8154153: PS: Restore preserved marks in parallel
Summary: Restore preserved marks after evacuation failure in parallel using the PreservedMark infrastructure.
Reviewed-by: tschatzl
/*
* Copyright (c) 2002, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/parallel/mutableSpace.hpp"
#include "gc/parallel/parallelScavengeHeap.hpp"
#include "gc/parallel/psOldGen.hpp"
#include "gc/parallel/psPromotionManager.inline.hpp"
#include "gc/parallel/psScavenge.inline.hpp"
#include "gc/shared/gcTrace.hpp"
#include "gc/shared/preservedMarks.inline.hpp"
#include "gc/shared/taskqueue.inline.hpp"
#include "logging/log.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/memRegion.hpp"
#include "memory/padded.inline.hpp"
#include "memory/resourceArea.hpp"
#include "oops/instanceKlass.inline.hpp"
#include "oops/instanceMirrorKlass.inline.hpp"
#include "oops/objArrayKlass.inline.hpp"
#include "oops/oop.inline.hpp"
PaddedEnd<PSPromotionManager>* PSPromotionManager::_manager_array = NULL;
OopStarTaskQueueSet* PSPromotionManager::_stack_array_depth = NULL;
PreservedMarksSet* PSPromotionManager::_preserved_marks_set = NULL;
PSOldGen* PSPromotionManager::_old_gen = NULL;
MutableSpace* PSPromotionManager::_young_space = NULL;
void PSPromotionManager::initialize() {
ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
_old_gen = heap->old_gen();
_young_space = heap->young_gen()->to_space();
const uint promotion_manager_num = ParallelGCThreads + 1;
// To prevent false sharing, we pad the PSPromotionManagers
// and make sure that the first instance starts at a cache line.
assert(_manager_array == NULL, "Attempt to initialize twice");
_manager_array = PaddedArray<PSPromotionManager, mtGC>::create_unfreeable(promotion_manager_num);
guarantee(_manager_array != NULL, "Could not initialize promotion manager");
_stack_array_depth = new OopStarTaskQueueSet(ParallelGCThreads);
guarantee(_stack_array_depth != NULL, "Could not initialize promotion manager");
// Create and register the PSPromotionManager(s) for the worker threads.
for(uint i=0; i<ParallelGCThreads; i++) {
stack_array_depth()->register_queue(i, _manager_array[i].claimed_stack_depth());
}
// The VMThread gets its own PSPromotionManager, which is not available
// for work stealing.
assert(_preserved_marks_set == NULL, "Attempt to initialize twice");
_preserved_marks_set = new PreservedMarksSet(true /* in_c_heap */);
guarantee(_preserved_marks_set != NULL, "Could not initialize preserved marks set");
_preserved_marks_set->init(promotion_manager_num);
for (uint i = 0; i < promotion_manager_num; i += 1) {
_manager_array[i].register_preserved_marks(_preserved_marks_set->get(i));
}
}
// Helper functions to get around the circular dependency between
// psScavenge.inline.hpp and psPromotionManager.inline.hpp.
bool PSPromotionManager::should_scavenge(oop* p, bool check_to_space) {
return PSScavenge::should_scavenge(p, check_to_space);
}
bool PSPromotionManager::should_scavenge(narrowOop* p, bool check_to_space) {
return PSScavenge::should_scavenge(p, check_to_space);
}
PSPromotionManager* PSPromotionManager::gc_thread_promotion_manager(uint index) {
assert(index < ParallelGCThreads, "index out of range");
assert(_manager_array != NULL, "Sanity");
return &_manager_array[index];
}
PSPromotionManager* PSPromotionManager::vm_thread_promotion_manager() {
assert(_manager_array != NULL, "Sanity");
return &_manager_array[ParallelGCThreads];
}
void PSPromotionManager::pre_scavenge() {
ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
_preserved_marks_set->assert_empty();
_young_space = heap->young_gen()->to_space();
for(uint i=0; i<ParallelGCThreads+1; i++) {
manager_array(i)->reset();
}
}
bool PSPromotionManager::post_scavenge(YoungGCTracer& gc_tracer) {
bool promotion_failure_occurred = false;
TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
for (uint i = 0; i < ParallelGCThreads + 1; i++) {
PSPromotionManager* manager = manager_array(i);
assert(manager->claimed_stack_depth()->is_empty(), "should be empty");
if (manager->_promotion_failed_info.has_failed()) {
gc_tracer.report_promotion_failed(manager->_promotion_failed_info);
promotion_failure_occurred = true;
}
manager->flush_labs();
}
if (!promotion_failure_occurred) {
// If there was no promotion failure, the preserved mark stacks
// should be empty.
_preserved_marks_set->assert_empty();
}
return promotion_failure_occurred;
}
#if TASKQUEUE_STATS
void
PSPromotionManager::print_local_stats(outputStream* const out, uint i) const {
#define FMT " " SIZE_FORMAT_W(10)
out->print_cr("%3u" FMT FMT FMT FMT, i, _masked_pushes, _masked_steals,
_arrays_chunked, _array_chunks_processed);
#undef FMT
}
static const char* const pm_stats_hdr[] = {
" --------masked------- arrays array",
"thr push steal chunked chunks",
"--- ---------- ---------- ---------- ----------"
};
void
PSPromotionManager::print_taskqueue_stats() {
if (!log_develop_is_enabled(Trace, gc, task, stats)) {
return;
}
Log(gc, task, stats) log;
ResourceMark rm;
outputStream* out = log.trace_stream();
out->print_cr("== GC Tasks Stats, GC %3d",
ParallelScavengeHeap::heap()->total_collections());
TaskQueueStats totals;
out->print("thr "); TaskQueueStats::print_header(1, out); out->cr();
out->print("--- "); TaskQueueStats::print_header(2, out); out->cr();
for (uint i = 0; i < ParallelGCThreads + 1; ++i) {
TaskQueueStats& next = manager_array(i)->_claimed_stack_depth.stats;
out->print("%3d ", i); next.print(out); out->cr();
totals += next;
}
out->print("tot "); totals.print(out); out->cr();
const uint hlines = sizeof(pm_stats_hdr) / sizeof(pm_stats_hdr[0]);
for (uint i = 0; i < hlines; ++i) out->print_cr("%s", pm_stats_hdr[i]);
for (uint i = 0; i < ParallelGCThreads + 1; ++i) {
manager_array(i)->print_local_stats(out, i);
}
}
void
PSPromotionManager::reset_stats() {
claimed_stack_depth()->stats.reset();
_masked_pushes = _masked_steals = 0;
_arrays_chunked = _array_chunks_processed = 0;
}
#endif // TASKQUEUE_STATS
PSPromotionManager::PSPromotionManager() {
ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
// We set the old lab's start array.
_old_lab.set_start_array(old_gen()->start_array());
uint queue_size;
claimed_stack_depth()->initialize();
queue_size = claimed_stack_depth()->max_elems();
_totally_drain = (ParallelGCThreads == 1) || (GCDrainStackTargetSize == 0);
if (_totally_drain) {
_target_stack_size = 0;
} else {
// don't let the target stack size to be more than 1/4 of the entries
_target_stack_size = (uint) MIN2((uint) GCDrainStackTargetSize,
(uint) (queue_size / 4));
}
_array_chunk_size = ParGCArrayScanChunk;
// let's choose 1.5x the chunk size
_min_array_size_for_chunking = 3 * _array_chunk_size / 2;
_preserved_marks = NULL;
reset();
}
void PSPromotionManager::reset() {
assert(stacks_empty(), "reset of non-empty stack");
// We need to get an assert in here to make sure the labs are always flushed.
ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
// Do not prefill the LAB's, save heap wastage!
HeapWord* lab_base = young_space()->top();
_young_lab.initialize(MemRegion(lab_base, (size_t)0));
_young_gen_is_full = false;
lab_base = old_gen()->object_space()->top();
_old_lab.initialize(MemRegion(lab_base, (size_t)0));
_old_gen_is_full = false;
_promotion_failed_info.reset();
TASKQUEUE_STATS_ONLY(reset_stats());
}
void PSPromotionManager::register_preserved_marks(PreservedMarks* preserved_marks) {
assert(_preserved_marks == NULL, "do not set it twice");
_preserved_marks = preserved_marks;
}
void PSPromotionManager::restore_preserved_marks() {
_preserved_marks_set->restore(PSScavenge::gc_task_manager());
}
void PSPromotionManager::drain_stacks_depth(bool totally_drain) {
totally_drain = totally_drain || _totally_drain;
#ifdef ASSERT
ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
MutableSpace* to_space = heap->young_gen()->to_space();
MutableSpace* old_space = heap->old_gen()->object_space();
#endif /* ASSERT */
OopStarTaskQueue* const tq = claimed_stack_depth();
do {
StarTask p;
// Drain overflow stack first, so other threads can steal from
// claimed stack while we work.
while (tq->pop_overflow(p)) {
process_popped_location_depth(p);
}
if (totally_drain) {
while (tq->pop_local(p)) {
process_popped_location_depth(p);
}
} else {
while (tq->size() > _target_stack_size && tq->pop_local(p)) {
process_popped_location_depth(p);
}
}
} while (totally_drain && !tq->taskqueue_empty() || !tq->overflow_empty());
assert(!totally_drain || tq->taskqueue_empty(), "Sanity");
assert(totally_drain || tq->size() <= _target_stack_size, "Sanity");
assert(tq->overflow_empty(), "Sanity");
}
void PSPromotionManager::flush_labs() {
assert(stacks_empty(), "Attempt to flush lab with live stack");
// If either promotion lab fills up, we can flush the
// lab but not refill it, so check first.
assert(!_young_lab.is_flushed() || _young_gen_is_full, "Sanity");
if (!_young_lab.is_flushed())
_young_lab.flush();
assert(!_old_lab.is_flushed() || _old_gen_is_full, "Sanity");
if (!_old_lab.is_flushed())
_old_lab.flush();
// Let PSScavenge know if we overflowed
if (_young_gen_is_full) {
PSScavenge::set_survivor_overflow(true);
}
}
template <class T> void PSPromotionManager::process_array_chunk_work(
oop obj,
int start, int end) {
assert(start <= end, "invariant");
T* const base = (T*)objArrayOop(obj)->base();
T* p = base + start;
T* const chunk_end = base + end;
while (p < chunk_end) {
if (PSScavenge::should_scavenge(p)) {
claim_or_forward_depth(p);
}
++p;
}
}
void PSPromotionManager::process_array_chunk(oop old) {
assert(PSChunkLargeArrays, "invariant");
assert(old->is_objArray(), "invariant");
assert(old->is_forwarded(), "invariant");
TASKQUEUE_STATS_ONLY(++_array_chunks_processed);
oop const obj = old->forwardee();
int start;
int const end = arrayOop(old)->length();
if (end > (int) _min_array_size_for_chunking) {
// we'll chunk more
start = end - _array_chunk_size;
assert(start > 0, "invariant");
arrayOop(old)->set_length(start);
push_depth(mask_chunked_array_oop(old));
TASKQUEUE_STATS_ONLY(++_masked_pushes);
} else {
// this is the final chunk for this array
start = 0;
int const actual_length = arrayOop(obj)->length();
arrayOop(old)->set_length(actual_length);
}
if (UseCompressedOops) {
process_array_chunk_work<narrowOop>(obj, start, end);
} else {
process_array_chunk_work<oop>(obj, start, end);
}
}
class PushContentsClosure : public ExtendedOopClosure {
PSPromotionManager* _pm;
public:
PushContentsClosure(PSPromotionManager* pm) : _pm(pm) {}
template <typename T> void do_oop_nv(T* p) {
if (PSScavenge::should_scavenge(p)) {
_pm->claim_or_forward_depth(p);
}
}
virtual void do_oop(oop* p) { do_oop_nv(p); }
virtual void do_oop(narrowOop* p) { do_oop_nv(p); }
// Don't use the oop verification code in the oop_oop_iterate framework.
debug_only(virtual bool should_verify_oops() { return false; })
};
void InstanceKlass::oop_ps_push_contents(oop obj, PSPromotionManager* pm) {
PushContentsClosure cl(pm);
oop_oop_iterate_oop_maps_reverse<true>(obj, &cl);
}
void InstanceMirrorKlass::oop_ps_push_contents(oop obj, PSPromotionManager* pm) {
// Note that we don't have to follow the mirror -> klass pointer, since all
// klasses that are dirty will be scavenged when we iterate over the
// ClassLoaderData objects.
InstanceKlass::oop_ps_push_contents(obj, pm);
PushContentsClosure cl(pm);
oop_oop_iterate_statics<true>(obj, &cl);
}
void InstanceClassLoaderKlass::oop_ps_push_contents(oop obj, PSPromotionManager* pm) {
InstanceKlass::oop_ps_push_contents(obj, pm);
// This is called by the young collector. It will already have taken care of
// all class loader data. So, we don't have to follow the class loader ->
// class loader data link.
}
template <class T>
static void oop_ps_push_contents_specialized(oop obj, InstanceRefKlass *klass, PSPromotionManager* pm) {
T* referent_addr = (T*)java_lang_ref_Reference::referent_addr(obj);
if (PSScavenge::should_scavenge(referent_addr)) {
ReferenceProcessor* rp = PSScavenge::reference_processor();
if (rp->discover_reference(obj, klass->reference_type())) {
// reference already enqueued, referent and next will be traversed later
klass->InstanceKlass::oop_ps_push_contents(obj, pm);
return;
} else {
// treat referent as normal oop
pm->claim_or_forward_depth(referent_addr);
}
}
// Treat discovered as normal oop, if ref is not "active",
// i.e. if next is non-NULL.
T* next_addr = (T*)java_lang_ref_Reference::next_addr(obj);
T next_oop = oopDesc::load_heap_oop(next_addr);
if (!oopDesc::is_null(next_oop)) { // i.e. ref is not "active"
T* discovered_addr = (T*)java_lang_ref_Reference::discovered_addr(obj);
log_develop_trace(gc, ref)(" Process discovered as normal " PTR_FORMAT, p2i(discovered_addr));
if (PSScavenge::should_scavenge(discovered_addr)) {
pm->claim_or_forward_depth(discovered_addr);
}
}
// Treat next as normal oop; next is a link in the reference queue.
if (PSScavenge::should_scavenge(next_addr)) {
pm->claim_or_forward_depth(next_addr);
}
klass->InstanceKlass::oop_ps_push_contents(obj, pm);
}
void InstanceRefKlass::oop_ps_push_contents(oop obj, PSPromotionManager* pm) {
if (UseCompressedOops) {
oop_ps_push_contents_specialized<narrowOop>(obj, this, pm);
} else {
oop_ps_push_contents_specialized<oop>(obj, this, pm);
}
}
void ObjArrayKlass::oop_ps_push_contents(oop obj, PSPromotionManager* pm) {
assert(obj->is_objArray(), "obj must be obj array");
PushContentsClosure cl(pm);
oop_oop_iterate_elements<true>(objArrayOop(obj), &cl);
}
void TypeArrayKlass::oop_ps_push_contents(oop obj, PSPromotionManager* pm) {
assert(obj->is_typeArray(),"must be a type array");
ShouldNotReachHere();
}
oop PSPromotionManager::oop_promotion_failed(oop obj, markOop obj_mark) {
assert(_old_gen_is_full || PromotionFailureALot, "Sanity");
// Attempt to CAS in the header.
// This tests if the header is still the same as when
// this started. If it is the same (i.e., no forwarding
// pointer has been installed), then this thread owns
// it.
if (obj->cas_forward_to(obj, obj_mark)) {
// We won any races, we "own" this object.
assert(obj == obj->forwardee(), "Sanity");
_promotion_failed_info.register_copy_failure(obj->size());
push_contents(obj);
_preserved_marks->push_if_necessary(obj, obj_mark);
} else {
// We lost, someone else "owns" this object
guarantee(obj->is_forwarded(), "Object must be forwarded if the cas failed.");
// No unallocation to worry about.
obj = obj->forwardee();
}
log_develop_trace(gc, scavenge)("{promotion-failure %s " PTR_FORMAT " (%d)}", obj->klass()->internal_name(), p2i(obj), obj->size());
return obj;
}