoop() { assert(is_loop(), "must be loop"); return (CFGLoop*)this; }
};
//------------------------------Block------------------------------------------
// This class defines a Basic Block.
// Basic blocks are used during the output routines, and are not used during
// any optimization pass. They are created late in the game.
class Block : public CFGElement {
public:
// Nodes in this block, in order
Node_List _nodes;
// Basic blocks have a Node which defines Control for all Nodes pinned in
// this block. This Node is a RegionNode. Exception-causing Nodes
// (division, subroutines) and Phi functions are always pinned. Later,
// every Node will get pinned to some block.
Node *head() const { return _nodes[0]; }
// CAUTION: num_preds() is ONE based, so that predecessor numbers match
// input edges to Regions and Phis.
uint num_preds() const { return head()->req(); }
Node *pred(uint i) const { return head()->in(i); }
// Array of successor blocks, same size as projs array
Block_Array _succs;
// Basic blocks have some number of Nodes which split control to all
// following blocks. These Nodes are always Projections. The field in
// the Projection and the block-ending Node determine which Block follows.
uint _num_succs;
// Basic blocks also carry all sorts of good old fashioned DFS information
// used to find loops, loop nesting depth, dominators, etc.
uint _pre_order; // Pre-order DFS number
// Dominator tree
uint _dom_depth; // Depth in dominator tree for fast LCA
Block* _idom; // Immediate dominator block
CFGLoop *_loop; // Loop to which this block belongs
uint _rpo; // Number in reverse post order walk
virtual bool is_block() { return true; }
float succ_prob(uint i); // return probability of i'th successor
Block* dom_lca(Block* that); // Compute LCA in dominator tree.
#ifdef ASSERT
bool dominates(Block* that) {
int dom_diff = this->_dom_depth - that->_dom_depth;
if (dom_diff > 0) return false;
for (; dom_diff < 0; dom_diff++) that = that->_idom;
return this == that;
}
#endif
// Report the alignment required by this block. Must be a power of 2.
// The previous block will insert nops to get this alignment.
uint code_alignment();
// BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
// It is currently also used to scale such frequencies relative to
// FreqCountInvocations relative to the old value of 1500.
#define BLOCK_FREQUENCY(f) ((f * (float) 1500) / FreqCountInvocations)
// Register Pressure (estimate) for Splitting heuristic
uint _reg_pressure;
uint _ihrp_index;
uint _freg_pressure;
uint _fhrp_index;
// Mark and visited bits for an LCA calculation in insert_anti_dependences.
// Since they hold unique node indexes, they do not need reinitialization.
node_idx_t _raise_LCA_mark;
void set_raise_LCA_mark(node_idx_t x) { _raise_LCA_mark = x; }
node_idx_t raise_LCA_mark() const { return _raise_LCA_mark; }
node_idx_t _raise_LCA_visited;
void set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
node_idx_t raise_LCA_visited() const { return _raise_LCA_visited; }
// Estimated size in bytes of first instructions in a loop.
uint _first_inst_size;
uint first_inst_size() const { return _first_inst_size; }
void set_first_inst_size(uint s) { _first_inst_size = s; }
// Compute the size of first instructions in this block.
uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
// Compute alignment padding if the block needs it.
// Align a loop if loop's padding is less or equal to padding limit
// or the size of first instructions in the loop > padding.
uint alignment_padding(int current_offset) {
int block_alignment = code_alignment();
int max_pad = block_alignment-relocInfo::addr_unit();
if( max_pad > 0 ) {
assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
int current_alignment = current_offset & max_pad;
if( current_alignment != 0 ) {
uint padding = (block_alignment-current_alignment) & max_pad;
if( !head()->is_Loop() ||
padding <= (uint)MaxLoopPad ||
first_inst_size() > padding ) {
return padding;
}
}
}
return 0;
}
// Connector blocks. Connector blocks are basic blocks devoid of
// instructions, but may have relevant non-instruction Nodes, such as
// Phis or MergeMems. Such blocks are discovered and marked during the
// RemoveEmpty phase, and elided during Output.
bool _connector;
void set_connector() { _connector = true; }
bool is_connector() const { return _connector; };
// Create a new Block with given head Node.
// Creates the (empty) predecessor arrays.
Block( Arena *a, Node *headnode )
: CFGElement(),
_nodes(a),
_succs(a),
_num_succs(0),
_pre_order(0),
_idom(0),
_loop(NULL),
_reg_pressure(0),
_ihrp_index(1),
_freg_pressure(0),
_fhrp_index(1),
_raise_LCA_mark(0),
_raise_LCA_visited(0),
_first_inst_size(999999),
_connector(false) {
_nodes.push(headnode);
}
// Index of 'end' Node
uint end_idx() const {
// %%%%% add a proj after every goto
// so (last->is_block_proj() != last) always, then simplify this code
// This will not give correct end_idx for block 0 when it only contains root.
int last_idx = _nodes.size() - 1;
Node *last = _nodes[last_idx];
assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
}
// Basic blocks have a Node which ends them. This Node determines which
// basic block follows this one in the program flow. This Node is either an
// IfNode, a GotoNode, a JmpNode, or a ReturnNode.
Node *end() const { return _nodes[end_idx()]; }
// Add an instruction to an existing block. It must go after the head
// instruction and before the end instruction.
void add_inst( Node *n ) { _nodes.insert(end_idx(),n); }
// Find node in block
uint find_node( const Node *n ) const;
// Find and remove n from block list
void find_remove( const Node *n );
// Schedule a call next in the block
uint sched_call(Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call);
// Perform basic-block local scheduling
Node *select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot);
void set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs );
void needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs);
bool schedule_local(PhaseCFG *cfg, Matcher &m, int *ready_cnt, VectorSet &next_call);
// Cleanup if any code lands between a Call and his Catch
void call_catch_cleanup(Block_Array &bbs);
// Detect implicit-null-check opportunities. Basically, find NULL checks
// with suitable memory ops nearby. Use the memory op to do the NULL check.
// I can generate a memory op if there is not one nearby.
void implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons);
// Return the empty status of a block
enum { not_empty, empty_with_goto, completely_empty };
int is_Empty() const;
// Forward through connectors
Block* non_connector() {
Block* s = this;
while (s->is_connector()) {
s = s->_succs[0];
}
return s;
}
// Successor block, after forwarding through connectors
Block* non_connector_successor(int i) const {
return _succs[i]->non_connector();
}
// Examine block's code shape to predict if it is not commonly executed.
bool has_uncommon_code() const;
// Use frequency calculations and code shape to predict if the block
// is uncommon.
bool is_uncommon( Block_Array &bbs ) const;
#ifndef PRODUCT
// Debugging print of basic block
void dump_bidx(const Block* orig) const;
void dump_pred(const Block_Array *bbs, Block* orig) const;
void dump_head( const Block_Array *bbs ) const;
void dump( ) const;
void dump( const Block_Array *bbs ) const;
#endif
};
//------------------------------PhaseCFG---------------------------------------
// Build an array of Basic Block pointers, one per Node.
class PhaseCFG : public Phase {
private:
// Build a proper looking cfg. Return count of basic blocks
uint build_cfg();
// Perform DFS search.
// Setup 'vertex' as DFS to vertex mapping.
// Setup 'semi' as vertex to DFS mapping.
// Set 'parent' to DFS parent.
uint DFS( Tarjan *tarjan );
// Helper function to insert a node into a block
void schedule_node_into_block( Node *n, Block *b );
// Set the basic block for pinned Nodes
void schedule_pinned_nodes( VectorSet &visited );
// I'll need a few machine-specific GotoNodes. Clone from this one.
MachNode *_goto;
void insert_goto_at(uint block_no, uint succ_no);
Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
void verify_anti_dependences(Block* LCA, Node* load) {
assert(LCA == _bbs[load->_idx], "should already be scheduled");
insert_anti_dependences(LCA, load, true);
}
public:
PhaseCFG( Arena *a, RootNode *r, Matcher &m );
uint _num_blocks; // Count of basic blocks
Block_List _blocks; // List of basic blocks
RootNode *_root; // Root of whole program
Block_Array _bbs; // Map Nodes to owning Basic Block
Block *_broot; // Basic block of root
uint _rpo_ctr;
CFGLoop* _root_loop;
// Per node latency estimation, valid only during GCM
GrowableArray<uint> _node_latency;
#ifndef PRODUCT
bool _trace_opto_pipelining; // tracing flag
#endif
// Build dominators
void Dominators();
// Estimate block frequencies based on IfNode probabilities
void Estimate_Block_Frequency();
// Global Code Motion. See Click's PLDI95 paper. Place Nodes in specific
// basic blocks; i.e. _bbs now maps _idx for all Nodes to some Block.
void GlobalCodeMotion( Matcher &m, uint unique, Node_List &proj_list );
// Compute the (backwards) latency of a node from the uses
void latency_from_uses(Node *n);
// Compute the (backwards) latency of a node from a single use
int latency_from_use(Node *n, const Node *def, Node *use);
// Compute the (backwards) latency of a node from the uses of this instruction
void partial_latency_of_defs(Node *n);
// Schedule Nodes early in their basic blocks.
bool schedule_early(VectorSet &visited, Node_List &roots);
// For each node, find the latest block it can be scheduled into
// and then select the cheapest block between the latest and earliest
// block to place the node.
void schedule_late(VectorSet &visited, Node_List &stack);
// Pick a block between early and late that is a cheaper alternative
// to late. Helper for schedule_late.
Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
// Compute the instruction global latency with a backwards walk
void ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack);
// Remove empty basic blocks
void RemoveEmpty();
bool MoveToNext(Block* bx, uint b_index);
void MoveToEnd(Block* bx, uint b_index);
// Check for NeverBranch at block end. This needs to become a GOTO to the
// true target. NeverBranch are treated as a conditional branch that always
// goes the same direction for most of the optimizer and are used to give a
// fake exit path to infinite loops. At this late stage they need to turn
// into Goto's so that when you enter the infinite loop you indeed hang.
void convert_NeverBranch_to_Goto(Block *b);
CFGLoop* create_loop_tree();
// Insert a node into a block, and update the _bbs
void insert( Block *b, uint idx, Node *n ) {
b->_nodes.insert( idx, n );
_bbs.map( n->_idx, b );
}
#ifndef PRODUCT
bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
// Debugging print of CFG
void dump( ) const; // CFG only
void _dump_cfg( const Node *end, VectorSet &visited ) const;
void verify() const;
void dump_headers();
#else
bool trace_opto_pipelining() const { return false; }
#endif
};
//------------------------------UnionFindInfo----------------------------------
// Map Block indices to a block-index for a cfg-cover.
// Array lookup in the optimized case.
class UnionFind : public ResourceObj {
uint _cnt, _max;
uint* _indices;
ReallocMark _nesting; // assertion check for reallocations
public:
UnionFind( uint max );
void reset( uint max ); // Reset to identity map for [0..max]
uint lookup( uint nidx ) const {
return _indices[nidx];
}
uint operator[] (uint nidx) const { return lookup(nidx); }
void map( uint from_idx, uint to_idx ) {
assert( from_idx < _cnt, "oob" );
_indices[from_idx] = to_idx;
}
void extend( uint from_idx, uint to_idx );
uint Size() const { return _cnt; }
uint Find( uint idx ) {
assert( idx < 65536, "Must fit into uint");
uint uf_idx = lookup(idx);
return (uf_idx == idx) ? uf_idx : Find_compress(idx);
}
uint Find_compress( uint idx );
uint Find_const( uint idx ) const;
void Union( uint idx1, uint idx2 );
};
//----------------------------BlockProbPair---------------------------
// Ordered pair of Node*.
class BlockProbPair VALUE_OBJ_CLASS_SPEC {
protected:
Block* _target; // block target
float _prob; // probability of edge to block
public:
BlockProbPair() : _target(NULL), _prob(0.0) {}
BlockProbPair(Block* b, float p) : _target(b), _prob(p) {}
Block* get_target() const { return _target; }
float get_prob() const { return _prob; }
};
//------------------------------CFGLoop-------------------------------------------
class CFGLoop : public CFGElement {
int _id;
int _depth;
CFGLoop *_parent; // root of loop tree is the method level "pseudo" loop, it's parent is null
CFGLoop *_sibling; // null terminated list
CFGLoop *_child; // first child, use child's sibling to visit all immediately nested loops
GrowableArray<CFGElement*> _members; // list of members of loop
GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
float _exit_prob; // probability any loop exit is taken on a single loop iteration
void update_succ_freq(Block* b, float freq);
public:
CFGLoop(int id) :
CFGElement(),
_id(id),
_depth(0),
_parent(NULL),
_sibling(NULL),
_child(NULL),
_exit_prob(1.0f) {}
CFGLoop* parent() { return _parent; }
void push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk);
void add_member(CFGElement *s) { _members.push(s); }
void add_nested_loop(CFGLoop* cl);
Block* head() {
assert(_members.at(0)->is_block(), "head must be a block");
Block* hd = _members.at(0)->as_Block();
assert(hd->_loop == this, "just checking");
assert(hd->head()->is_Loop(), "must begin with loop head node");
return hd;
}
Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
void compute_loop_depth(int depth);
void compute_freq(); // compute frequency with loop assuming head freq 1.0f
void scale_freq(); // scale frequency by loop trip count (including outer loops)
bool in_loop_nest(Block* b);
float trip_count() const { return 1.0f / _exit_prob; }
virtual bool is_loop() { return true; }
int id() { return _id; }
#ifndef PRODUCT
void dump( ) const;
void dump_tree() const;
#endif
};