/*
* Copyright 2005-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_c1_LIRGenerator_sparc.cpp.incl"
#ifdef ASSERT
#define __ gen()->lir(__FILE__, __LINE__)->
#else
#define __ gen()->lir()->
#endif
void LIRItem::load_byte_item() {
// byte loads use same registers as other loads
load_item();
}
void LIRItem::load_nonconstant() {
LIR_Opr r = value()->operand();
if (_gen->can_inline_as_constant(value())) {
if (!r->is_constant()) {
r = LIR_OprFact::value_type(value()->type());
}
_result = r;
} else {
load_item();
}
}
//--------------------------------------------------------------
// LIRGenerator
//--------------------------------------------------------------
LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::Oexception_opr; }
LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::Oissuing_pc_opr; }
LIR_Opr LIRGenerator::syncTempOpr() { return new_register(T_OBJECT); }
LIR_Opr LIRGenerator::getThreadTemp() { return rlock_callee_saved(T_INT); }
LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
LIR_Opr opr;
switch (type->tag()) {
case intTag: opr = callee ? FrameMap::I0_opr : FrameMap::O0_opr; break;
case objectTag: opr = callee ? FrameMap::I0_oop_opr : FrameMap::O0_oop_opr; break;
case longTag: opr = callee ? FrameMap::in_long_opr : FrameMap::out_long_opr; break;
case floatTag: opr = FrameMap::F0_opr; break;
case doubleTag: opr = FrameMap::F0_double_opr; break;
case addressTag:
default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
}
assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
return opr;
}
LIR_Opr LIRGenerator::rlock_callee_saved(BasicType type) {
LIR_Opr reg = new_register(type);
set_vreg_flag(reg, callee_saved);
return reg;
}
LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
return new_register(T_INT);
}
//--------- loading items into registers --------------------------------
// SPARC cannot inline all constants
bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
if (v->type()->as_IntConstant() != NULL) {
return v->type()->as_IntConstant()->value() == 0;
} else if (v->type()->as_LongConstant() != NULL) {
return v->type()->as_LongConstant()->value() == 0L;
} else if (v->type()->as_ObjectConstant() != NULL) {
return v->type()->as_ObjectConstant()->value()->is_null_object();
} else {
return false;
}
}
// only simm13 constants can be inlined
bool LIRGenerator:: can_inline_as_constant(Value i) const {
if (i->type()->as_IntConstant() != NULL) {
return Assembler::is_simm13(i->type()->as_IntConstant()->value());
} else {
return can_store_as_constant(i, as_BasicType(i->type()));
}
}
bool LIRGenerator:: can_inline_as_constant(LIR_Const* c) const {
if (c->type() == T_INT) {
return Assembler::is_simm13(c->as_jint());
}
return false;
}
LIR_Opr LIRGenerator::safepoint_poll_register() {
return new_register(T_INT);
}
LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
int shift, int disp, BasicType type) {
assert(base->is_register(), "must be");
// accumulate fixed displacements
if (index->is_constant()) {
disp += index->as_constant_ptr()->as_jint() << shift;
index = LIR_OprFact::illegalOpr;
}
if (index->is_register()) {
// apply the shift and accumulate the displacement
if (shift > 0) {
LIR_Opr tmp = new_register(T_INT);
__ shift_left(index, shift, tmp);
index = tmp;
}
if (disp != 0) {
LIR_Opr tmp = new_register(T_INT);
if (Assembler::is_simm13(disp)) {
__ add(tmp, LIR_OprFact::intConst(disp), tmp);
index = tmp;
} else {
__ move(LIR_OprFact::intConst(disp), tmp);
__ add(tmp, index, tmp);
index = tmp;
}
disp = 0;
}
} else if (disp != 0 && !Assembler::is_simm13(disp)) {
// index is illegal so replace it with the displacement loaded into a register
index = new_register(T_INT);
__ move(LIR_OprFact::intConst(disp), index);
disp = 0;
}
// at this point we either have base + index or base + displacement
if (disp == 0) {
return new LIR_Address(base, index, type);
} else {
assert(Assembler::is_simm13(disp), "must be");
return new LIR_Address(base, disp, type);
}
}
LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
BasicType type, bool needs_card_mark) {
int elem_size = type2aelembytes(type);
int shift = exact_log2(elem_size);
LIR_Opr base_opr;
int offset = arrayOopDesc::base_offset_in_bytes(type);
if (index_opr->is_constant()) {
int i = index_opr->as_constant_ptr()->as_jint();
int array_offset = i * elem_size;
if (Assembler::is_simm13(array_offset + offset)) {
base_opr = array_opr;
offset = array_offset + offset;
} else {
base_opr = new_pointer_register();
if (Assembler::is_simm13(array_offset)) {
__ add(array_opr, LIR_OprFact::intptrConst(array_offset), base_opr);
} else {
__ move(LIR_OprFact::intptrConst(array_offset), base_opr);
__ add(base_opr, array_opr, base_opr);
}
}
} else {
#ifdef _LP64
if (index_opr->type() == T_INT) {
LIR_Opr tmp = new_register(T_LONG);
__ convert(Bytecodes::_i2l, index_opr, tmp);
index_opr = tmp;
}
#endif
base_opr = new_pointer_register();
assert (index_opr->is_register(), "Must be register");
if (shift > 0) {
__ shift_left(index_opr, shift, base_opr);
__ add(base_opr, array_opr, base_opr);
} else {
__ add(index_opr, array_opr, base_opr);
}
}
if (needs_card_mark) {
LIR_Opr ptr = new_pointer_register();
__ add(base_opr, LIR_OprFact::intptrConst(offset), ptr);
return new LIR_Address(ptr, 0, type);
} else {
return new LIR_Address(base_opr, offset, type);
}
}
void LIRGenerator::increment_counter(address counter, int step) {
LIR_Opr pointer = new_pointer_register();
__ move(LIR_OprFact::intptrConst(counter), pointer);
LIR_Address* addr = new LIR_Address(pointer, 0, T_INT);
increment_counter(addr, step);
}
void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
LIR_Opr temp = new_register(T_INT);
__ move(addr, temp);
LIR_Opr c = LIR_OprFact::intConst(step);
if (Assembler::is_simm13(step)) {
__ add(temp, c, temp);
} else {
LIR_Opr temp2 = new_register(T_INT);
__ move(c, temp2);
__ add(temp, temp2, temp);
}
__ move(temp, addr);
}
void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
LIR_Opr o7opr = FrameMap::O7_opr;
__ load(new LIR_Address(base, disp, T_INT), o7opr, info);
__ cmp(condition, o7opr, c);
}
void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
LIR_Opr o7opr = FrameMap::O7_opr;
__ load(new LIR_Address(base, disp, type), o7opr, info);
__ cmp(condition, reg, o7opr);
}
void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
LIR_Opr o7opr = FrameMap::O7_opr;
__ load(new LIR_Address(base, disp, type), o7opr, info);
__ cmp(condition, reg, o7opr);
}
bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
assert(left != result, "should be different registers");
if (is_power_of_2(c + 1)) {
__ shift_left(left, log2_intptr(c + 1), result);
__ sub(result, left, result);
return true;
} else if (is_power_of_2(c - 1)) {
__ shift_left(left, log2_intptr(c - 1), result);
__ add(result, left, result);
return true;
}
return false;
}
void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
BasicType t = item->type();
LIR_Opr sp_opr = FrameMap::SP_opr;
if ((t == T_LONG || t == T_DOUBLE) &&
((in_bytes(offset_from_sp) - STACK_BIAS) % 8 != 0)) {
__ unaligned_move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
} else {
__ move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
}
}
//----------------------------------------------------------------------
// visitor functions
//----------------------------------------------------------------------
void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
assert(x->is_root(),"");
bool needs_range_check = true;
bool use_length = x->length() != NULL;
bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
!get_jobject_constant(x->value())->is_null_object());
LIRItem array(x->array(), this);
LIRItem index(x->index(), this);
LIRItem value(x->value(), this);
LIRItem length(this);
array.load_item();
index.load_nonconstant();
if (use_length) {
needs_range_check = x->compute_needs_range_check();
if (needs_range_check) {
length.set_instruction(x->length());
length.load_item();
}
}
if (needs_store_check) {
value.load_item();
} else {
value.load_for_store(x->elt_type());
}
set_no_result(x);
// the CodeEmitInfo must be duplicated for each different
// LIR-instruction because spilling can occur anywhere between two
// instructions and so the debug information must be different
CodeEmitInfo* range_check_info = state_for(x);
CodeEmitInfo* null_check_info = NULL;
if (x->needs_null_check()) {
null_check_info = new CodeEmitInfo(range_check_info);
}
// emit array address setup early so it schedules better
LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
if (GenerateRangeChecks && needs_range_check) {
if (use_length) {
__ cmp(lir_cond_belowEqual, length.result(), index.result());
__ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
} else {
array_range_check(array.result(), index.result(), null_check_info, range_check_info);
// range_check also does the null check
null_check_info = NULL;
}
}
if (GenerateArrayStoreCheck && needs_store_check) {
LIR_Opr tmp1 = FrameMap::G1_opr;
LIR_Opr tmp2 = FrameMap::G3_opr;
LIR_Opr tmp3 = FrameMap::G5_opr;
CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
__ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info);
}
if (obj_store) {
// Needs GC write barriers.
pre_barrier(LIR_OprFact::address(array_addr), false, NULL);
}
__ move(value.result(), array_addr, null_check_info);
if (obj_store) {
// Precise card mark
post_barrier(LIR_OprFact::address(array_addr), value.result());
}
}
void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
assert(x->is_root(),"");
LIRItem obj(x->obj(), this);
obj.load_item();
set_no_result(x);
LIR_Opr lock = FrameMap::G1_opr;
LIR_Opr scratch = FrameMap::G3_opr;
LIR_Opr hdr = FrameMap::G4_opr;
CodeEmitInfo* info_for_exception = NULL;
if (x->needs_null_check()) {
info_for_exception = state_for(x, x->lock_stack_before());
}
// this CodeEmitInfo must not have the xhandlers because here the
// object is already locked (xhandlers expects object to be unlocked)
CodeEmitInfo* info = state_for(x, x->state(), true);
monitor_enter(obj.result(), lock, hdr, scratch, x->monitor_no(), info_for_exception, info);
}
void LIRGenerator::do_MonitorExit(MonitorExit* x) {
assert(x->is_root(),"");
LIRItem obj(x->obj(), this);
obj.dont_load_item();
set_no_result(x);
LIR_Opr lock = FrameMap::G1_opr;
LIR_Opr hdr = FrameMap::G3_opr;
LIR_Opr obj_temp = FrameMap::G4_opr;
monitor_exit(obj_temp, lock, hdr, x->monitor_no());
}
// _ineg, _lneg, _fneg, _dneg
void LIRGenerator::do_NegateOp(NegateOp* x) {
LIRItem value(x->x(), this);
value.load_item();
LIR_Opr reg = rlock_result(x);
__ negate(value.result(), reg);
}
// for _fadd, _fmul, _fsub, _fdiv, _frem
// _dadd, _dmul, _dsub, _ddiv, _drem
void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
switch (x->op()) {
case Bytecodes::_fadd:
case Bytecodes::_fmul:
case Bytecodes::_fsub:
case Bytecodes::_fdiv:
case Bytecodes::_dadd:
case Bytecodes::_dmul:
case Bytecodes::_dsub:
case Bytecodes::_ddiv: {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
right.load_item();
rlock_result(x);
arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
}
break;
case Bytecodes::_frem:
case Bytecodes::_drem: {
address entry;
switch (x->op()) {
case Bytecodes::_frem:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
break;
case Bytecodes::_drem:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
break;
default:
ShouldNotReachHere();
}
LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL);
set_result(x, result);
}
break;
default: ShouldNotReachHere();
}
}
// for _ladd, _lmul, _lsub, _ldiv, _lrem
void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
switch (x->op()) {
case Bytecodes::_lrem:
case Bytecodes::_lmul:
case Bytecodes::_ldiv: {
if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
LIRItem right(x->y(), this);
right.load_item();
CodeEmitInfo* info = state_for(x);
LIR_Opr item = right.result();
assert(item->is_register(), "must be");
__ cmp(lir_cond_equal, item, LIR_OprFact::longConst(0));
__ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
}
address entry;
switch (x->op()) {
case Bytecodes::_lrem:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
break; // check if dividend is 0 is done elsewhere
case Bytecodes::_ldiv:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
break; // check if dividend is 0 is done elsewhere
case Bytecodes::_lmul:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
break;
default:
ShouldNotReachHere();
}
// order of arguments to runtime call is reversed.
LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL);
set_result(x, result);
break;
}
case Bytecodes::_ladd:
case Bytecodes::_lsub: {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
right.load_item();
rlock_result(x);
arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
break;
}
default: ShouldNotReachHere();
}
}
// Returns if item is an int constant that can be represented by a simm13
static bool is_simm13(LIR_Opr item) {
if (item->is_constant() && item->type() == T_INT) {
return Assembler::is_simm13(item->as_constant_ptr()->as_jint());
} else {
return false;
}
}
// for: _iadd, _imul, _isub, _idiv, _irem
void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
// missing test if instr is commutative and if we should swap
right.load_nonconstant();
assert(right.is_constant() || right.is_register(), "wrong state of right");
left.load_item();
rlock_result(x);
if (is_div_rem) {
CodeEmitInfo* info = state_for(x);
LIR_Opr tmp = FrameMap::G1_opr;
if (x->op() == Bytecodes::_irem) {
__ irem(left.result(), right.result(), x->operand(), tmp, info);
} else if (x->op() == Bytecodes::_idiv) {
__ idiv(left.result(), right.result(), x->operand(), tmp, info);
}
} else {
arithmetic_op_int(x->op(), x->operand(), left.result(), right.result(), FrameMap::G1_opr);
}
}
void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
ValueTag tag = x->type()->tag();
assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
switch (tag) {
case floatTag:
case doubleTag: do_ArithmeticOp_FPU(x); return;
case longTag: do_ArithmeticOp_Long(x); return;
case intTag: do_ArithmeticOp_Int(x); return;
}
ShouldNotReachHere();
}
// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
void LIRGenerator::do_ShiftOp(ShiftOp* x) {
LIRItem value(x->x(), this);
LIRItem count(x->y(), this);
// Long shift destroys count register
if (value.type()->is_long()) {
count.set_destroys_register();
}
value.load_item();
// the old backend doesn't support this
if (count.is_constant() && count.type()->as_IntConstant() != NULL && value.type()->is_int()) {
jint c = count.get_jint_constant() & 0x1f;
assert(c >= 0 && c < 32, "should be small");
count.dont_load_item();
} else {
count.load_item();
}
LIR_Opr reg = rlock_result(x);
shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
}
// _iand, _land, _ior, _lor, _ixor, _lxor
void LIRGenerator::do_LogicOp(LogicOp* x) {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
right.load_nonconstant();
LIR_Opr reg = rlock_result(x);
logic_op(x->op(), reg, left.result(), right.result());
}
// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
void LIRGenerator::do_CompareOp(CompareOp* x) {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
right.load_item();
LIR_Opr reg = rlock_result(x);
if (x->x()->type()->is_float_kind()) {
Bytecodes::Code code = x->op();
__ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
} else if (x->x()->type()->tag() == longTag) {
__ lcmp2int(left.result(), right.result(), reg);
} else {
Unimplemented();
}
}
void LIRGenerator::do_AttemptUpdate(Intrinsic* x) {
assert(x->number_of_arguments() == 3, "wrong type");
LIRItem obj (x->argument_at(0), this); // AtomicLong object
LIRItem cmp_value (x->argument_at(1), this); // value to compare with field
LIRItem new_value (x->argument_at(2), this); // replace field with new_value if it matches cmp_value
obj.load_item();
cmp_value.load_item();
new_value.load_item();
// generate compare-and-swap and produce zero condition if swap occurs
int value_offset = sun_misc_AtomicLongCSImpl::value_offset();
LIR_Opr addr = FrameMap::O7_opr;
__ add(obj.result(), LIR_OprFact::intConst(value_offset), addr);
LIR_Opr t1 = FrameMap::G1_opr; // temp for 64-bit value
LIR_Opr t2 = FrameMap::G3_opr; // temp for 64-bit value
__ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2);
// generate conditional move of boolean result
LIR_Opr result = rlock_result(x);
__ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
}
void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
assert(x->number_of_arguments() == 4, "wrong type");
LIRItem obj (x->argument_at(0), this); // object
LIRItem offset(x->argument_at(1), this); // offset of field
LIRItem cmp (x->argument_at(2), this); // value to compare with field
LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
// Use temps to avoid kills
LIR_Opr t1 = FrameMap::G1_opr;
LIR_Opr t2 = FrameMap::G3_opr;
LIR_Opr addr = new_pointer_register();
// get address of field
obj.load_item();
offset.load_item();
cmp.load_item();
val.load_item();
__ add(obj.result(), offset.result(), addr);
if (type == objectType) { // Write-barrier needed for Object fields.
pre_barrier(addr, false, NULL);
}
if (type == objectType)
__ cas_obj(addr, cmp.result(), val.result(), t1, t2);
else if (type == intType)
__ cas_int(addr, cmp.result(), val.result(), t1, t2);
else if (type == longType)
__ cas_long(addr, cmp.result(), val.result(), t1, t2);
else {
ShouldNotReachHere();
}
// generate conditional move of boolean result
LIR_Opr result = rlock_result(x);
__ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
if (type == objectType) { // Write-barrier needed for Object fields.
// Precise card mark since could either be object or array
post_barrier(addr, val.result());
}
}
void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
switch (x->id()) {
case vmIntrinsics::_dabs:
case vmIntrinsics::_dsqrt: {
assert(x->number_of_arguments() == 1, "wrong type");
LIRItem value(x->argument_at(0), this);
value.load_item();
LIR_Opr dst = rlock_result(x);
switch (x->id()) {
case vmIntrinsics::_dsqrt: {
__ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
break;
}
case vmIntrinsics::_dabs: {
__ abs(value.result(), dst, LIR_OprFact::illegalOpr);
break;
}
}
break;
}
case vmIntrinsics::_dlog10: // fall through
case vmIntrinsics::_dlog: // fall through
case vmIntrinsics::_dsin: // fall through
case vmIntrinsics::_dtan: // fall through
case vmIntrinsics::_dcos: {
assert(x->number_of_arguments() == 1, "wrong type");
address runtime_entry = NULL;
switch (x->id()) {
case vmIntrinsics::_dsin:
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
break;
case vmIntrinsics::_dcos:
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
break;
case vmIntrinsics::_dtan:
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
break;
case vmIntrinsics::_dlog:
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
break;
case vmIntrinsics::_dlog10:
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
break;
default:
ShouldNotReachHere();
}
LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
set_result(x, result);
}
}
}
void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
assert(x->number_of_arguments() == 5, "wrong type");
// Make all state_for calls early since they can emit code
CodeEmitInfo* info = state_for(x, x->state());
// Note: spill caller save before setting the item
LIRItem src (x->argument_at(0), this);
LIRItem src_pos (x->argument_at(1), this);
LIRItem dst (x->argument_at(2), this);
LIRItem dst_pos (x->argument_at(3), this);
LIRItem length (x->argument_at(4), this);
// load all values in callee_save_registers, as this makes the
// parameter passing to the fast case simpler
src.load_item_force (rlock_callee_saved(T_OBJECT));
src_pos.load_item_force (rlock_callee_saved(T_INT));
dst.load_item_force (rlock_callee_saved(T_OBJECT));
dst_pos.load_item_force (rlock_callee_saved(T_INT));
length.load_item_force (rlock_callee_saved(T_INT));
int flags;
ciArrayKlass* expected_type;
arraycopy_helper(x, &flags, &expected_type);
__ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
length.result(), rlock_callee_saved(T_INT),
expected_type, flags, info);
set_no_result(x);
}
// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
// _i2b, _i2c, _i2s
void LIRGenerator::do_Convert(Convert* x) {
switch (x->op()) {
case Bytecodes::_f2l:
case Bytecodes::_d2l:
case Bytecodes::_d2i:
case Bytecodes::_l2f:
case Bytecodes::_l2d: {
address entry;
switch (x->op()) {
case Bytecodes::_l2f:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
break;
case Bytecodes::_l2d:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2d);
break;
case Bytecodes::_f2l:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::f2l);
break;
case Bytecodes::_d2l:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2l);
break;
case Bytecodes::_d2i:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2i);
break;
default:
ShouldNotReachHere();
}
LIR_Opr result = call_runtime(x->value(), entry, x->type(), NULL);
set_result(x, result);
break;
}
case Bytecodes::_i2f:
case Bytecodes::_i2d: {
LIRItem value(x->value(), this);
LIR_Opr reg = rlock_result(x);
// To convert an int to double, we need to load the 32-bit int
// from memory into a single precision floating point register
// (even numbered). Then the sparc fitod instruction takes care
// of the conversion. This is a bit ugly, but is the best way to
// get the int value in a single precision floating point register
value.load_item();
LIR_Opr tmp = force_to_spill(value.result(), T_FLOAT);
__ convert(x->op(), tmp, reg);
break;
}
break;
case Bytecodes::_i2l:
case Bytecodes::_i2b:
case Bytecodes::_i2c:
case Bytecodes::_i2s:
case Bytecodes::_l2i:
case Bytecodes::_f2d:
case Bytecodes::_d2f: { // inline code
LIRItem value(x->value(), this);
value.load_item();
LIR_Opr reg = rlock_result(x);
__ convert(x->op(), value.result(), reg, false);
}
break;
case Bytecodes::_f2i: {
LIRItem value (x->value(), this);
value.set_destroys_register();
value.load_item();
LIR_Opr reg = rlock_result(x);
set_vreg_flag(reg, must_start_in_memory);
__ convert(x->op(), value.result(), reg, false);
}
break;
default: ShouldNotReachHere();
}
}
void LIRGenerator::do_NewInstance(NewInstance* x) {
// This instruction can be deoptimized in the slow path : use
// O0 as result register.
const LIR_Opr reg = result_register_for(x->type());
if (PrintNotLoaded && !x->klass()->is_loaded()) {
tty->print_cr(" ###class not loaded at new bci %d", x->bci());
}
CodeEmitInfo* info = state_for(x, x->state());
LIR_Opr tmp1 = FrameMap::G1_oop_opr;
LIR_Opr tmp2 = FrameMap::G3_oop_opr;
LIR_Opr tmp3 = FrameMap::G4_oop_opr;
LIR_Opr tmp4 = FrameMap::O1_oop_opr;
LIR_Opr klass_reg = FrameMap::G5_oop_opr;
new_instance(reg, x->klass(), tmp1, tmp2, tmp3, tmp4, klass_reg, info);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
// Evaluate state_for early since it may emit code
CodeEmitInfo* info = state_for(x, x->state());
LIRItem length(x->length(), this);
length.load_item();
LIR_Opr reg = result_register_for(x->type());
LIR_Opr tmp1 = FrameMap::G1_oop_opr;
LIR_Opr tmp2 = FrameMap::G3_oop_opr;
LIR_Opr tmp3 = FrameMap::G4_oop_opr;
LIR_Opr tmp4 = FrameMap::O1_oop_opr;
LIR_Opr klass_reg = FrameMap::G5_oop_opr;
LIR_Opr len = length.result();
BasicType elem_type = x->elt_type();
__ oop2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
// Evaluate state_for early since it may emit code.
CodeEmitInfo* info = state_for(x, x->state());
// in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
// and therefore provide the state before the parameters have been consumed
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || PatchALot) {
patching_info = state_for(x, x->state_before());
}
LIRItem length(x->length(), this);
length.load_item();
const LIR_Opr reg = result_register_for(x->type());
LIR_Opr tmp1 = FrameMap::G1_oop_opr;
LIR_Opr tmp2 = FrameMap::G3_oop_opr;
LIR_Opr tmp3 = FrameMap::G4_oop_opr;
LIR_Opr tmp4 = FrameMap::O1_oop_opr;
LIR_Opr klass_reg = FrameMap::G5_oop_opr;
LIR_Opr len = length.result();
CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
if (obj == ciEnv::unloaded_ciobjarrayklass()) {
BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
}
jobject2reg_with_patching(klass_reg, obj, patching_info);
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
Values* dims = x->dims();
int i = dims->length();
LIRItemList* items = new LIRItemList(dims->length(), NULL);
while (i-- > 0) {
LIRItem* size = new LIRItem(dims->at(i), this);
items->at_put(i, size);
}
// Evaluate state_for early since it may emit code.
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || PatchALot) {
patching_info = state_for(x, x->state_before());
// cannot re-use same xhandlers for multiple CodeEmitInfos, so
// clone all handlers. This is handled transparently in other
// places by the CodeEmitInfo cloning logic but is handled
// specially here because a stub isn't being used.
x->set_exception_handlers(new XHandlers(x->exception_handlers()));
}
CodeEmitInfo* info = state_for(x, x->state());
i = dims->length();
while (i-- > 0) {
LIRItem* size = items->at(i);
size->load_item();
store_stack_parameter (size->result(),
in_ByteSize(STACK_BIAS +
frame::memory_parameter_word_sp_offset * wordSize +
i * sizeof(jint)));
}
// This instruction can be deoptimized in the slow path : use
// O0 as result register.
const LIR_Opr reg = result_register_for(x->type());
jobject2reg_with_patching(reg, x->klass(), patching_info);
LIR_Opr rank = FrameMap::O1_opr;
__ move(LIR_OprFact::intConst(x->rank()), rank);
LIR_Opr varargs = FrameMap::as_pointer_opr(O2);
int offset_from_sp = (frame::memory_parameter_word_sp_offset * wordSize) + STACK_BIAS;
__ add(FrameMap::SP_opr,
LIR_OprFact::intptrConst(offset_from_sp),
varargs);
LIR_OprList* args = new LIR_OprList(3);
args->append(reg);
args->append(rank);
args->append(varargs);
__ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
LIR_OprFact::illegalOpr,
reg, args, info);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_BlockBegin(BlockBegin* x) {
}
void LIRGenerator::do_CheckCast(CheckCast* x) {
LIRItem obj(x->obj(), this);
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
// must do this before locking the destination register as an oop register,
// and before the obj is loaded (so x->obj()->item() is valid for creating a debug info location)
patching_info = state_for(x, x->state_before());
}
obj.load_item();
LIR_Opr out_reg = rlock_result(x);
CodeStub* stub;
CodeEmitInfo* info_for_exception = state_for(x, x->state()->copy_locks());
if (x->is_incompatible_class_change_check()) {
assert(patching_info == NULL, "can't patch this");
stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
} else {
stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
}
LIR_Opr tmp1 = FrameMap::G1_oop_opr;
LIR_Opr tmp2 = FrameMap::G3_oop_opr;
LIR_Opr tmp3 = FrameMap::G4_oop_opr;
__ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
x->direct_compare(), info_for_exception, patching_info, stub,
x->profiled_method(), x->profiled_bci());
}
void LIRGenerator::do_InstanceOf(InstanceOf* x) {
LIRItem obj(x->obj(), this);
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || PatchALot) {
patching_info = state_for(x, x->state_before());
}
// ensure the result register is not the input register because the result is initialized before the patching safepoint
obj.load_item();
LIR_Opr out_reg = rlock_result(x);
LIR_Opr tmp1 = FrameMap::G1_oop_opr;
LIR_Opr tmp2 = FrameMap::G3_oop_opr;
LIR_Opr tmp3 = FrameMap::G4_oop_opr;
__ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3, x->direct_compare(), patching_info);
}
void LIRGenerator::do_If(If* x) {
assert(x->number_of_sux() == 2, "inconsistency");
ValueTag tag = x->x()->type()->tag();
LIRItem xitem(x->x(), this);
LIRItem yitem(x->y(), this);
LIRItem* xin = &xitem;
LIRItem* yin = &yitem;
If::Condition cond = x->cond();
if (tag == longTag) {
// for longs, only conditions "eql", "neq", "lss", "geq" are valid;
// mirror for other conditions
if (cond == If::gtr || cond == If::leq) {
// swap inputs
cond = Instruction::mirror(cond);
xin = &yitem;
yin = &xitem;
}
xin->set_destroys_register();
}
LIR_Opr left = LIR_OprFact::illegalOpr;
LIR_Opr right = LIR_OprFact::illegalOpr;
xin->load_item();
left = xin->result();
if (is_simm13(yin->result())) {
// inline int constants which are small enough to be immediate operands
right = LIR_OprFact::value_type(yin->value()->type());
} else if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
(cond == If::eql || cond == If::neq)) {
// inline long zero
right = LIR_OprFact::value_type(yin->value()->type());
} else if (tag == objectTag && yin->is_constant() && (yin->get_jobject_constant()->is_null_object())) {
right = LIR_OprFact::value_type(yin->value()->type());
} else {
yin->load_item();
right = yin->result();
}
set_no_result(x);
// add safepoint before generating condition code so it can be recomputed
if (x->is_safepoint()) {
// increment backedge counter if needed
increment_backedge_counter(state_for(x, x->state_before()));
__ safepoint(new_register(T_INT), state_for(x, x->state_before()));
}
__ cmp(lir_cond(cond), left, right);
profile_branch(x, cond);
move_to_phi(x->state());
if (x->x()->type()->is_float_kind()) {
__ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
} else {
__ branch(lir_cond(cond), right->type(), x->tsux());
}
assert(x->default_sux() == x->fsux(), "wrong destination above");
__ jump(x->default_sux());
}
LIR_Opr LIRGenerator::getThreadPointer() {
return FrameMap::as_pointer_opr(G2);
}
void LIRGenerator::trace_block_entry(BlockBegin* block) {
__ move(LIR_OprFact::intConst(block->block_id()), FrameMap::O0_opr);
LIR_OprList* args = new LIR_OprList(1);
args->append(FrameMap::O0_opr);
address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
__ call_runtime_leaf(func, rlock_callee_saved(T_INT), LIR_OprFact::illegalOpr, args);
}
void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
CodeEmitInfo* info) {
#ifdef _LP64
__ store(value, address, info);
#else
__ volatile_store_mem_reg(value, address, info);
#endif
}
void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
CodeEmitInfo* info) {
#ifdef _LP64
__ load(address, result, info);
#else
__ volatile_load_mem_reg(address, result, info);
#endif
}
void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
BasicType type, bool is_volatile) {
LIR_Opr base_op = src;
LIR_Opr index_op = offset;
bool is_obj = (type == T_ARRAY || type == T_OBJECT);
#ifndef _LP64
if (is_volatile && type == T_LONG) {
__ volatile_store_unsafe_reg(data, src, offset, type, NULL, lir_patch_none);
} else
#endif
{
if (type == T_BOOLEAN) {
type = T_BYTE;
}
LIR_Address* addr;
if (type == T_ARRAY || type == T_OBJECT) {
LIR_Opr tmp = new_pointer_register();
__ add(base_op, index_op, tmp);
addr = new LIR_Address(tmp, 0, type);
} else {
addr = new LIR_Address(base_op, index_op, type);
}
if (is_obj) {
pre_barrier(LIR_OprFact::address(addr), false, NULL);
// _bs->c1_write_barrier_pre(this, LIR_OprFact::address(addr));
}
__ move(data, addr);
if (is_obj) {
// This address is precise
post_barrier(LIR_OprFact::address(addr), data);
}
}
}
void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
BasicType type, bool is_volatile) {
#ifndef _LP64
if (is_volatile && type == T_LONG) {
__ volatile_load_unsafe_reg(src, offset, dst, type, NULL, lir_patch_none);
} else
#endif
{
LIR_Address* addr = new LIR_Address(src, offset, type);
__ load(addr, dst);
}
}