8036976: PPC64: implement the template interpreter
Reviewed-by: kvn, coleenp
Contributed-by: axel.siebenborn@sap.com, martin.doerr@sap.com
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* Copyright 2013, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#ifndef CC_INTERP
#include "asm/macroAssembler.inline.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterGenerator.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/templateTable.hpp"
#include "oops/arrayOop.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/timer.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/debug.hpp"
#include "utilities/macros.hpp"
#undef __
#define __ _masm->
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
//-----------------------------------------------------------------------------
// Actually we should never reach here since we do stack overflow checks before pushing any frame.
address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
address entry = __ pc();
__ unimplemented("generate_StackOverflowError_handler");
return entry;
}
address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
address entry = __ pc();
__ empty_expression_stack();
__ load_const_optimized(R4_ARG2, (address) name);
// Index is in R17_tos.
__ mr(R5_ARG3, R17_tos);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException));
return entry;
}
#if 0
// Call special ClassCastException constructor taking object to cast
// and target class as arguments.
address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler(const char* name) {
address entry = __ pc();
// Target class oop is in register R6_ARG4 by convention!
// Expression stack must be empty before entering the VM if an
// exception happened.
__ empty_expression_stack();
// Setup parameters.
// Thread will be loaded to R3_ARG1.
__ load_const_optimized(R4_ARG2, (address) name);
__ mr(R5_ARG3, R17_tos);
// R6_ARG4 contains specified class.
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose));
#ifdef ASSERT
// Above call must not return here since exception pending.
__ should_not_reach_here();
#endif
return entry;
}
#endif
address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
address entry = __ pc();
// Expression stack must be empty before entering the VM if an
// exception happened.
__ empty_expression_stack();
// Load exception object.
// Thread will be loaded to R3_ARG1.
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
#ifdef ASSERT
// Above call must not return here since exception pending.
__ should_not_reach_here();
#endif
return entry;
}
address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
address entry = __ pc();
//__ untested("generate_exception_handler_common");
Register Rexception = R17_tos;
// Expression stack must be empty before entering the VM if an exception happened.
__ empty_expression_stack();
__ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
if (pass_oop) {
__ mr(R5_ARG3, Rexception);
__ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false);
} else {
__ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
__ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false);
}
// Throw exception.
__ mr(R3_ARG1, Rexception);
__ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
__ mtctr(R11_scratch1);
__ bctr();
return entry;
}
address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
address entry = __ pc();
__ unimplemented("generate_continuation_for");
return entry;
}
// This entry is returned to when a call returns to the interpreter.
// When we arrive here, we expect that the callee stack frame is already popped.
address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
address entry = __ pc();
// Move the value out of the return register back to the TOS cache of current frame.
switch (state) {
case ltos:
case btos:
case ctos:
case stos:
case atos:
case itos: __ mr(R17_tos, R3_RET); break; // RET -> TOS cache
case ftos:
case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
case vtos: break; // Nothing to do, this was a void return.
default : ShouldNotReachHere();
}
__ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
__ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
__ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
// Compiled code destroys templateTableBase, reload.
__ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
const Register cache = R11_scratch1;
const Register size = R12_scratch2;
__ get_cache_and_index_at_bcp(cache, 1, index_size);
// Big Endian (get least significant byte of 64 bit value):
__ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache);
__ sldi(size, size, Interpreter::logStackElementSize);
__ add(R15_esp, R15_esp, size);
__ dispatch_next(state, step);
return entry;
}
address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
address entry = __ pc();
// If state != vtos, we're returning from a native method, which put it's result
// into the result register. So move the value out of the return register back
// to the TOS cache of current frame.
switch (state) {
case ltos:
case btos:
case ctos:
case stos:
case atos:
case itos: __ mr(R17_tos, R3_RET); break; // GR_RET -> TOS cache
case ftos:
case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
case vtos: break; // Nothing to do, this was a void return.
default : ShouldNotReachHere();
}
// Load LcpoolCache @@@ should be already set!
__ get_constant_pool_cache(R27_constPoolCache);
// Handle a pending exception, fall through if none.
__ check_and_forward_exception(R11_scratch1, R12_scratch2);
// Start executing bytecodes.
__ dispatch_next(state, step);
return entry;
}
// A result handler converts the native result into java format.
// Use the shared code between c++ and template interpreter.
address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
return AbstractInterpreterGenerator::generate_result_handler_for(type);
}
address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
address entry = __ pc();
__ push(state);
__ call_VM(noreg, runtime_entry);
__ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
return entry;
}
// Helpers for commoning out cases in the various type of method entries.
// Increment invocation count & check for overflow.
//
// Note: checking for negative value instead of overflow
// so we have a 'sticky' overflow test.
//
void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
// Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
Register Rscratch1 = R11_scratch1;
Register Rscratch2 = R12_scratch2;
Register R3_counters = R3_ARG1;
Label done;
if (TieredCompilation) {
const int increment = InvocationCounter::count_increment;
const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
Label no_mdo;
if (ProfileInterpreter) {
const Register Rmdo = Rscratch1;
// If no method data exists, go to profile_continue.
__ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
__ cmpdi(CCR0, Rmdo, 0);
__ beq(CCR0, no_mdo);
// Increment backedge counter in the MDO.
const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
__ lwz(Rscratch2, mdo_bc_offs, Rmdo);
__ addi(Rscratch2, Rscratch2, increment);
__ stw(Rscratch2, mdo_bc_offs, Rmdo);
__ load_const_optimized(Rscratch1, mask, R0);
__ and_(Rscratch1, Rscratch2, Rscratch1);
__ bne(CCR0, done);
__ b(*overflow);
}
// Increment counter in MethodCounters*.
const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
__ bind(no_mdo);
__ get_method_counters(R19_method, R3_counters, done);
__ lwz(Rscratch2, mo_bc_offs, R3_counters);
__ addi(Rscratch2, Rscratch2, increment);
__ stw(Rscratch2, mo_bc_offs, R3_counters);
__ load_const_optimized(Rscratch1, mask, R0);
__ and_(Rscratch1, Rscratch2, Rscratch1);
__ beq(CCR0, *overflow);
__ bind(done);
} else {
// Update standard invocation counters.
Register Rsum_ivc_bec = R4_ARG2;
__ get_method_counters(R19_method, R3_counters, done);
__ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2);
// Increment interpreter invocation counter.
if (ProfileInterpreter) { // %%% Merge this into methodDataOop.
__ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
__ addi(R12_scratch2, R12_scratch2, 1);
__ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
}
// Check if we must create a method data obj.
if (ProfileInterpreter && profile_method != NULL) {
const Register profile_limit = Rscratch1;
int pl_offs = __ load_const_optimized(profile_limit, &InvocationCounter::InterpreterProfileLimit, R0, true);
__ lwz(profile_limit, pl_offs, profile_limit);
// Test to see if we should create a method data oop.
__ cmpw(CCR0, Rsum_ivc_bec, profile_limit);
__ blt(CCR0, *profile_method_continue);
// If no method data exists, go to profile_method.
__ test_method_data_pointer(*profile_method);
}
// Finally check for counter overflow.
if (overflow) {
const Register invocation_limit = Rscratch1;
int il_offs = __ load_const_optimized(invocation_limit, &InvocationCounter::InterpreterInvocationLimit, R0, true);
__ lwz(invocation_limit, il_offs, invocation_limit);
assert(4 == sizeof(InvocationCounter::InterpreterInvocationLimit), "unexpected field size");
__ cmpw(CCR0, Rsum_ivc_bec, invocation_limit);
__ bge(CCR0, *overflow);
}
__ bind(done);
}
}
// Generate code to initiate compilation on invocation counter overflow.
void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
// Generate code to initiate compilation on the counter overflow.
// InterpreterRuntime::frequency_counter_overflow takes one arguments,
// which indicates if the counter overflow occurs at a backwards branch (NULL bcp)
// We pass zero in.
// The call returns the address of the verified entry point for the method or NULL
// if the compilation did not complete (either went background or bailed out).
//
// Unlike the C++ interpreter above: Check exceptions!
// Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
// method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
__ li(R4_ARG2, 0);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
// Returns verified_entry_point or NULL.
// We ignore it in any case.
__ b(continue_entry);
}
void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
assert_different_registers(Rmem_frame_size, Rscratch1);
__ generate_stack_overflow_check_with_compare_and_throw(Rmem_frame_size, Rscratch1);
}
void TemplateInterpreterGenerator::unlock_method(bool check_exceptions) {
__ unlock_object(R26_monitor, check_exceptions);
}
// Lock the current method, interpreter register window must be set up!
void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
const Register Robj_to_lock = Rscratch2;
{
if (!flags_preloaded) {
__ lwz(Rflags, method_(access_flags));
}
#ifdef ASSERT
// Check if methods needs synchronization.
{
Label Lok;
__ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
__ btrue(CCR0,Lok);
__ stop("method doesn't need synchronization");
__ bind(Lok);
}
#endif // ASSERT
}
// Get synchronization object to Rscratch2.
{
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
Label Lstatic;
Label Ldone;
__ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
__ btrue(CCR0, Lstatic);
// Non-static case: load receiver obj from stack and we're done.
__ ld(Robj_to_lock, R18_locals);
__ b(Ldone);
__ bind(Lstatic); // Static case: Lock the java mirror
__ ld(Robj_to_lock, in_bytes(Method::const_offset()), R19_method);
__ ld(Robj_to_lock, in_bytes(ConstMethod::constants_offset()), Robj_to_lock);
__ ld(Robj_to_lock, ConstantPool::pool_holder_offset_in_bytes(), Robj_to_lock);
__ ld(Robj_to_lock, mirror_offset, Robj_to_lock);
__ bind(Ldone);
__ verify_oop(Robj_to_lock);
}
// Got the oop to lock => execute!
__ add_monitor_to_stack(true, Rscratch1, R0);
__ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
__ lock_object(R26_monitor, Robj_to_lock);
}
// Generate a fixed interpreter frame for pure interpreter
// and I2N native transition frames.
//
// Before (stack grows downwards):
//
// | ... |
// |------------- |
// | java arg0 |
// | ... |
// | java argn |
// | | <- R15_esp
// | |
// |--------------|
// | abi_112 |
// | | <- R1_SP
// |==============|
//
//
// After:
//
// | ... |
// | java arg0 |<- R18_locals
// | ... |
// | java argn |
// |--------------|
// | |
// | java locals |
// | |
// |--------------|
// | abi_48 |
// |==============|
// | |
// | istate |
// | |
// |--------------|
// | monitor |<- R26_monitor
// |--------------|
// | |<- R15_esp
// | expression |
// | stack |
// | |
// |--------------|
// | |
// | abi_112 |<- R1_SP
// |==============|
//
// The top most frame needs an abi space of 112 bytes. This space is needed,
// since we call to c. The c function may spill their arguments to the caller
// frame. When we call to java, we don't need these spill slots. In order to save
// space on the stack, we resize the caller. However, java local reside in
// the caller frame and the frame has to be increased. The frame_size for the
// current frame was calculated based on max_stack as size for the expression
// stack. At the call, just a part of the expression stack might be used.
// We don't want to waste this space and cut the frame back accordingly.
// The resulting amount for resizing is calculated as follows:
// resize = (number_of_locals - number_of_arguments) * slot_size
// + (R1_SP - R15_esp) + 48
//
// The size for the callee frame is calculated:
// framesize = 112 + max_stack + monitor + state_size
//
// maxstack: Max number of slots on the expression stack, loaded from the method.
// monitor: We statically reserve room for one monitor object.
// state_size: We save the current state of the interpreter to this area.
//
void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
top_frame_size = R7_ARG5,
Rconst_method = R8_ARG6;
assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size);
__ ld(Rconst_method, method_(const));
__ lhz(Rsize_of_parameters /* number of params */,
in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
if (native_call) {
// If we're calling a native method, we reserve space for the worst-case signature
// handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2).
// We add two slots to the parameter_count, one for the jni
// environment and one for a possible native mirror.
Label skip_native_calculate_max_stack;
__ addi(top_frame_size, Rsize_of_parameters, 2);
__ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters);
__ bge(CCR0, skip_native_calculate_max_stack);
__ li(top_frame_size, Argument::n_register_parameters);
__ bind(skip_native_calculate_max_stack);
__ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
__ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
__ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
} else {
__ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
__ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
__ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
__ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
__ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
__ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
__ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
__ add(parent_frame_resize, parent_frame_resize, R11_scratch1);
}
// Compute top frame size.
__ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size);
// Cut back area between esp and max_stack.
__ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize);
__ round_to(top_frame_size, frame::alignment_in_bytes);
__ round_to(parent_frame_resize, frame::alignment_in_bytes);
// parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
// Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
{
// --------------------------------------------------------------------------
// Stack overflow check
Label cont;
__ add(R11_scratch1, parent_frame_resize, top_frame_size);
generate_stack_overflow_check(R11_scratch1, R12_scratch2);
}
// Set up interpreter state registers.
__ add(R18_locals, R15_esp, Rsize_of_parameters);
__ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
__ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache);
// Set method data pointer.
if (ProfileInterpreter) {
Label zero_continue;
__ ld(R28_mdx, method_(method_data));
__ cmpdi(CCR0, R28_mdx, 0);
__ beq(CCR0, zero_continue);
__ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
__ bind(zero_continue);
}
if (native_call) {
__ li(R14_bcp, 0); // Must initialize.
} else {
__ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method);
}
// Resize parent frame.
__ mflr(R12_scratch2);
__ neg(parent_frame_resize, parent_frame_resize);
__ resize_frame(parent_frame_resize, R11_scratch1);
__ std(R12_scratch2, _abi(lr), R1_SP);
__ addi(R26_monitor, R1_SP, - frame::ijava_state_size);
__ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
// Store values.
// R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls
// in InterpreterMacroAssembler::call_from_interpreter.
__ std(R19_method, _ijava_state_neg(method), R1_SP);
__ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
__ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
__ std(R18_locals, _ijava_state_neg(locals), R1_SP);
// Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
// be found in the frame after save_interpreter_state is done. This is always true
// for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
// because e.g. frame::interpreter_frame_bcp() will not access the correct value
// (Enhanced Stack Trace).
// The signal handler does not save the interpreter state into the frame.
__ li(R0, 0);
#ifdef ASSERT
// Fill remaining slots with constants.
__ load_const_optimized(R11_scratch1, 0x5afe);
__ load_const_optimized(R12_scratch2, 0xdead);
#endif
// We have to initialize some frame slots for native calls (accessed by GC).
if (native_call) {
__ std(R26_monitor, _ijava_state_neg(monitors), R1_SP);
__ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
}
#ifdef ASSERT
else {
__ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
__ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP);
__ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP);
}
__ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP);
__ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
__ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP);
__ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP);
#endif
__ subf(R12_scratch2, top_frame_size, R1_SP);
__ std(R0, _ijava_state_neg(oop_tmp), R1_SP);
__ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
// Push top frame.
__ push_frame(top_frame_size, R11_scratch1);
}
// End of helpers
// ============================================================================
// Various method entries
//
// Empty method, generate a very fast return. We must skip this entry if
// someone's debugging, indicated by the flag
// "interp_mode" in the Thread obj.
// Note: empty methods are generated mostly methods that do assertions, which are
// disabled in the "java opt build".
address TemplateInterpreterGenerator::generate_empty_entry(void) {
if (!UseFastEmptyMethods) {
NOT_PRODUCT(__ should_not_reach_here();)
return Interpreter::entry_for_kind(Interpreter::zerolocals);
}
Label Lslow_path;
const Register Rjvmti_mode = R11_scratch1;
address entry = __ pc();
__ lwz(Rjvmti_mode, thread_(interp_only_mode));
__ cmpwi(CCR0, Rjvmti_mode, 0);
__ bne(CCR0, Lslow_path); // jvmti_mode!=0
// Noone's debuggin: Simply return.
// Pop c2i arguments (if any) off when we return.
#ifdef ASSERT
__ ld(R9_ARG7, 0, R1_SP);
__ ld(R10_ARG8, 0, R21_sender_SP);
__ cmpd(CCR0, R9_ARG7, R10_ARG8);
__ asm_assert_eq("backlink", 0x545);
#endif // ASSERT
__ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
// And we're done.
__ blr();
__ bind(Lslow_path);
__ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
__ flush();
return entry;
}
// Support abs and sqrt like in compiler.
// For others we can use a normal (native) entry.
inline bool math_entry_available(AbstractInterpreter::MethodKind kind) {
// Provide math entry with debugging on demand.
// Note: Debugging changes which code will get executed:
// Debugging or disabled InlineIntrinsics: java method will get interpreted and performs a native call.
// Not debugging and enabled InlineIntrinics: processor instruction will get used.
// Result might differ slightly due to rounding etc.
if (!InlineIntrinsics && (!FLAG_IS_ERGO(InlineIntrinsics))) return false; // Generate a vanilla entry.
return ((kind==Interpreter::java_lang_math_sqrt && VM_Version::has_fsqrt()) ||
(kind==Interpreter::java_lang_math_abs));
}
address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
if (!math_entry_available(kind)) {
NOT_PRODUCT(__ should_not_reach_here();)
return Interpreter::entry_for_kind(Interpreter::zerolocals);
}
Label Lslow_path;
const Register Rjvmti_mode = R11_scratch1;
address entry = __ pc();
// Provide math entry with debugging on demand.
__ lwz(Rjvmti_mode, thread_(interp_only_mode));
__ cmpwi(CCR0, Rjvmti_mode, 0);
__ bne(CCR0, Lslow_path); // jvmti_mode!=0
__ lfd(F1_RET, Interpreter::stackElementSize, R15_esp);
// Pop c2i arguments (if any) off when we return.
#ifdef ASSERT
__ ld(R9_ARG7, 0, R1_SP);
__ ld(R10_ARG8, 0, R21_sender_SP);
__ cmpd(CCR0, R9_ARG7, R10_ARG8);
__ asm_assert_eq("backlink", 0x545);
#endif // ASSERT
__ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
if (kind == Interpreter::java_lang_math_sqrt) {
__ fsqrt(F1_RET, F1_RET);
} else if (kind == Interpreter::java_lang_math_abs) {
__ fabs(F1_RET, F1_RET);
} else {
ShouldNotReachHere();
}
// And we're done.
__ blr();
// Provide slow path for JVMTI case.
__ bind(Lslow_path);
__ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R12_scratch2);
__ flush();
return entry;
}
// Interpreter stub for calling a native method. (asm interpreter)
// This sets up a somewhat different looking stack for calling the
// native method than the typical interpreter frame setup.
//
// On entry:
// R19_method - method
// R16_thread - JavaThread*
// R15_esp - intptr_t* sender tos
//
// abstract stack (grows up)
// [ IJava (caller of JNI callee) ] <-- ASP
// ...
address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
address entry = __ pc();
const bool inc_counter = UseCompiler || CountCompiledCalls;
// -----------------------------------------------------------------------------
// Allocate a new frame that represents the native callee (i2n frame).
// This is not a full-blown interpreter frame, but in particular, the
// following registers are valid after this:
// - R19_method
// - R18_local (points to start of argumuments to native function)
//
// abstract stack (grows up)
// [ IJava (caller of JNI callee) ] <-- ASP
// ...
const Register signature_handler_fd = R11_scratch1;
const Register pending_exception = R0;
const Register result_handler_addr = R31;
const Register native_method_fd = R11_scratch1;
const Register access_flags = R22_tmp2;
const Register active_handles = R11_scratch1; // R26_monitor saved to state.
const Register sync_state = R12_scratch2;
const Register sync_state_addr = sync_state; // Address is dead after use.
const Register suspend_flags = R11_scratch1;
//=============================================================================
// Allocate new frame and initialize interpreter state.
Label exception_return;
Label exception_return_sync_check;
Label stack_overflow_return;
// Generate new interpreter state and jump to stack_overflow_return in case of
// a stack overflow.
//generate_compute_interpreter_state(stack_overflow_return);
Register size_of_parameters = R22_tmp2;
generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
//=============================================================================
// Increment invocation counter. On overflow, entry to JNI method
// will be compiled.
Label invocation_counter_overflow, continue_after_compile;
if (inc_counter) {
if (synchronized) {
// Since at this point in the method invocation the exception handler
// would try to exit the monitor of synchronized methods which hasn't
// been entered yet, we set the thread local variable
// _do_not_unlock_if_synchronized to true. If any exception was thrown by
// runtime, exception handling i.e. unlock_if_synchronized_method will
// check this thread local flag.
// This flag has two effects, one is to force an unwind in the topmost
// interpreter frame and not perform an unlock while doing so.
__ li(R0, 1);
__ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
}
generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
__ BIND(continue_after_compile);
// Reset the _do_not_unlock_if_synchronized flag.
if (synchronized) {
__ li(R0, 0);
__ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
}
}
// access_flags = method->access_flags();
// Load access flags.
assert(access_flags->is_nonvolatile(),
"access_flags must be in a non-volatile register");
// Type check.
assert(4 == sizeof(AccessFlags), "unexpected field size");
__ lwz(access_flags, method_(access_flags));
// We don't want to reload R19_method and access_flags after calls
// to some helper functions.
assert(R19_method->is_nonvolatile(),
"R19_method must be a non-volatile register");
// Check for synchronized methods. Must happen AFTER invocation counter
// check, so method is not locked if counter overflows.
if (synchronized) {
lock_method(access_flags, R11_scratch1, R12_scratch2, true);
// Update monitor in state.
__ ld(R11_scratch1, 0, R1_SP);
__ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1);
}
// jvmti/jvmpi support
__ notify_method_entry();
//=============================================================================
// Get and call the signature handler.
__ ld(signature_handler_fd, method_(signature_handler));
Label call_signature_handler;
__ cmpdi(CCR0, signature_handler_fd, 0);
__ bne(CCR0, call_signature_handler);
// Method has never been called. Either generate a specialized
// handler or point to the slow one.
//
// Pass parameter 'false' to avoid exception check in call_VM.
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
// Check for an exception while looking up the target method. If we
// incurred one, bail.
__ ld(pending_exception, thread_(pending_exception));
__ cmpdi(CCR0, pending_exception, 0);
__ bne(CCR0, exception_return_sync_check); // Has pending exception.
// Reload signature handler, it may have been created/assigned in the meanwhile.
__ ld(signature_handler_fd, method_(signature_handler));
__ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
__ BIND(call_signature_handler);
// Before we call the signature handler we push a new frame to
// protect the interpreter frame volatile registers when we return
// from jni but before we can get back to Java.
// First set the frame anchor while the SP/FP registers are
// convenient and the slow signature handler can use this same frame
// anchor.
// We have a TOP_IJAVA_FRAME here, which belongs to us.
__ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
// Now the interpreter frame (and its call chain) have been
// invalidated and flushed. We are now protected against eager
// being enabled in native code. Even if it goes eager the
// registers will be reloaded as clean and we will invalidate after
// the call so no spurious flush should be possible.
// Call signature handler and pass locals address.
//
// Our signature handlers copy required arguments to the C stack
// (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
__ mr(R3_ARG1, R18_locals);
__ ld(signature_handler_fd, 0, signature_handler_fd);
__ call_stub(signature_handler_fd);
// Remove the register parameter varargs slots we allocated in
// compute_interpreter_state. SP+16 ends up pointing to the ABI
// outgoing argument area.
//
// Not needed on PPC64.
//__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);
assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
// Save across call to native method.
__ mr(result_handler_addr, R3_RET);
__ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
// Set up fixed parameters and call the native method.
// If the method is static, get mirror into R4_ARG2.
{
Label method_is_not_static;
// Access_flags is non-volatile and still, no need to restore it.
// Restore access flags.
__ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
__ bfalse(CCR0, method_is_not_static);
// constants = method->constants();
__ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
__ ld(R11_scratch1, in_bytes(ConstMethod::constants_offset()), R11_scratch1);
// pool_holder = method->constants()->pool_holder();
__ ld(R11_scratch1/*pool_holder*/, ConstantPool::pool_holder_offset_in_bytes(),
R11_scratch1/*constants*/);
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
// mirror = pool_holder->klass_part()->java_mirror();
__ ld(R0/*mirror*/, mirror_offset, R11_scratch1/*pool_holder*/);
// state->_native_mirror = mirror;
__ ld(R11_scratch1, 0, R1_SP);
__ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
// R4_ARG2 = &state->_oop_temp;
__ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
__ BIND(method_is_not_static);
}
// At this point, arguments have been copied off the stack into
// their JNI positions. Oops are boxed in-place on the stack, with
// handles copied to arguments. The result handler address is in a
// register.
// Pass JNIEnv address as first parameter.
__ addir(R3_ARG1, thread_(jni_environment));
// Load the native_method entry before we change the thread state.
__ ld(native_method_fd, method_(native_function));
//=============================================================================
// Transition from _thread_in_Java to _thread_in_native. As soon as
// we make this change the safepoint code needs to be certain that
// the last Java frame we established is good. The pc in that frame
// just needs to be near here not an actual return address.
// We use release_store_fence to update values like the thread state, where
// we don't want the current thread to continue until all our prior memory
// accesses (including the new thread state) are visible to other threads.
__ li(R0, _thread_in_native);
__ release();
// TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
__ stw(R0, thread_(thread_state));
if (UseMembar) {
__ fence();
}
//=============================================================================
// Call the native method. Argument registers must not have been
// overwritten since "__ call_stub(signature_handler);" (except for
// ARG1 and ARG2 for static methods).
__ call_c(native_method_fd);
__ li(R0, 0);
__ ld(R11_scratch1, 0, R1_SP);
__ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
__ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
__ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
// Note: C++ interpreter needs the following here:
// The frame_manager_lr field, which we use for setting the last
// java frame, gets overwritten by the signature handler. Restore
// it now.
//__ get_PC_trash_LR(R11_scratch1);
//__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
// Because of GC R19_method may no longer be valid.
// Block, if necessary, before resuming in _thread_in_Java state.
// In order for GC to work, don't clear the last_Java_sp until after
// blocking.
//=============================================================================
// Switch thread to "native transition" state before reading the
// synchronization state. This additional state is necessary
// because reading and testing the synchronization state is not
// atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
// in _thread_in_native state, loads _not_synchronized and is
// preempted. VM thread changes sync state to synchronizing and
// suspends threads for GC. Thread A is resumed to finish this
// native method, but doesn't block here since it didn't see any
// synchronization in progress, and escapes.
// We use release_store_fence to update values like the thread state, where
// we don't want the current thread to continue until all our prior memory
// accesses (including the new thread state) are visible to other threads.
__ li(R0/*thread_state*/, _thread_in_native_trans);
__ release();
__ stw(R0/*thread_state*/, thread_(thread_state));
if (UseMembar) {
__ fence();
}
// Write serialization page so that the VM thread can do a pseudo remote
// membar. We use the current thread pointer to calculate a thread
// specific offset to write to within the page. This minimizes bus
// traffic due to cache line collision.
else {
__ serialize_memory(R16_thread, R11_scratch1, R12_scratch2);
}
// Now before we return to java we must look for a current safepoint
// (a new safepoint can not start since we entered native_trans).
// We must check here because a current safepoint could be modifying
// the callers registers right this moment.
// Acquire isn't strictly necessary here because of the fence, but
// sync_state is declared to be volatile, so we do it anyway
// (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
// TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
__ lwz(sync_state, sync_state_offs, sync_state_addr);
// TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
__ lwz(suspend_flags, thread_(suspend_flags));
Label sync_check_done;
Label do_safepoint;
// No synchronization in progress nor yet synchronized.
__ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
// Not suspended.
__ cmpwi(CCR1, suspend_flags, 0);
__ bne(CCR0, do_safepoint);
__ beq(CCR1, sync_check_done);
__ bind(do_safepoint);
__ isync();
// Block. We do the call directly and leave the current
// last_Java_frame setup undisturbed. We must save any possible
// native result across the call. No oop is present.
__ mr(R3_ARG1, R16_thread);
__ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
relocInfo::none);
__ bind(sync_check_done);
//=============================================================================
// <<<<<< Back in Interpreter Frame >>>>>
// We are in thread_in_native_trans here and back in the normal
// interpreter frame. We don't have to do anything special about
// safepoints and we can switch to Java mode anytime we are ready.
// Note: frame::interpreter_frame_result has a dependency on how the
// method result is saved across the call to post_method_exit. For
// native methods it assumes that the non-FPU/non-void result is
// saved in _native_lresult and a FPU result in _native_fresult. If
// this changes then the interpreter_frame_result implementation
// will need to be updated too.
// On PPC64, we have stored the result directly after the native call.
//=============================================================================
// Back in Java
// We use release_store_fence to update values like the thread state, where
// we don't want the current thread to continue until all our prior memory
// accesses (including the new thread state) are visible to other threads.
__ li(R0/*thread_state*/, _thread_in_Java);
__ release();
__ stw(R0/*thread_state*/, thread_(thread_state));
if (UseMembar) {
__ fence();
}
__ reset_last_Java_frame();
// Jvmdi/jvmpi support. Whether we've got an exception pending or
// not, and whether unlocking throws an exception or not, we notify
// on native method exit. If we do have an exception, we'll end up
// in the caller's context to handle it, so if we don't do the
// notify here, we'll drop it on the floor.
__ notify_method_exit(true/*native method*/,
ilgl /*illegal state (not used for native methods)*/,
InterpreterMacroAssembler::NotifyJVMTI,
false /*check_exceptions*/);
//=============================================================================
// Handle exceptions
if (synchronized) {
// Don't check for exceptions since we're still in the i2n frame. Do that
// manually afterwards.
unlock_method(false);
}
// Reset active handles after returning from native.
// thread->active_handles()->clear();
__ ld(active_handles, thread_(active_handles));
// TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
__ li(R0, 0);
__ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);
Label exception_return_sync_check_already_unlocked;
__ ld(R0/*pending_exception*/, thread_(pending_exception));
__ cmpdi(CCR0, R0/*pending_exception*/, 0);
__ bne(CCR0, exception_return_sync_check_already_unlocked);
//-----------------------------------------------------------------------------
// No exception pending.
// Move native method result back into proper registers and return.
// Invoke result handler (may unbox/promote).
__ ld(R11_scratch1, 0, R1_SP);
__ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
__ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
__ call_stub(result_handler_addr);
__ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
// Must use the return pc which was loaded from the caller's frame
// as the VM uses return-pc-patching for deoptimization.
__ mtlr(R0);
__ blr();
//-----------------------------------------------------------------------------
// An exception is pending. We call into the runtime only if the
// caller was not interpreted. If it was interpreted the
// interpreter will do the correct thing. If it isn't interpreted
// (call stub/compiled code) we will change our return and continue.
__ BIND(exception_return_sync_check);
if (synchronized) {
// Don't check for exceptions since we're still in the i2n frame. Do that
// manually afterwards.
unlock_method(false);
}
__ BIND(exception_return_sync_check_already_unlocked);
const Register return_pc = R31;
__ ld(return_pc, 0, R1_SP);
__ ld(return_pc, _abi(lr), return_pc);
// Get the address of the exception handler.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
R16_thread,
return_pc /* return pc */);
__ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
// Load the PC of the the exception handler into LR.
__ mtlr(R3_RET);
// Load exception into R3_ARG1 and clear pending exception in thread.
__ ld(R3_ARG1/*exception*/, thread_(pending_exception));
__ li(R4_ARG2, 0);
__ std(R4_ARG2, thread_(pending_exception));
// Load the original return pc into R4_ARG2.
__ mr(R4_ARG2/*issuing_pc*/, return_pc);
// Return to exception handler.
__ blr();
//=============================================================================
// Counter overflow.
if (inc_counter) {
// Handle invocation counter overflow.
__ bind(invocation_counter_overflow);
generate_counter_overflow(continue_after_compile);
}
return entry;
}
// Generic interpreted method entry to (asm) interpreter.
//
address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
bool inc_counter = UseCompiler || CountCompiledCalls;
address entry = __ pc();
// Generate the code to allocate the interpreter stack frame.
Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
Rsize_of_locals = R5_ARG3; // Written by generate_fixed_frame.
generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
#ifdef FAST_DISPATCH
__ unimplemented("Fast dispatch in generate_normal_entry");
#if 0
__ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
// Set bytecode dispatch table base.
#endif
#endif
// --------------------------------------------------------------------------
// Zero out non-parameter locals.
// Note: *Always* zero out non-parameter locals as Sparc does. It's not
// worth to ask the flag, just do it.
Register Rslot_addr = R6_ARG4,
Rnum = R7_ARG5;
Label Lno_locals, Lzero_loop;
// Set up the zeroing loop.
__ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
__ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
__ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
__ beq(CCR0, Lno_locals);
__ li(R0, 0);
__ mtctr(Rnum);
// The zero locals loop.
__ bind(Lzero_loop);
__ std(R0, 0, Rslot_addr);
__ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
__ bdnz(Lzero_loop);
__ bind(Lno_locals);
// --------------------------------------------------------------------------
// Counter increment and overflow check.
Label invocation_counter_overflow,
profile_method,
profile_method_continue;
if (inc_counter || ProfileInterpreter) {
Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
if (synchronized) {
// Since at this point in the method invocation the exception handler
// would try to exit the monitor of synchronized methods which hasn't
// been entered yet, we set the thread local variable
// _do_not_unlock_if_synchronized to true. If any exception was thrown by
// runtime, exception handling i.e. unlock_if_synchronized_method will
// check this thread local flag.
// This flag has two effects, one is to force an unwind in the topmost
// interpreter frame and not perform an unlock while doing so.
__ li(R0, 1);
__ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
}
// Increment invocation counter and check for overflow.
if (inc_counter) {
generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
}
__ bind(profile_method_continue);
// Reset the _do_not_unlock_if_synchronized flag.
if (synchronized) {
__ li(R0, 0);
__ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
}
}
// --------------------------------------------------------------------------
// Locking of synchronized methods. Must happen AFTER invocation_counter
// check and stack overflow check, so method is not locked if overflows.
if (synchronized) {
lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
}
#ifdef ASSERT
else {
Label Lok;
__ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
__ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
__ asm_assert_eq("method needs synchronization", 0x8521);
__ bind(Lok);
}
#endif // ASSERT
__ verify_thread();
// --------------------------------------------------------------------------
// JVMTI support
__ notify_method_entry();
// --------------------------------------------------------------------------
// Start executing instructions.
__ dispatch_next(vtos);
// --------------------------------------------------------------------------
// Out of line counter overflow and MDO creation code.
if (ProfileInterpreter) {
// We have decided to profile this method in the interpreter.
__ bind(profile_method);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
__ set_method_data_pointer_for_bcp();
__ b(profile_method_continue);
}
if (inc_counter) {
// Handle invocation counter overflow.
__ bind(invocation_counter_overflow);
generate_counter_overflow(profile_method_continue);
}
return entry;
}
// =============================================================================
// Entry points
address AbstractInterpreterGenerator::generate_method_entry(
AbstractInterpreter::MethodKind kind) {
// Determine code generation flags.
bool synchronized = false;
address entry_point = NULL;
switch (kind) {
case Interpreter::zerolocals : break;
case Interpreter::zerolocals_synchronized: synchronized = true; break;
case Interpreter::native : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false); break;
case Interpreter::native_synchronized : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(true); break;
case Interpreter::empty : entry_point = ((InterpreterGenerator*) this)->generate_empty_entry(); break;
case Interpreter::accessor : entry_point = ((InterpreterGenerator*) this)->generate_accessor_entry(); break;
case Interpreter::abstract : entry_point = ((InterpreterGenerator*) this)->generate_abstract_entry(); break;
case Interpreter::java_lang_math_sin : // fall thru
case Interpreter::java_lang_math_cos : // fall thru
case Interpreter::java_lang_math_tan : // fall thru
case Interpreter::java_lang_math_abs : // fall thru
case Interpreter::java_lang_math_log : // fall thru
case Interpreter::java_lang_math_log10 : // fall thru
case Interpreter::java_lang_math_sqrt : // fall thru
case Interpreter::java_lang_math_pow : // fall thru
case Interpreter::java_lang_math_exp : entry_point = ((InterpreterGenerator*) this)->generate_math_entry(kind); break;
case Interpreter::java_lang_ref_reference_get
: entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
default : ShouldNotReachHere(); break;
}
if (entry_point) {
return entry_point;
}
return ((InterpreterGenerator*) this)->generate_normal_entry(synchronized);
}
// These should never be compiled since the interpreter will prefer
// the compiled version to the intrinsic version.
bool AbstractInterpreter::can_be_compiled(methodHandle m) {
return !math_entry_available(method_kind(m));
}
// How much stack a method activation needs in stack slots.
// We must calc this exactly like in generate_fixed_frame.
// Note: This returns the conservative size assuming maximum alignment.
int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
const int max_alignment_size = 2;
const int abi_scratch = frame::abi_reg_args_size;
return method->max_locals() + method->max_stack() + frame::interpreter_frame_monitor_size() + max_alignment_size + abi_scratch;
}
// Fills a sceletal interpreter frame generated during deoptimizations
// and returns the frame size in slots.
//
// Parameters:
//
// interpreter_frame == NULL:
// Only calculate the size of an interpreter activation, no actual layout.
// Note: This calculation must exactly parallel the frame setup
// in TemplateInterpreter::generate_normal_entry. But it does not
// account for the SP alignment, that might further enhance the
// frame size, depending on FP.
//
// interpreter_frame != NULL:
// set up the method, locals, and monitors.
// The frame interpreter_frame, if not NULL, is guaranteed to be the
// right size, as determined by a previous call to this method.
// It is also guaranteed to be walkable even though it is in a skeletal state
//
// is_top_frame == true:
// We're processing the *oldest* interpreter frame!
//
// pop_frame_extra_args:
// If this is != 0 we are returning to a deoptimized frame by popping
// off the callee frame. We want to re-execute the call that called the
// callee interpreted, but since the return to the interpreter would pop
// the arguments off advance the esp by dummy popframe_extra_args slots.
// Popping off those will establish the stack layout as it was before the call.
//
int AbstractInterpreter::layout_activation(Method* method,
int tempcount,
int popframe_extra_args,
int moncount,
int caller_actual_parameters,
int callee_param_count,
int callee_locals,
frame* caller,
frame* interpreter_frame,
bool is_top_frame,
bool is_bottom_frame) {
const int max_alignment_space = 2;
const int abi_scratch = is_top_frame ? (frame::abi_reg_args_size / Interpreter::stackElementSize) :
(frame::abi_minframe_size / Interpreter::stackElementSize) ;
const int conservative_framesize_in_slots =
method->max_stack() + callee_locals - callee_param_count +
(moncount * frame::interpreter_frame_monitor_size()) + max_alignment_space +
abi_scratch + frame::ijava_state_size / Interpreter::stackElementSize;
assert(!is_top_frame || conservative_framesize_in_slots * 8 > frame::abi_reg_args_size + frame::ijava_state_size, "frame too small");
if (interpreter_frame == NULL) {
// Since we don't know the exact alignment, we return the conservative size.
return (conservative_framesize_in_slots & -2);
} else {
// Now we know our caller, calc the exact frame layout and size.
intptr_t* locals_base = (caller->is_interpreted_frame()) ?
caller->interpreter_frame_esp() + caller_actual_parameters :
caller->sp() + method->max_locals() - 1 + (frame::abi_minframe_size / Interpreter::stackElementSize) ;
intptr_t* monitor_base = caller->sp() - frame::ijava_state_size / Interpreter::stackElementSize ;
intptr_t* monitor = monitor_base - (moncount * frame::interpreter_frame_monitor_size());
intptr_t* esp_base = monitor - 1;
intptr_t* esp = esp_base - tempcount - popframe_extra_args;
intptr_t* sp = (intptr_t *) (((intptr_t) (esp_base- callee_locals + callee_param_count - method->max_stack()- abi_scratch)) & -StackAlignmentInBytes);
intptr_t* sender_sp = caller->sp() + (frame::abi_minframe_size - frame::abi_reg_args_size) / Interpreter::stackElementSize;
intptr_t* top_frame_sp = is_top_frame ? sp : sp + (frame::abi_minframe_size - frame::abi_reg_args_size) / Interpreter::stackElementSize;
interpreter_frame->interpreter_frame_set_method(method);
interpreter_frame->interpreter_frame_set_locals(locals_base);
interpreter_frame->interpreter_frame_set_cpcache(method->constants()->cache());
interpreter_frame->interpreter_frame_set_esp(esp);
interpreter_frame->interpreter_frame_set_monitor_end((BasicObjectLock *)monitor);
interpreter_frame->interpreter_frame_set_top_frame_sp(top_frame_sp);
if (!is_bottom_frame) {
interpreter_frame->interpreter_frame_set_sender_sp(sender_sp);
}
int framesize_in_slots = caller->sp() - sp;
assert(!is_top_frame ||framesize_in_slots >= (frame::abi_reg_args_size / Interpreter::stackElementSize) + frame::ijava_state_size / Interpreter::stackElementSize, "frame too small");
assert(framesize_in_slots <= conservative_framesize_in_slots, "exact frame size must be smaller than the convervative size!");
return framesize_in_slots;
}
}
// =============================================================================
// Exceptions
void TemplateInterpreterGenerator::generate_throw_exception() {
Register Rexception = R17_tos,
Rcontinuation = R3_RET;
// --------------------------------------------------------------------------
// Entry point if an method returns with a pending exception (rethrow).
Interpreter::_rethrow_exception_entry = __ pc();
{
__ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
__ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
__ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
// Compiled code destroys templateTableBase, reload.
__ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
}
// Entry point if a interpreted method throws an exception (throw).
Interpreter::_throw_exception_entry = __ pc();
{
__ mr(Rexception, R3_RET);
__ verify_thread();
__ verify_oop(Rexception);
// Expression stack must be empty before entering the VM in case of an exception.
__ empty_expression_stack();
// Find exception handler address and preserve exception oop.
// Call C routine to find handler and jump to it.
__ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
__ mtctr(Rcontinuation);
// Push exception for exception handler bytecodes.
__ push_ptr(Rexception);
// Jump to exception handler (may be remove activation entry!).
__ bctr();
}
// If the exception is not handled in the current frame the frame is
// removed and the exception is rethrown (i.e. exception
// continuation is _rethrow_exception).
//
// Note: At this point the bci is still the bxi for the instruction
// which caused the exception and the expression stack is
// empty. Thus, for any VM calls at this point, GC will find a legal
// oop map (with empty expression stack).
// In current activation
// tos: exception
// bcp: exception bcp
// --------------------------------------------------------------------------
// JVMTI PopFrame support
Interpreter::_remove_activation_preserving_args_entry = __ pc();
{
// Set the popframe_processing bit in popframe_condition indicating that we are
// currently handling popframe, so that call_VMs that may happen later do not
// trigger new popframe handling cycles.
__ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
__ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
__ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
// Empty the expression stack, as in normal exception handling.
__ empty_expression_stack();
__ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
// Check to see whether we are returning to a deoptimized frame.
// (The PopFrame call ensures that the caller of the popped frame is
// either interpreted or compiled and deoptimizes it if compiled.)
// Note that we don't compare the return PC against the
// deoptimization blob's unpack entry because of the presence of
// adapter frames in C2.
Label Lcaller_not_deoptimized;
Register return_pc = R3_ARG1;
__ ld(return_pc, 0, R1_SP);
__ ld(return_pc, _abi(lr), return_pc);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
__ cmpdi(CCR0, R3_RET, 0);
__ bne(CCR0, Lcaller_not_deoptimized);
// The deoptimized case.
// In this case, we can't call dispatch_next() after the frame is
// popped, but instead must save the incoming arguments and restore
// them after deoptimization has occurred.
__ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
__ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
__ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
__ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
__ subf(R5_ARG3, R4_ARG2, R5_ARG3);
// Save these arguments.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
// Inform deoptimization that it is responsible for restoring these arguments.
__ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
__ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
// Return from the current method into the deoptimization blob. Will eventually
// end up in the deopt interpeter entry, deoptimization prepared everything that
// we will reexecute the call that called us.
__ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
__ mtlr(return_pc);
__ blr();
// The non-deoptimized case.
__ bind(Lcaller_not_deoptimized);
// Clear the popframe condition flag.
__ li(R0, 0);
__ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
// Get out of the current method and re-execute the call that called us.
__ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ return_pc, R11_scratch1, R12_scratch2);
__ restore_interpreter_state(R11_scratch1);
__ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
__ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
__ mtlr(return_pc);
if (ProfileInterpreter) {
__ set_method_data_pointer_for_bcp();
}
__ dispatch_next(vtos);
}
// end of JVMTI PopFrame support
// --------------------------------------------------------------------------
// Remove activation exception entry.
// This is jumped to if an interpreted method can't handle an exception itself
// (we come from the throw/rethrow exception entry above). We're going to call
// into the VM to find the exception handler in the caller, pop the current
// frame and return the handler we calculated.
Interpreter::_remove_activation_entry = __ pc();
{
__ pop_ptr(Rexception);
__ verify_thread();
__ verify_oop(Rexception);
__ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
__ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
__ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
__ get_vm_result(Rexception);
// We are done with this activation frame; find out where to go next.
// The continuation point will be an exception handler, which expects
// the following registers set up:
//
// RET: exception oop
// ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
Register return_pc = R31; // Needs to survive the runtime call.
__ ld(return_pc, 0, R1_SP);
__ ld(return_pc, _abi(lr), return_pc);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
// Remove the current activation.
__ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
__ mr(R4_ARG2, return_pc);
__ mtlr(R3_RET);
__ mr(R3_RET, Rexception);
__ blr();
}
}
// JVMTI ForceEarlyReturn support.
// Returns "in the middle" of a method with a "fake" return value.
address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
Register Rscratch1 = R11_scratch1,
Rscratch2 = R12_scratch2;
address entry = __ pc();
__ empty_expression_stack();
__ load_earlyret_value(state, Rscratch1);
__ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
// Clear the earlyret state.
__ li(R0, 0);
__ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
__ remove_activation(state, false, false);
// Copied from TemplateTable::_return.
// Restoration of lr done by remove_activation.
switch (state) {
case ltos:
case btos:
case ctos:
case stos:
case atos:
case itos: __ mr(R3_RET, R17_tos); break;
case ftos:
case dtos: __ fmr(F1_RET, F15_ftos); break;
case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
// to get visible before the reference to the object gets stored anywhere.
__ membar(Assembler::StoreStore); break;
default : ShouldNotReachHere();
}
__ blr();
return entry;
} // end of ForceEarlyReturn support
//-----------------------------------------------------------------------------
// Helper for vtos entry point generation
void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
address& bep,
address& cep,
address& sep,
address& aep,
address& iep,
address& lep,
address& fep,
address& dep,
address& vep) {
assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
Label L;
aep = __ pc(); __ push_ptr(); __ b(L);
fep = __ pc(); __ push_f(); __ b(L);
dep = __ pc(); __ push_d(); __ b(L);
lep = __ pc(); __ push_l(); __ b(L);
__ align(32, 12, 24); // align L
bep = cep = sep =
iep = __ pc(); __ push_i();
vep = __ pc();
__ bind(L);
generate_and_dispatch(t);
}
//-----------------------------------------------------------------------------
// Generation of individual instructions
// helpers for generate_and_dispatch
InterpreterGenerator::InterpreterGenerator(StubQueue* code)
: TemplateInterpreterGenerator(code) {
generate_all(); // Down here so it can be "virtual".
}
//-----------------------------------------------------------------------------
// Non-product code
#ifndef PRODUCT
address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
//__ flush_bundle();
address entry = __ pc();
char *bname = NULL;
uint tsize = 0;
switch(state) {
case ftos:
bname = "trace_code_ftos {";
tsize = 2;
break;
case btos:
bname = "trace_code_btos {";
tsize = 2;
break;
case ctos:
bname = "trace_code_ctos {";
tsize = 2;
break;
case stos:
bname = "trace_code_stos {";
tsize = 2;
break;
case itos:
bname = "trace_code_itos {";
tsize = 2;
break;
case ltos:
bname = "trace_code_ltos {";
tsize = 3;
break;
case atos:
bname = "trace_code_atos {";
tsize = 2;
break;
case vtos:
// Note: In case of vtos, the topmost of stack value could be a int or doubl
// In case of a double (2 slots) we won't see the 2nd stack value.
// Maybe we simply should print the topmost 3 stack slots to cope with the problem.
bname = "trace_code_vtos {";
tsize = 2;
break;
case dtos:
bname = "trace_code_dtos {";
tsize = 3;
break;
default:
ShouldNotReachHere();
}
BLOCK_COMMENT(bname);
// Support short-cut for TraceBytecodesAt.
// Don't call into the VM if we don't want to trace to speed up things.
Label Lskip_vm_call;
if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
__ ld(R11_scratch1, offs1, R11_scratch1);
__ lwa(R12_scratch2, offs2, R12_scratch2);
__ cmpd(CCR0, R12_scratch2, R11_scratch1);
__ blt(CCR0, Lskip_vm_call);
}
__ push(state);
// Load 2 topmost expression stack values.
__ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
__ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
__ mflr(R31);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
__ mtlr(R31);
__ pop(state);
if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
__ bind(Lskip_vm_call);
}
__ blr();
BLOCK_COMMENT("} trace_code");
return entry;
}
void TemplateInterpreterGenerator::count_bytecode() {
int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
__ lwz(R12_scratch2, offs, R11_scratch1);
__ addi(R12_scratch2, R12_scratch2, 1);
__ stw(R12_scratch2, offs, R11_scratch1);
}
void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
__ lwz(R12_scratch2, offs, R11_scratch1);
__ addi(R12_scratch2, R12_scratch2, 1);
__ stw(R12_scratch2, offs, R11_scratch1);
}
void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
const Register addr = R11_scratch1,
tmp = R12_scratch2;
// Get index, shift out old bytecode, bring in new bytecode, and store it.
// _index = (_index >> log2_number_of_codes) |
// (bytecode << log2_number_of_codes);
int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
__ lwz(tmp, offs1, addr);
__ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
__ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
__ stw(tmp, offs1, addr);
// Bump bucket contents.
// _counters[_index] ++;
int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
__ sldi(tmp, tmp, LogBytesPerInt);
__ add(addr, tmp, addr);
__ lwz(tmp, offs2, addr);
__ addi(tmp, tmp, 1);
__ stw(tmp, offs2, addr);
}
void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
// Call a little run-time stub to avoid blow-up for each bytecode.
// The run-time runtime saves the right registers, depending on
// the tosca in-state for the given template.
assert(Interpreter::trace_code(t->tos_in()) != NULL,
"entry must have been generated");
// Note: we destroy LR here.
__ bl(Interpreter::trace_code(t->tos_in()));
}
void TemplateInterpreterGenerator::stop_interpreter_at() {
Label L;
int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
__ ld(R11_scratch1, offs1, R11_scratch1);
__ lwa(R12_scratch2, offs2, R12_scratch2);
__ cmpd(CCR0, R12_scratch2, R11_scratch1);
__ bne(CCR0, L);
__ illtrap();
__ bind(L);
}
#endif // !PRODUCT
#endif // !CC_INTERP