8221361: Eliminate two-phase initialization for PtrQueueSet classes
Summary: Move allocator and CBL monitor init to constructor.
Reviewed-by: tschatzl, shade
/*
* Copyright (c) 2018, Red Hat, Inc. All rights reserved.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp"
#include "gc/shenandoah/shenandoahCollectionSet.hpp"
#include "gc/shenandoah/shenandoahFreeSet.hpp"
#include "gc/shenandoah/shenandoahHeapRegion.hpp"
#include "logging/log.hpp"
#include "logging/logTag.hpp"
#include "utilities/quickSort.hpp"
ShenandoahAdaptiveHeuristics::ShenandoahAdaptiveHeuristics() :
ShenandoahHeuristics(),
_cycle_gap_history(new TruncatedSeq(5)),
_conc_mark_duration_history(new TruncatedSeq(5)),
_conc_uprefs_duration_history(new TruncatedSeq(5)) {}
ShenandoahAdaptiveHeuristics::~ShenandoahAdaptiveHeuristics() {}
void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
RegionData* data, size_t size,
size_t actual_free) {
size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() * ShenandoahGarbageThreshold / 100;
// The logic for cset selection in adaptive is as follows:
//
// 1. We cannot get cset larger than available free space. Otherwise we guarantee OOME
// during evacuation, and thus guarantee full GC. In practice, we also want to let
// application to allocate something. This is why we limit CSet to some fraction of
// available space. In non-overloaded heap, max_cset would contain all plausible candidates
// over garbage threshold.
//
// 2. We should not get cset too low so that free threshold would not be met right
// after the cycle. Otherwise we get back-to-back cycles for no reason if heap is
// too fragmented. In non-overloaded non-fragmented heap min_garbage would be around zero.
//
// Therefore, we start by sorting the regions by garbage. Then we unconditionally add the best candidates
// before we meet min_garbage. Then we add all candidates that fit with a garbage threshold before
// we hit max_cset. When max_cset is hit, we terminate the cset selection. Note that in this scheme,
// ShenandoahGarbageThreshold is the soft threshold which would be ignored until min_garbage is hit.
size_t capacity = ShenandoahHeap::heap()->max_capacity();
size_t free_target = capacity / 100 * ShenandoahMinFreeThreshold;
size_t min_garbage = free_target > actual_free ? (free_target - actual_free) : 0;
size_t max_cset = (size_t)((1.0 * capacity / 100 * ShenandoahEvacReserve) / ShenandoahEvacWaste);
log_info(gc, ergo)("Adaptive CSet Selection. Target Free: " SIZE_FORMAT "M, Actual Free: "
SIZE_FORMAT "M, Max CSet: " SIZE_FORMAT "M, Min Garbage: " SIZE_FORMAT "M",
free_target / M, actual_free / M, max_cset / M, min_garbage / M);
// Better select garbage-first regions
QuickSort::sort<RegionData>(data, (int)size, compare_by_garbage, false);
size_t cur_cset = 0;
size_t cur_garbage = 0;
_bytes_in_cset = 0;
for (size_t idx = 0; idx < size; idx++) {
ShenandoahHeapRegion* r = data[idx]._region;
size_t new_cset = cur_cset + r->get_live_data_bytes();
size_t new_garbage = cur_garbage + r->garbage();
if (new_cset > max_cset) {
break;
}
if ((new_garbage < min_garbage) || (r->garbage() > garbage_threshold)) {
cset->add_region(r);
_bytes_in_cset += r->used();
cur_cset = new_cset;
cur_garbage = new_garbage;
}
}
}
void ShenandoahAdaptiveHeuristics::record_cycle_start() {
ShenandoahHeuristics::record_cycle_start();
double last_cycle_gap = (_cycle_start - _last_cycle_end);
_cycle_gap_history->add(last_cycle_gap);
}
void ShenandoahAdaptiveHeuristics::record_phase_time(ShenandoahPhaseTimings::Phase phase, double secs) {
if (phase == ShenandoahPhaseTimings::conc_mark) {
_conc_mark_duration_history->add(secs);
} else if (phase == ShenandoahPhaseTimings::conc_update_refs) {
_conc_uprefs_duration_history->add(secs);
} // Else ignore
}
bool ShenandoahAdaptiveHeuristics::should_start_gc() const {
ShenandoahHeap* heap = ShenandoahHeap::heap();
size_t capacity = heap->max_capacity();
size_t available = heap->free_set()->available();
// Check if we are falling below the worst limit, time to trigger the GC, regardless of
// anything else.
size_t min_threshold = capacity / 100 * ShenandoahMinFreeThreshold;
if (available < min_threshold) {
log_info(gc)("Trigger: Free (" SIZE_FORMAT "M) is below minimum threshold (" SIZE_FORMAT "M)",
available / M, min_threshold / M);
return true;
}
// Check if are need to learn a bit about the application
const size_t max_learn = ShenandoahLearningSteps;
if (_gc_times_learned < max_learn) {
size_t init_threshold = capacity / 100 * ShenandoahInitFreeThreshold;
if (available < init_threshold) {
log_info(gc)("Trigger: Learning " SIZE_FORMAT " of " SIZE_FORMAT ". Free (" SIZE_FORMAT "M) is below initial threshold (" SIZE_FORMAT "M)",
_gc_times_learned + 1, max_learn, available / M, init_threshold / M);
return true;
}
}
// Check if allocation headroom is still okay. This also factors in:
// 1. Some space to absorb allocation spikes
// 2. Accumulated penalties from Degenerated and Full GC
size_t allocation_headroom = available;
size_t spike_headroom = capacity / 100 * ShenandoahAllocSpikeFactor;
size_t penalties = capacity / 100 * _gc_time_penalties;
allocation_headroom -= MIN2(allocation_headroom, spike_headroom);
allocation_headroom -= MIN2(allocation_headroom, penalties);
// TODO: Allocation rate is way too averaged to be useful during state changes
double average_gc = _gc_time_history->avg();
double time_since_last = time_since_last_gc();
double allocation_rate = heap->bytes_allocated_since_gc_start() / time_since_last;
if (average_gc > allocation_headroom / allocation_rate) {
log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for allocation rate (%.2f MB/s) to deplete free headroom (" SIZE_FORMAT "M)",
average_gc * 1000, allocation_rate / M, allocation_headroom / M);
log_info(gc, ergo)("Free headroom: " SIZE_FORMAT "M (free) - " SIZE_FORMAT "M (spike) - " SIZE_FORMAT "M (penalties) = " SIZE_FORMAT "M",
available / M, spike_headroom / M, penalties / M, allocation_headroom / M);
return true;
}
return ShenandoahHeuristics::should_start_gc();
}
bool ShenandoahAdaptiveHeuristics::should_start_update_refs() {
if (! _update_refs_adaptive) {
return _update_refs_early;
}
double cycle_gap_avg = _cycle_gap_history->avg();
double conc_mark_avg = _conc_mark_duration_history->avg();
double conc_uprefs_avg = _conc_uprefs_duration_history->avg();
if (_update_refs_early) {
double threshold = ShenandoahMergeUpdateRefsMinGap / 100.0;
if (conc_mark_avg + conc_uprefs_avg > cycle_gap_avg * threshold) {
_update_refs_early = false;
}
} else {
double threshold = ShenandoahMergeUpdateRefsMaxGap / 100.0;
if (conc_mark_avg + conc_uprefs_avg < cycle_gap_avg * threshold) {
_update_refs_early = true;
}
}
return _update_refs_early;
}
const char* ShenandoahAdaptiveHeuristics::name() {
return "adaptive";
}
bool ShenandoahAdaptiveHeuristics::is_diagnostic() {
return false;
}
bool ShenandoahAdaptiveHeuristics::is_experimental() {
return false;
}