6684395: Port NUMA-aware allocator to linux
Summary: NUMA-aware allocator port to Linux
Reviewed-by: jmasa, apetrusenko
/*
* Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_symbolKlass.cpp.incl"
symbolOop symbolKlass::allocate_symbol(u1* name, int len, TRAPS) {
// Don't allow symbol oops to be created which cannot fit in a symbolOop.
if (len > symbolOopDesc::max_length()) {
THROW_MSG_0(vmSymbols::java_lang_InternalError(),
"name is too long to represent");
}
int size = symbolOopDesc::object_size(len);
symbolKlassHandle h_k(THREAD, as_klassOop());
symbolOop sym = (symbolOop)
CollectedHeap::permanent_obj_allocate(h_k, size, CHECK_NULL);
assert(!sym->is_parsable(), "not expecting parsability yet.");
No_Safepoint_Verifier no_safepoint;
sym->set_utf8_length(len);
for (int i = 0; i < len; i++) {
sym->byte_at_put(i, name[i]);
}
// Let the first emptySymbol be created and
// ensure only one is ever created.
assert(sym->is_parsable() || Universe::emptySymbol() == NULL,
"should be parsable here.");
return sym;
}
bool symbolKlass::allocate_symbols(int names_count, const char** names,
int* lengths, symbolOop* sym_oops, TRAPS) {
if (UseConcMarkSweepGC || UseParallelGC) {
// Concurrent GC needs to mark all the allocated symbol oops after
// the remark phase which isn't done below (except the first symbol oop).
// So return false which will let the symbols be allocated one by one.
// The parallel collector uses an object start array to find the
// start of objects on a dirty card. The object start array is not
// updated for the start of each symbol so is not precise. During
// object array verification this causes a verification failure.
// In a product build this causes extra searching for the start of
// a symbol. As with the concurrent collector a return of false will
// cause each symbol to be allocated separately and in the case
// of the parallel collector will cause the object
// start array to be updated.
return false;
}
assert(names_count > 0, "can't allocate 0 symbols");
int total_size = 0;
int i, sizes[SymbolTable::symbol_alloc_batch_size];
for (i=0; i<names_count; i++) {
int len = lengths[i];
if (len > symbolOopDesc::max_length()) {
return false;
}
int sz = symbolOopDesc::object_size(len);
sizes[i] = sz * HeapWordSize;
total_size += sz;
}
symbolKlassHandle h_k(THREAD, as_klassOop());
HeapWord* base = Universe::heap()->permanent_mem_allocate(total_size);
if (base == NULL) {
return false;
}
// CAN'T take any safepoint during the initialization of the symbol oops !
No_Safepoint_Verifier nosafepoint;
klassOop sk = h_k();
int pos = 0;
for (i=0; i<names_count; i++) {
symbolOop s = (symbolOop) (((char*)base) + pos);
s->set_mark(markOopDesc::prototype());
s->set_klass(sk);
s->set_utf8_length(lengths[i]);
const char* name = names[i];
for (int j=0; j<lengths[i]; j++) {
s->byte_at_put(j, name[j]);
}
assert(s->is_parsable(), "should be parsable here.");
sym_oops[i] = s;
pos += sizes[i];
}
return true;
}
klassOop symbolKlass::create_klass(TRAPS) {
symbolKlass o;
KlassHandle h_this_klass(THREAD, Universe::klassKlassObj());
KlassHandle k = base_create_klass(h_this_klass, header_size(), o.vtbl_value(), CHECK_NULL);
// Make sure size calculation is right
assert(k()->size() == align_object_size(header_size()), "wrong size for object");
// java_lang_Class::create_mirror(k, CHECK_NULL); // Allocate mirror
return k();
}
int symbolKlass::oop_size(oop obj) const {
assert(obj->is_symbol(),"must be a symbol");
symbolOop s = symbolOop(obj);
int size = s->object_size();
return size;
}
bool symbolKlass::oop_is_parsable(oop obj) const {
assert(obj->is_symbol(),"must be a symbol");
symbolOop s = symbolOop(obj);
return s->object_is_parsable();
}
void symbolKlass::oop_follow_contents(oop obj) {
assert (obj->is_symbol(), "object must be symbol");
// Performance tweak: We skip iterating over the klass pointer since we
// know that Universe::symbolKlassObj never moves.
// Note: do not follow next link here (see SymbolTable::follow_contents)
}
#ifndef SERIALGC
void symbolKlass::oop_follow_contents(ParCompactionManager* cm, oop obj) {
assert (obj->is_symbol(), "object must be symbol");
// Performance tweak: We skip iterating over the klass pointer since we
// know that Universe::symbolKlassObj never moves.
// Note: do not follow next link here (see SymbolTable::follow_contents)
}
#endif // SERIALGC
int symbolKlass::oop_oop_iterate(oop obj, OopClosure* blk) {
assert(obj->is_symbol(), "object must be symbol");
symbolOop s = symbolOop(obj);
// Get size before changing pointers.
// Don't call size() or oop_size() since that is a virtual call.
int size = s->object_size();
// Performance tweak: We skip iterating over the klass pointer since we
// know that Universe::symbolKlassObj never moves.
return size;
}
int symbolKlass::oop_oop_iterate_m(oop obj, OopClosure* blk, MemRegion mr) {
assert(obj->is_symbol(), "object must be symbol");
symbolOop s = symbolOop(obj);
// Get size before changing pointers.
// Don't call size() or oop_size() since that is a virtual call.
int size = s->object_size();
// Performance tweak: We skip iterating over the klass pointer since we
// know that Universe::symbolKlassObj never moves.
return size;
}
int symbolKlass::oop_adjust_pointers(oop obj) {
assert(obj->is_symbol(), "should be symbol");
symbolOop s = symbolOop(obj);
// Get size before changing pointers.
// Don't call size() or oop_size() since that is a virtual call.
int size = s->object_size();
// Performance tweak: We skip iterating over the klass pointer since we
// know that Universe::symbolKlassObj never moves.
return size;
}
#ifndef SERIALGC
void symbolKlass::oop_copy_contents(PSPromotionManager* pm, oop obj) {
assert(obj->is_symbol(), "should be symbol");
}
void symbolKlass::oop_push_contents(PSPromotionManager* pm, oop obj) {
assert(obj->is_symbol(), "should be symbol");
}
int symbolKlass::oop_update_pointers(ParCompactionManager* cm, oop obj) {
assert(obj->is_symbol(), "should be symbol");
return symbolOop(obj)->object_size();
}
int symbolKlass::oop_update_pointers(ParCompactionManager* cm, oop obj,
HeapWord* beg_addr, HeapWord* end_addr) {
assert(obj->is_symbol(), "should be symbol");
return symbolOop(obj)->object_size();
}
#endif // SERIALGC
#ifndef PRODUCT
// Printing
void symbolKlass::oop_print_on(oop obj, outputStream* st) {
st->print("Symbol: '");
symbolOop sym = symbolOop(obj);
for (int i = 0; i < sym->utf8_length(); i++) {
st->print("%c", sym->byte_at(i));
}
st->print("'");
}
void symbolKlass::oop_print_value_on(oop obj, outputStream* st) {
symbolOop sym = symbolOop(obj);
st->print("'");
for (int i = 0; i < sym->utf8_length(); i++) {
st->print("%c", sym->byte_at(i));
}
st->print("'");
}
#endif //PRODUCT
const char* symbolKlass::internal_name() const {
return "{symbol}";
}