8069330: Adjustment of concurrent refinement thresholds does not take hot card cache into account
Summary: Measure HCC processing time separately and remove that time from the calculation of the refinement thresholds. HCC processing time is still taken into account for general pause time predictions.
Reviewed-by: tbenson, jmasa
/*
* Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef OS_CPU_WINDOWS_X86_VM_ORDERACCESS_WINDOWS_X86_INLINE_HPP
#define OS_CPU_WINDOWS_X86_VM_ORDERACCESS_WINDOWS_X86_INLINE_HPP
#include <intrin.h>
#include "runtime/atomic.inline.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/os.hpp"
// Compiler version last used for testing: Microsoft Visual Studio 2010
// Please update this information when this file changes
// Implementation of class OrderAccess.
// A compiler barrier, forcing the C++ compiler to invalidate all memory assumptions
inline void compiler_barrier() {
_ReadWriteBarrier();
}
// Note that in MSVC, volatile memory accesses are explicitly
// guaranteed to have acquire release semantics (w.r.t. compiler
// reordering) and therefore does not even need a compiler barrier
// for normal acquire release accesses. And all generalized
// bound calls like release_store go through OrderAccess::load
// and OrderAccess::store which do volatile memory accesses.
template<> inline void ScopedFence<X_ACQUIRE>::postfix() { }
template<> inline void ScopedFence<RELEASE_X>::prefix() { }
template<> inline void ScopedFence<RELEASE_X_FENCE>::prefix() { }
template<> inline void ScopedFence<RELEASE_X_FENCE>::postfix() { OrderAccess::fence(); }
inline void OrderAccess::loadload() { compiler_barrier(); }
inline void OrderAccess::storestore() { compiler_barrier(); }
inline void OrderAccess::loadstore() { compiler_barrier(); }
inline void OrderAccess::storeload() { fence(); }
inline void OrderAccess::acquire() { compiler_barrier(); }
inline void OrderAccess::release() { compiler_barrier(); }
inline void OrderAccess::fence() {
#ifdef AMD64
StubRoutines_fence();
#else
if (os::is_MP()) {
__asm {
lock add dword ptr [esp], 0;
}
}
#endif // AMD64
compiler_barrier();
}
#ifndef AMD64
template<>
inline void OrderAccess::specialized_release_store_fence<jbyte> (volatile jbyte* p, jbyte v) {
__asm {
mov edx, p;
mov al, v;
xchg al, byte ptr [edx];
}
}
template<>
inline void OrderAccess::specialized_release_store_fence<jshort>(volatile jshort* p, jshort v) {
__asm {
mov edx, p;
mov ax, v;
xchg ax, word ptr [edx];
}
}
template<>
inline void OrderAccess::specialized_release_store_fence<jint> (volatile jint* p, jint v) {
__asm {
mov edx, p;
mov eax, v;
xchg eax, dword ptr [edx];
}
}
#endif // AMD64
template<>
inline void OrderAccess::specialized_release_store_fence<jfloat>(volatile jfloat* p, jfloat v) {
release_store_fence((volatile jint*)p, jint_cast(v));
}
template<>
inline void OrderAccess::specialized_release_store_fence<jdouble>(volatile jdouble* p, jdouble v) {
release_store_fence((volatile jlong*)p, jlong_cast(v));
}
#define VM_HAS_GENERALIZED_ORDER_ACCESS 1
#endif // OS_CPU_WINDOWS_X86_VM_ORDERACCESS_WINDOWS_X86_INLINE_HPP