7069452: Cleanup NodeFlags
Summary: Remove flags which duplicate information in Node::NodeClasses.
Reviewed-by: never
/*
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/block.hpp"
#include "opto/cfgnode.hpp"
#include "opto/chaitin.hpp"
#include "opto/coalesce.hpp"
#include "opto/connode.hpp"
#include "opto/indexSet.hpp"
#include "opto/machnode.hpp"
#include "opto/matcher.hpp"
#include "opto/regmask.hpp"
//=============================================================================
//------------------------------reset_uf_map-----------------------------------
void PhaseChaitin::reset_uf_map( uint maxlrg ) {
_maxlrg = maxlrg;
// Force the Union-Find mapping to be at least this large
_uf_map.extend(_maxlrg,0);
// Initialize it to be the ID mapping.
for( uint i=0; i<_maxlrg; i++ )
_uf_map.map(i,i);
}
//------------------------------compress_uf_map--------------------------------
// Make all Nodes map directly to their final live range; no need for
// the Union-Find mapping after this call.
void PhaseChaitin::compress_uf_map_for_nodes( ) {
// For all Nodes, compress mapping
uint unique = _names.Size();
for( uint i=0; i<unique; i++ ) {
uint lrg = _names[i];
uint compressed_lrg = Find(lrg);
if( lrg != compressed_lrg )
_names.map(i,compressed_lrg);
}
}
//------------------------------Find-------------------------------------------
// Straight out of Tarjan's union-find algorithm
uint PhaseChaitin::Find_compress( uint lrg ) {
uint cur = lrg;
uint next = _uf_map[cur];
while( next != cur ) { // Scan chain of equivalences
assert( next < cur, "always union smaller" );
cur = next; // until find a fixed-point
next = _uf_map[cur];
}
// Core of union-find algorithm: update chain of
// equivalences to be equal to the root.
while( lrg != next ) {
uint tmp = _uf_map[lrg];
_uf_map.map(lrg, next);
lrg = tmp;
}
return lrg;
}
//------------------------------Find-------------------------------------------
// Straight out of Tarjan's union-find algorithm
uint PhaseChaitin::Find_compress( const Node *n ) {
uint lrg = Find_compress(_names[n->_idx]);
_names.map(n->_idx,lrg);
return lrg;
}
//------------------------------Find_const-------------------------------------
// Like Find above, but no path compress, so bad asymptotic behavior
uint PhaseChaitin::Find_const( uint lrg ) const {
if( !lrg ) return lrg; // Ignore the zero LRG
// Off the end? This happens during debugging dumps when you got
// brand new live ranges but have not told the allocator yet.
if( lrg >= _maxlrg ) return lrg;
uint next = _uf_map[lrg];
while( next != lrg ) { // Scan chain of equivalences
assert( next < lrg, "always union smaller" );
lrg = next; // until find a fixed-point
next = _uf_map[lrg];
}
return next;
}
//------------------------------Find-------------------------------------------
// Like Find above, but no path compress, so bad asymptotic behavior
uint PhaseChaitin::Find_const( const Node *n ) const {
if( n->_idx >= _names.Size() ) return 0; // not mapped, usual for debug dump
return Find_const( _names[n->_idx] );
}
//------------------------------Union------------------------------------------
// union 2 sets together.
void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
uint src = Find(src_n);
uint dst = Find(dst_n);
assert( src, "" );
assert( dst, "" );
assert( src < _maxlrg, "oob" );
assert( dst < _maxlrg, "oob" );
assert( src < dst, "always union smaller" );
_uf_map.map(dst,src);
}
//------------------------------new_lrg----------------------------------------
void PhaseChaitin::new_lrg( const Node *x, uint lrg ) {
// Make the Node->LRG mapping
_names.extend(x->_idx,lrg);
// Make the Union-Find mapping an identity function
_uf_map.extend(lrg,lrg);
}
//------------------------------clone_projs------------------------------------
// After cloning some rematerialized instruction, clone any MachProj's that
// follow it. Example: Intel zero is XOR, kills flags. Sparc FP constants
// use G3 as an address temp.
int PhaseChaitin::clone_projs( Block *b, uint idx, Node *con, Node *copy, uint &maxlrg ) {
Block *bcon = _cfg._bbs[con->_idx];
uint cindex = bcon->find_node(con);
Node *con_next = bcon->_nodes[cindex+1];
if( con_next->in(0) != con || !con_next->is_MachProj() )
return false; // No MachProj's follow
// Copy kills after the cloned constant
Node *kills = con_next->clone();
kills->set_req( 0, copy );
b->_nodes.insert( idx, kills );
_cfg._bbs.map( kills->_idx, b );
new_lrg( kills, maxlrg++ );
return true;
}
//------------------------------compact----------------------------------------
// Renumber the live ranges to compact them. Makes the IFG smaller.
void PhaseChaitin::compact() {
// Current the _uf_map contains a series of short chains which are headed
// by a self-cycle. All the chains run from big numbers to little numbers.
// The Find() call chases the chains & shortens them for the next Find call.
// We are going to change this structure slightly. Numbers above a moving
// wave 'i' are unchanged. Numbers below 'j' point directly to their
// compacted live range with no further chaining. There are no chains or
// cycles below 'i', so the Find call no longer works.
uint j=1;
uint i;
for( i=1; i < _maxlrg; i++ ) {
uint lr = _uf_map[i];
// Ignore unallocated live ranges
if( !lr ) continue;
assert( lr <= i, "" );
_uf_map.map(i, ( lr == i ) ? j++ : _uf_map[lr]);
}
if( false ) // PrintOptoCompactLiveRanges
printf("Compacted %d LRs from %d\n",i-j,i);
// Now change the Node->LR mapping to reflect the compacted names
uint unique = _names.Size();
for( i=0; i<unique; i++ )
_names.map(i,_uf_map[_names[i]]);
// Reset the Union-Find mapping
reset_uf_map(j);
}
//=============================================================================
//------------------------------Dump-------------------------------------------
#ifndef PRODUCT
void PhaseCoalesce::dump( Node *n ) const {
// Being a const function means I cannot use 'Find'
uint r = _phc.Find(n);
tty->print("L%d/N%d ",r,n->_idx);
}
//------------------------------dump-------------------------------------------
void PhaseCoalesce::dump() const {
// I know I have a block layout now, so I can print blocks in a loop
for( uint i=0; i<_phc._cfg._num_blocks; i++ ) {
uint j;
Block *b = _phc._cfg._blocks[i];
// Print a nice block header
tty->print("B%d: ",b->_pre_order);
for( j=1; j<b->num_preds(); j++ )
tty->print("B%d ", _phc._cfg._bbs[b->pred(j)->_idx]->_pre_order);
tty->print("-> ");
for( j=0; j<b->_num_succs; j++ )
tty->print("B%d ",b->_succs[j]->_pre_order);
tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth);
uint cnt = b->_nodes.size();
for( j=0; j<cnt; j++ ) {
Node *n = b->_nodes[j];
dump( n );
tty->print("\t%s\t",n->Name());
// Dump the inputs
uint k; // Exit value of loop
for( k=0; k<n->req(); k++ ) // For all required inputs
if( n->in(k) ) dump( n->in(k) );
else tty->print("_ ");
int any_prec = 0;
for( ; k<n->len(); k++ ) // For all precedence inputs
if( n->in(k) ) {
if( !any_prec++ ) tty->print(" |");
dump( n->in(k) );
}
// Dump node-specific info
n->dump_spec(tty);
tty->print("\n");
}
tty->print("\n");
}
}
#endif
//------------------------------combine_these_two------------------------------
// Combine the live ranges def'd by these 2 Nodes. N2 is an input to N1.
void PhaseCoalesce::combine_these_two( Node *n1, Node *n2 ) {
uint lr1 = _phc.Find(n1);
uint lr2 = _phc.Find(n2);
if( lr1 != lr2 && // Different live ranges already AND
!_phc._ifg->test_edge_sq( lr1, lr2 ) ) { // Do not interfere
LRG *lrg1 = &_phc.lrgs(lr1);
LRG *lrg2 = &_phc.lrgs(lr2);
// Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
// Now, why is int->oop OK? We end up declaring a raw-pointer as an oop
// and in general that's a bad thing. However, int->oop conversions only
// happen at GC points, so the lifetime of the misclassified raw-pointer
// is from the CheckCastPP (that converts it to an oop) backwards up
// through a merge point and into the slow-path call, and around the
// diamond up to the heap-top check and back down into the slow-path call.
// The misclassified raw pointer is NOT live across the slow-path call,
// and so does not appear in any GC info, so the fact that it is
// misclassified is OK.
if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND
// Compatible final mask
lrg1->mask().overlap( lrg2->mask() ) ) {
// Merge larger into smaller.
if( lr1 > lr2 ) {
uint tmp = lr1; lr1 = lr2; lr2 = tmp;
Node *n = n1; n1 = n2; n2 = n;
LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp;
}
// Union lr2 into lr1
_phc.Union( n1, n2 );
if (lrg1->_maxfreq < lrg2->_maxfreq)
lrg1->_maxfreq = lrg2->_maxfreq;
// Merge in the IFG
_phc._ifg->Union( lr1, lr2 );
// Combine register restrictions
lrg1->AND(lrg2->mask());
}
}
}
//------------------------------coalesce_driver--------------------------------
// Copy coalescing
void PhaseCoalesce::coalesce_driver( ) {
verify();
// Coalesce from high frequency to low
for( uint i=0; i<_phc._cfg._num_blocks; i++ )
coalesce( _phc._blks[i] );
}
//------------------------------insert_copy_with_overlap-----------------------
// I am inserting copies to come out of SSA form. In the general case, I am
// doing a parallel renaming. I'm in the Named world now, so I can't do a
// general parallel renaming. All the copies now use "names" (live-ranges)
// to carry values instead of the explicit use-def chains. Suppose I need to
// insert 2 copies into the same block. They copy L161->L128 and L128->L132.
// If I insert them in the wrong order then L128 will get clobbered before it
// can get used by the second copy. This cannot happen in the SSA model;
// direct use-def chains get me the right value. It DOES happen in the named
// model so I have to handle the reordering of copies.
//
// In general, I need to topo-sort the placed copies to avoid conflicts.
// Its possible to have a closed cycle of copies (e.g., recirculating the same
// values around a loop). In this case I need a temp to break the cycle.
void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) {
// Scan backwards for the locations of the last use of the dst_name.
// I am about to clobber the dst_name, so the copy must be inserted
// after the last use. Last use is really first-use on a backwards scan.
uint i = b->end_idx()-1;
while( 1 ) {
Node *n = b->_nodes[i];
// Check for end of virtual copies; this is also the end of the
// parallel renaming effort.
if( n->_idx < _unique ) break;
uint idx = n->is_Copy();
assert( idx || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
if( idx && _phc.Find(n->in(idx)) == dst_name ) break;
i--;
}
uint last_use_idx = i;
// Also search for any kill of src_name that exits the block.
// Since the copy uses src_name, I have to come before any kill.
uint kill_src_idx = b->end_idx();
// There can be only 1 kill that exits any block and that is
// the last kill. Thus it is the first kill on a backwards scan.
i = b->end_idx()-1;
while( 1 ) {
Node *n = b->_nodes[i];
// Check for end of virtual copies; this is also the end of the
// parallel renaming effort.
if( n->_idx < _unique ) break;
assert( n->is_Copy() || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
if( _phc.Find(n) == src_name ) {
kill_src_idx = i;
break;
}
i--;
}
// Need a temp? Last use of dst comes after the kill of src?
if( last_use_idx >= kill_src_idx ) {
// Need to break a cycle with a temp
uint idx = copy->is_Copy();
Node *tmp = copy->clone();
_phc.new_lrg(tmp,_phc._maxlrg++);
// Insert new temp between copy and source
tmp ->set_req(idx,copy->in(idx));
copy->set_req(idx,tmp);
// Save source in temp early, before source is killed
b->_nodes.insert(kill_src_idx,tmp);
_phc._cfg._bbs.map( tmp->_idx, b );
last_use_idx++;
}
// Insert just after last use
b->_nodes.insert(last_use_idx+1,copy);
}
//------------------------------insert_copies----------------------------------
void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
// We do LRGs compressing and fix a liveout data only here since the other
// place in Split() is guarded by the assert which we never hit.
_phc.compress_uf_map_for_nodes();
// Fix block's liveout data for compressed live ranges.
for(uint lrg = 1; lrg < _phc._maxlrg; lrg++ ) {
uint compressed_lrg = _phc.Find(lrg);
if( lrg != compressed_lrg ) {
for( uint bidx = 0; bidx < _phc._cfg._num_blocks; bidx++ ) {
IndexSet *liveout = _phc._live->live(_phc._cfg._blocks[bidx]);
if( liveout->member(lrg) ) {
liveout->remove(lrg);
liveout->insert(compressed_lrg);
}
}
}
}
// All new nodes added are actual copies to replace virtual copies.
// Nodes with index less than '_unique' are original, non-virtual Nodes.
_unique = C->unique();
for( uint i=0; i<_phc._cfg._num_blocks; i++ ) {
Block *b = _phc._cfg._blocks[i];
uint cnt = b->num_preds(); // Number of inputs to the Phi
for( uint l = 1; l<b->_nodes.size(); l++ ) {
Node *n = b->_nodes[l];
// Do not use removed-copies, use copied value instead
uint ncnt = n->req();
for( uint k = 1; k<ncnt; k++ ) {
Node *copy = n->in(k);
uint cidx = copy->is_Copy();
if( cidx ) {
Node *def = copy->in(cidx);
if( _phc.Find(copy) == _phc.Find(def) )
n->set_req(k,def);
}
}
// Remove any explicit copies that get coalesced.
uint cidx = n->is_Copy();
if( cidx ) {
Node *def = n->in(cidx);
if( _phc.Find(n) == _phc.Find(def) ) {
n->replace_by(def);
n->set_req(cidx,NULL);
b->_nodes.remove(l);
l--;
continue;
}
}
if( n->is_Phi() ) {
// Get the chosen name for the Phi
uint phi_name = _phc.Find( n );
// Ignore the pre-allocated specials
if( !phi_name ) continue;
// Check for mismatch inputs to Phi
for( uint j = 1; j<cnt; j++ ) {
Node *m = n->in(j);
uint src_name = _phc.Find(m);
if( src_name != phi_name ) {
Block *pred = _phc._cfg._bbs[b->pred(j)->_idx];
Node *copy;
assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
// Rematerialize constants instead of copying them
if( m->is_Mach() && m->as_Mach()->is_Con() &&
m->as_Mach()->rematerialize() ) {
copy = m->clone();
// Insert the copy in the predecessor basic block
pred->add_inst(copy);
// Copy any flags as well
_phc.clone_projs( pred, pred->end_idx(), m, copy, _phc._maxlrg );
} else {
const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
copy = new (C) MachSpillCopyNode(m,*rm,*rm);
// Find a good place to insert. Kinda tricky, use a subroutine
insert_copy_with_overlap(pred,copy,phi_name,src_name);
}
// Insert the copy in the use-def chain
n->set_req( j, copy );
_phc._cfg._bbs.map( copy->_idx, pred );
// Extend ("register allocate") the names array for the copy.
_phc._names.extend( copy->_idx, phi_name );
} // End of if Phi names do not match
} // End of for all inputs to Phi
} else { // End of if Phi
// Now check for 2-address instructions
uint idx;
if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) {
// Get the chosen name for the Node
uint name = _phc.Find( n );
assert( name, "no 2-address specials" );
// Check for name mis-match on the 2-address input
Node *m = n->in(idx);
if( _phc.Find(m) != name ) {
Node *copy;
assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
// At this point it is unsafe to extend live ranges (6550579).
// Rematerialize only constants as we do for Phi above.
if( m->is_Mach() && m->as_Mach()->is_Con() &&
m->as_Mach()->rematerialize() ) {
copy = m->clone();
// Insert the copy in the basic block, just before us
b->_nodes.insert( l++, copy );
if( _phc.clone_projs( b, l, m, copy, _phc._maxlrg ) )
l++;
} else {
const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
copy = new (C) MachSpillCopyNode( m, *rm, *rm );
// Insert the copy in the basic block, just before us
b->_nodes.insert( l++, copy );
}
// Insert the copy in the use-def chain
n->set_req(idx, copy );
// Extend ("register allocate") the names array for the copy.
_phc._names.extend( copy->_idx, name );
_phc._cfg._bbs.map( copy->_idx, b );
}
} // End of is two-adr
// Insert a copy at a debug use for a lrg which has high frequency
if( b->_freq < OPTO_DEBUG_SPLIT_FREQ || b->is_uncommon(_phc._cfg._bbs) ) {
// Walk the debug inputs to the node and check for lrg freq
JVMState* jvms = n->jvms();
uint debug_start = jvms ? jvms->debug_start() : 999999;
uint debug_end = jvms ? jvms->debug_end() : 999999;
for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) {
// Do not split monitors; they are only needed for debug table
// entries and need no code.
if( jvms->is_monitor_use(inpidx) ) continue;
Node *inp = n->in(inpidx);
uint nidx = _phc.n2lidx(inp);
LRG &lrg = lrgs(nidx);
// If this lrg has a high frequency use/def
if( lrg._maxfreq >= _phc.high_frequency_lrg() ) {
// If the live range is also live out of this block (like it
// would be for a fast/slow idiom), the normal spill mechanism
// does an excellent job. If it is not live out of this block
// (like it would be for debug info to uncommon trap) splitting
// the live range now allows a better allocation in the high
// frequency blocks.
// Build_IFG_virtual has converted the live sets to
// live-IN info, not live-OUT info.
uint k;
for( k=0; k < b->_num_succs; k++ )
if( _phc._live->live(b->_succs[k])->member( nidx ) )
break; // Live in to some successor block?
if( k < b->_num_succs )
continue; // Live out; do not pre-split
// Split the lrg at this use
const RegMask *rm = C->matcher()->idealreg2spillmask[inp->ideal_reg()];
Node *copy = new (C) MachSpillCopyNode( inp, *rm, *rm );
// Insert the copy in the use-def chain
n->set_req(inpidx, copy );
// Insert the copy in the basic block, just before us
b->_nodes.insert( l++, copy );
// Extend ("register allocate") the names array for the copy.
_phc.new_lrg( copy, _phc._maxlrg++ );
_phc._cfg._bbs.map( copy->_idx, b );
//tty->print_cr("Split a debug use in Aggressive Coalesce");
} // End of if high frequency use/def
} // End of for all debug inputs
} // End of if low frequency safepoint
} // End of if Phi
} // End of for all instructions
} // End of for all blocks
}
//=============================================================================
//------------------------------coalesce---------------------------------------
// Aggressive (but pessimistic) copy coalescing of a single block
// The following coalesce pass represents a single round of aggressive
// pessimistic coalesce. "Aggressive" means no attempt to preserve
// colorability when coalescing. This occasionally means more spills, but
// it also means fewer rounds of coalescing for better code - and that means
// faster compiles.
// "Pessimistic" means we do not hit the fixed point in one pass (and we are
// reaching for the least fixed point to boot). This is typically solved
// with a few more rounds of coalescing, but the compiler must run fast. We
// could optimistically coalescing everything touching PhiNodes together
// into one big live range, then check for self-interference. Everywhere
// the live range interferes with self it would have to be split. Finding
// the right split points can be done with some heuristics (based on
// expected frequency of edges in the live range). In short, it's a real
// research problem and the timeline is too short to allow such research.
// Further thoughts: (1) build the LR in a pass, (2) find self-interference
// in another pass, (3) per each self-conflict, split, (4) split by finding
// the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted
// according to the GCM algorithm (or just exec freq on CFG edges).
void PhaseAggressiveCoalesce::coalesce( Block *b ) {
// Copies are still "virtual" - meaning we have not made them explicitly
// copies. Instead, Phi functions of successor blocks have mis-matched
// live-ranges. If I fail to coalesce, I'll have to insert a copy to line
// up the live-ranges. Check for Phis in successor blocks.
uint i;
for( i=0; i<b->_num_succs; i++ ) {
Block *bs = b->_succs[i];
// Find index of 'b' in 'bs' predecessors
uint j=1;
while( _phc._cfg._bbs[bs->pred(j)->_idx] != b ) j++;
// Visit all the Phis in successor block
for( uint k = 1; k<bs->_nodes.size(); k++ ) {
Node *n = bs->_nodes[k];
if( !n->is_Phi() ) break;
combine_these_two( n, n->in(j) );
}
} // End of for all successor blocks
// Check _this_ block for 2-address instructions and copies.
uint cnt = b->end_idx();
for( i = 1; i<cnt; i++ ) {
Node *n = b->_nodes[i];
uint idx;
// 2-address instructions have a virtual Copy matching their input
// to their output
if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
MachNode *mach = n->as_Mach();
combine_these_two( mach, mach->in(idx) );
}
} // End of for all instructions in block
}
//=============================================================================
//------------------------------PhaseConservativeCoalesce----------------------
PhaseConservativeCoalesce::PhaseConservativeCoalesce( PhaseChaitin &chaitin ) : PhaseCoalesce(chaitin) {
_ulr.initialize(_phc._maxlrg);
}
//------------------------------verify-----------------------------------------
void PhaseConservativeCoalesce::verify() {
#ifdef ASSERT
_phc.set_was_low();
#endif
}
//------------------------------union_helper-----------------------------------
void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
// Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the
// union-find tree
_phc.Union( lr1_node, lr2_node );
// Single-def live range ONLY if both live ranges are single-def.
// If both are single def, then src_def powers one live range
// and def_copy powers the other. After merging, src_def powers
// the combined live range.
lrgs(lr1)._def = (lrgs(lr1).is_multidef() ||
lrgs(lr2).is_multidef() )
? NodeSentinel : src_def;
lrgs(lr2)._def = NULL; // No def for lrg 2
lrgs(lr2).Clear(); // Force empty mask for LRG 2
//lrgs(lr2)._size = 0; // Live-range 2 goes dead
lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop;
lrgs(lr2)._is_oop = 0; // In particular, not an oop for GC info
if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq)
lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq;
// Copy original value instead. Intermediate copies go dead, and
// the dst_copy becomes useless.
int didx = dst_copy->is_Copy();
dst_copy->set_req( didx, src_def );
// Add copy to free list
// _phc.free_spillcopy(b->_nodes[bindex]);
assert( b->_nodes[bindex] == dst_copy, "" );
dst_copy->replace_by( dst_copy->in(didx) );
dst_copy->set_req( didx, NULL);
b->_nodes.remove(bindex);
if( bindex < b->_ihrp_index ) b->_ihrp_index--;
if( bindex < b->_fhrp_index ) b->_fhrp_index--;
// Stretched lr1; add it to liveness of intermediate blocks
Block *b2 = _phc._cfg._bbs[src_copy->_idx];
while( b != b2 ) {
b = _phc._cfg._bbs[b->pred(1)->_idx];
_phc._live->live(b)->insert(lr1);
}
}
//------------------------------compute_separating_interferences---------------
// Factored code from copy_copy that computes extra interferences from
// lengthening a live range by double-coalescing.
uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) {
assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj");
assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj");
Node *prev_copy = dst_copy->in(dst_copy->is_Copy());
Block *b2 = b;
uint bindex2 = bindex;
while( 1 ) {
// Find previous instruction
bindex2--; // Chain backwards 1 instruction
while( bindex2 == 0 ) { // At block start, find prior block
assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" );
b2 = _phc._cfg._bbs[b2->pred(1)->_idx];
bindex2 = b2->end_idx()-1;
}
// Get prior instruction
assert(bindex2 < b2->_nodes.size(), "index out of bounds");
Node *x = b2->_nodes[bindex2];
if( x == prev_copy ) { // Previous copy in copy chain?
if( prev_copy == src_copy)// Found end of chain and all interferences
break; // So break out of loop
// Else work back one in copy chain
prev_copy = prev_copy->in(prev_copy->is_Copy());
} else { // Else collect interferences
uint lidx = _phc.Find(x);
// Found another def of live-range being stretched?
if( lidx == lr1 ) return max_juint;
if( lidx == lr2 ) return max_juint;
// If we attempt to coalesce across a bound def
if( lrgs(lidx).is_bound() ) {
// Do not let the coalesced LRG expect to get the bound color
rm.SUBTRACT( lrgs(lidx).mask() );
// Recompute rm_size
rm_size = rm.Size();
//if( rm._flags ) rm_size += 1000000;
if( reg_degree >= rm_size ) return max_juint;
}
if( rm.overlap(lrgs(lidx).mask()) ) {
// Insert lidx into union LRG; returns TRUE if actually inserted
if( _ulr.insert(lidx) ) {
// Infinite-stack neighbors do not alter colorability, as they
// can always color to some other color.
if( !lrgs(lidx).mask().is_AllStack() ) {
// If this coalesce will make any new neighbor uncolorable,
// do not coalesce.
if( lrgs(lidx).just_lo_degree() )
return max_juint;
// Bump our degree
if( ++reg_degree >= rm_size )
return max_juint;
} // End of if not infinite-stack neighbor
} // End of if actually inserted
} // End of if live range overlaps
} // End of else collect interferences for 1 node
} // End of while forever, scan back for interferences
return reg_degree;
}
//------------------------------update_ifg-------------------------------------
void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) {
// Some original neighbors of lr1 might have gone away
// because the constrained register mask prevented them.
// Remove lr1 from such neighbors.
IndexSetIterator one(n_lr1);
uint neighbor;
LRG &lrg1 = lrgs(lr1);
while ((neighbor = one.next()) != 0)
if( !_ulr.member(neighbor) )
if( _phc._ifg->neighbors(neighbor)->remove(lr1) )
lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) );
// lr2 is now called (coalesced into) lr1.
// Remove lr2 from the IFG.
IndexSetIterator two(n_lr2);
LRG &lrg2 = lrgs(lr2);
while ((neighbor = two.next()) != 0)
if( _phc._ifg->neighbors(neighbor)->remove(lr2) )
lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) );
// Some neighbors of intermediate copies now interfere with the
// combined live range.
IndexSetIterator three(&_ulr);
while ((neighbor = three.next()) != 0)
if( _phc._ifg->neighbors(neighbor)->insert(lr1) )
lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) );
}
//------------------------------record_bias------------------------------------
static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) {
// Tag copy bias here
if( !ifg->lrgs(lr1)._copy_bias )
ifg->lrgs(lr1)._copy_bias = lr2;
if( !ifg->lrgs(lr2)._copy_bias )
ifg->lrgs(lr2)._copy_bias = lr1;
}
//------------------------------copy_copy--------------------------------------
// See if I can coalesce a series of multiple copies together. I need the
// final dest copy and the original src copy. They can be the same Node.
// Compute the compatible register masks.
bool PhaseConservativeCoalesce::copy_copy( Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
if( !dst_copy->is_SpillCopy() ) return false;
if( !src_copy->is_SpillCopy() ) return false;
Node *src_def = src_copy->in(src_copy->is_Copy());
uint lr1 = _phc.Find(dst_copy);
uint lr2 = _phc.Find(src_def );
// Same live ranges already?
if( lr1 == lr2 ) return false;
// Interfere?
if( _phc._ifg->test_edge_sq( lr1, lr2 ) ) return false;
// Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
if( !lrgs(lr1)._is_oop && lrgs(lr2)._is_oop ) // not an oop->int cast
return false;
// Coalescing between an aligned live range and a mis-aligned live range?
// No, no! Alignment changes how we count degree.
if( lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj )
return false;
// Sort; use smaller live-range number
Node *lr1_node = dst_copy;
Node *lr2_node = src_def;
if( lr1 > lr2 ) {
uint tmp = lr1; lr1 = lr2; lr2 = tmp;
lr1_node = src_def; lr2_node = dst_copy;
}
// Check for compatibility of the 2 live ranges by
// intersecting their allowed register sets.
RegMask rm = lrgs(lr1).mask();
rm.AND(lrgs(lr2).mask());
// Number of bits free
uint rm_size = rm.Size();
if (UseFPUForSpilling && rm.is_AllStack() ) {
// Don't coalesce when frequency difference is large
Block *dst_b = _phc._cfg._bbs[dst_copy->_idx];
Block *src_def_b = _phc._cfg._bbs[src_def->_idx];
if (src_def_b->_freq > 10*dst_b->_freq )
return false;
}
// If we can use any stack slot, then effective size is infinite
if( rm.is_AllStack() ) rm_size += 1000000;
// Incompatible masks, no way to coalesce
if( rm_size == 0 ) return false;
// Another early bail-out test is when we are double-coalescing and the
// 2 copies are separated by some control flow.
if( dst_copy != src_copy ) {
Block *src_b = _phc._cfg._bbs[src_copy->_idx];
Block *b2 = b;
while( b2 != src_b ) {
if( b2->num_preds() > 2 ){// Found merge-point
_phc._lost_opp_cflow_coalesce++;
// extra record_bias commented out because Chris believes it is not
// productive. Since we can record only 1 bias, we want to choose one
// that stands a chance of working and this one probably does not.
//record_bias( _phc._lrgs, lr1, lr2 );
return false; // To hard to find all interferences
}
b2 = _phc._cfg._bbs[b2->pred(1)->_idx];
}
}
// Union the two interference sets together into '_ulr'
uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm );
if( reg_degree >= rm_size ) {
record_bias( _phc._ifg, lr1, lr2 );
return false;
}
// Now I need to compute all the interferences between dst_copy and
// src_copy. I'm not willing visit the entire interference graph, so
// I limit my search to things in dst_copy's block or in a straight
// line of previous blocks. I give up at merge points or when I get
// more interferences than my degree. I can stop when I find src_copy.
if( dst_copy != src_copy ) {
reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 );
if( reg_degree == max_juint ) {
record_bias( _phc._ifg, lr1, lr2 );
return false;
}
} // End of if dst_copy & src_copy are different
// ---- THE COMBINED LRG IS COLORABLE ----
// YEAH - Now coalesce this copy away
assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(), "" );
IndexSet *n_lr1 = _phc._ifg->neighbors(lr1);
IndexSet *n_lr2 = _phc._ifg->neighbors(lr2);
// Update the interference graph
update_ifg(lr1, lr2, n_lr1, n_lr2);
_ulr.remove(lr1);
// Uncomment the following code to trace Coalescing in great detail.
//
//if (false) {
// tty->cr();
// tty->print_cr("#######################################");
// tty->print_cr("union %d and %d", lr1, lr2);
// n_lr1->dump();
// n_lr2->dump();
// tty->print_cr("resulting set is");
// _ulr.dump();
//}
// Replace n_lr1 with the new combined live range. _ulr will use
// n_lr1's old memory on the next iteration. n_lr2 is cleared to
// send its internal memory to the free list.
_ulr.swap(n_lr1);
_ulr.clear();
n_lr2->clear();
lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) );
lrgs(lr2).set_degree( 0 );
// Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the
// union-find tree
union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex );
// Combine register restrictions
lrgs(lr1).set_mask(rm);
lrgs(lr1).compute_set_mask_size();
lrgs(lr1)._cost += lrgs(lr2)._cost;
lrgs(lr1)._area += lrgs(lr2)._area;
// While its uncommon to successfully coalesce live ranges that started out
// being not-lo-degree, it can happen. In any case the combined coalesced
// live range better Simplify nicely.
lrgs(lr1)._was_lo = 1;
// kinda expensive to do all the time
//tty->print_cr("warning: slow verify happening");
//_phc._ifg->verify( &_phc );
return true;
}
//------------------------------coalesce---------------------------------------
// Conservative (but pessimistic) copy coalescing of a single block
void PhaseConservativeCoalesce::coalesce( Block *b ) {
// Bail out on infrequent blocks
if( b->is_uncommon(_phc._cfg._bbs) )
return;
// Check this block for copies.
for( uint i = 1; i<b->end_idx(); i++ ) {
// Check for actual copies on inputs. Coalesce a copy into its
// input if use and copy's input are compatible.
Node *copy1 = b->_nodes[i];
uint idx1 = copy1->is_Copy();
if( !idx1 ) continue; // Not a copy
if( copy_copy(copy1,copy1,b,i) ) {
i--; // Retry, same location in block
PhaseChaitin::_conserv_coalesce++; // Collect stats on success
continue;
}
/* do not attempt pairs. About 1/2 of all pairs can be removed by
post-alloc. The other set are too few to bother.
Node *copy2 = copy1->in(idx1);
uint idx2 = copy2->is_Copy();
if( !idx2 ) continue;
if( copy_copy(copy1,copy2,b,i) ) {
i--; // Retry, same location in block
PhaseChaitin::_conserv_coalesce_pair++; // Collect stats on success
continue;
}
*/
}
}