6750584: Cipher.wrap/unwrap methods should define UnsupportedOperationException
Reviewed-by: mullan
/*
* Copyright 2009 Goldman Sachs International. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
/*
* @test
* @bug 6865031
* @summary Application gives bad result (throws bad exception) with compressed oops
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:+UseCompressedOops -XX:HeapBaseMinAddress=32g -XX:-LoopUnswitching -XX:CompileCommand=inline,AbstractMemoryEfficientList.equals Test hello goodbye
*/
import java.lang.ref.ReferenceQueue;
import java.lang.ref.WeakReference;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
interface MyList {
public int size();
public Object set(final int index, final Object element);
public Object get(final int index);
}
abstract class AbstractMemoryEfficientList implements MyList {
abstract public int size();
abstract public Object get(final int index);
abstract public Object set(final int index, final Object element);
public boolean equals(Object o) {
if (o == this) {
return true;
}
if (!(o instanceof MyList)) {
return false;
}
final MyList that = (MyList) o;
if (this.size() != that.size()) {
return false;
}
for (int i = 0; i < this.size(); i++) {
try {
if (!((this.get(i)).equals(that.get(i)))) {
return false;
}
} catch (IndexOutOfBoundsException e) {
System.out.println("THROWING RT EXC");
System.out.println("concurrent modification of this:" + this.getClass() + ":" + System.identityHashCode(this) + "; that:" + that.getClass() + ":" + System.identityHashCode(that) + "; i:" + i);
e.printStackTrace();
System.exit(97);
throw new RuntimeException("concurrent modification of this:" + this.getClass() + ":" + System.identityHashCode(this) + "; that:" + that.getClass() + ":" + System.identityHashCode(that) + "; i:" + i, e);
}
}
return true;
}
public int hashCode() {
int hashCode = 1;
for (int i = 0; i < this.size(); i++) {
Object obj = this.get(i);
hashCode = 31 * hashCode + (obj == null ? 0 : obj.hashCode());
}
return hashCode;
}
}
final class SingletonList extends AbstractMemoryEfficientList {
private Object element1;
SingletonList(final Object obj1) {
super();
this.element1 = obj1;
}
public int size() {
return 1;
}
public Object get(final int index) {
if (index == 0) {
return this.element1;
} else {
throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + this.size());
}
}
public Object set(final int index, final Object element) {
if (index == 0) {
final Object previousElement = this.element1;
this.element1 = element;
return previousElement;
} else {
throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + this.size());
}
}
}
final class DoubletonList extends AbstractMemoryEfficientList {
private Object element1;
private Object element2;
DoubletonList(final Object obj1, final Object obj2) {
this.element1 = obj1;
this.element2 = obj2;
}
public int size() {
return 2;
}
public Object get(final int index) {
switch (index) {
case 0 : return this.element1;
case 1 : return this.element2;
default: throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + this.size());
}
}
public Object set(final int index, final Object element) {
switch (index) {
case 0 :
{
final Object previousElement = this.element1;
this.element1 = element;
return previousElement;
}
case 1 :
{
final Object previousElement = this.element2;
this.element2 = element;
return previousElement;
}
default : throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + this.size());
}
}
}
class WeakPool<V> {
protected static final int DEFAULT_INITIAL_CAPACITY = 16;
private static final int MAXIMUM_CAPACITY = 1 << 30;
private static final float DEFAULT_LOAD_FACTOR = 0.75f;
protected Entry<V>[] table;
private int size;
protected int threshold;
private final float loadFactor;
private final ReferenceQueue<V> queue = new ReferenceQueue<V>();
public WeakPool()
{
this.loadFactor = DEFAULT_LOAD_FACTOR;
threshold = DEFAULT_INITIAL_CAPACITY;
table = new Entry[DEFAULT_INITIAL_CAPACITY];
}
/**
* Check for equality of non-null reference x and possibly-null y. By
* default uses Object.equals.
*/
private boolean eq(Object x, Object y)
{
return x == y || x.equals(y);
}
/**
* Return index for hash code h.
*/
private int indexFor(int h, int length)
{
return h & length - 1;
}
/**
* Expunge stale entries from the table.
*/
private void expungeStaleEntries()
{
Object r;
while ((r = queue.poll()) != null)
{
Entry e = (Entry) r;
int h = e.hash;
int i = indexFor(h, table.length);
// System.out.println("EXPUNGING " + h);
Entry<V> prev = table[i];
Entry<V> p = prev;
while (p != null)
{
Entry<V> next = p.next;
if (p == e)
{
if (prev == e)
{
table[i] = next;
}
else
{
prev.next = next;
}
e.next = null; // Help GC
size--;
break;
}
prev = p;
p = next;
}
}
}
/**
* Return the table after first expunging stale entries
*/
private Entry<V>[] getTable()
{
expungeStaleEntries();
return table;
}
/**
* Returns the number of key-value mappings in this map.
* This result is a snapshot, and may not reflect unprocessed
* entries that will be removed before next attempted access
* because they are no longer referenced.
*/
public int size()
{
if (size == 0)
{
return 0;
}
expungeStaleEntries();
return size;
}
/**
* Returns <tt>true</tt> if this map contains no key-value mappings.
* This result is a snapshot, and may not reflect unprocessed
* entries that will be removed before next attempted access
* because they are no longer referenced.
*/
public boolean isEmpty()
{
return size() == 0;
}
/**
* Returns the value stored in the pool that equals the requested key
* or <tt>null</tt> if the map contains no mapping for
* this key (or the key is null)
*
* @param key the key whose equals value is to be returned.
* @return the object that is equal the specified key, or
* <tt>null</tt> if key is null or no object in the pool equals the key.
*/
public V get(V key)
{
if (key == null)
{
return null;
}
int h = key.hashCode();
Entry<V>[] tab = getTable();
int index = indexFor(h, tab.length);
Entry<V> e = tab[index];
while (e != null)
{
V candidate = e.get();
if (e.hash == h && eq(key, candidate))
{
return candidate;
}
e = e.next;
}
return null;
}
/**
* Returns the entry associated with the specified key in the HashMap.
* Returns null if the HashMap contains no mapping for this key.
*/
Entry getEntry(Object key)
{
int h = key.hashCode();
Entry[] tab = getTable();
int index = indexFor(h, tab.length);
Entry e = tab[index];
while (e != null && !(e.hash == h && eq(key, e.get())))
{
e = e.next;
}
return e;
}
/**
* Places the object into the pool. If the object is null, nothing happens.
* If an equal object already exists, it is not replaced.
*
* @param key the object to put into the pool. key may be null.
* @return the object in the pool that is equal to the key, or the newly placed key if no such object existed when put was called
*/
public V put(V key)
{
if (key == null)
{
return null;
}
int h = key.hashCode();
Entry<V>[] tab = getTable();
int i = indexFor(h, tab.length);
for (Entry<V> e = tab[i]; e != null; e = e.next)
{
V candidate = e.get();
if (h == e.hash && eq(key, candidate))
{
return candidate;
}
}
tab[i] = new Entry<V>(key, queue, h, tab[i]);
if (++size >= threshold)
{
resize(tab.length * 2);
}
// System.out.println("Added " + key + " to pool");
return key;
}
/**
* Rehashes the contents of this map into a new array with a
* larger capacity. This method is called automatically when the
* number of keys in this map reaches its threshold.
* <p/>
* If current capacity is MAXIMUM_CAPACITY, this method does not
* resize the map, but but sets threshold to Integer.MAX_VALUE.
* This has the effect of preventing future calls.
*
* @param newCapacity the new capacity, MUST be a power of two;
* must be greater than current capacity unless current
* capacity is MAXIMUM_CAPACITY (in which case value
* is irrelevant).
*/
void resize(int newCapacity)
{
Entry<V>[] oldTable = getTable();
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY)
{
threshold = Integer.MAX_VALUE;
return;
}
Entry<V>[] newTable = new Entry[newCapacity];
transfer(oldTable, newTable);
table = newTable;
/*
* If ignoring null elements and processing ref queue caused massive
* shrinkage, then restore old table. This should be rare, but avoids
* unbounded expansion of garbage-filled tables.
*/
if (size >= threshold / 2)
{
threshold = (int) (newCapacity * loadFactor);
}
else
{
expungeStaleEntries();
transfer(newTable, oldTable);
table = oldTable;
}
}
/**
* Transfer all entries from src to dest tables
*/
private void transfer(Entry[] src, Entry[] dest)
{
for (int j = 0; j < src.length; ++j)
{
Entry e = src[j];
src[j] = null;
while (e != null)
{
Entry next = e.next;
Object key = e.get();
if (key == null)
{
e.next = null; // Help GC
size--;
}
else
{
int i = indexFor(e.hash, dest.length);
e.next = dest[i];
dest[i] = e;
}
e = next;
}
}
}
/**
* Removes the object in the pool that equals the key.
*
* @param key
* @return previous value associated with specified key, or <tt>null</tt>
* if there was no mapping for key or the key is null.
*/
public V removeFromPool(V key)
{
if (key == null)
{
return null;
}
int h = key.hashCode();
Entry<V>[] tab = getTable();
int i = indexFor(h, tab.length);
Entry<V> prev = tab[i];
Entry<V> e = prev;
while (e != null)
{
Entry<V> next = e.next;
V candidate = e.get();
if (h == e.hash && eq(key, candidate))
{
size--;
if (prev == e)
{
tab[i] = next;
}
else
{
prev.next = next;
}
return candidate;
}
prev = e;
e = next;
}
return null;
}
/**
* Removes all mappings from this map.
*/
public void clear()
{
// clear out ref queue. We don't need to expunge entries
// since table is getting cleared.
while (queue.poll() != null)
{
// nop
}
table = new Entry[DEFAULT_INITIAL_CAPACITY];
threshold = DEFAULT_INITIAL_CAPACITY;
size = 0;
// Allocation of array may have caused GC, which may have caused
// additional entries to go stale. Removing these entries from the
// reference queue will make them eligible for reclamation.
while (queue.poll() != null)
{
// nop
}
}
/**
* The entries in this hash table extend WeakReference, using its main ref
* field as the key.
*/
protected static class Entry<V>
extends WeakReference<V>
{
private final int hash;
private Entry<V> next;
/**
* Create new entry.
*/
Entry(final V key, final ReferenceQueue<V> queue, final int hash, final Entry<V> next)
{
super(key, queue);
this.hash = hash;
this.next = next;
}
public V getKey()
{
return super.get();
}
public boolean equals(Object o)
{
if (!(o instanceof WeakPool.Entry))
{
return false;
}
WeakPool.Entry<V> that = (WeakPool.Entry<V>) o;
V k1 = this.getKey();
V k2 = that.getKey();
return (k1==k2 || k1.equals(k2));
}
public int hashCode()
{
return this.hash;
}
public String toString()
{
return String.valueOf(this.getKey());
}
}
}
final class MultiSynonymKey {
private List<MyList> keys;
public MultiSynonymKey() {
keys = new ArrayList<MyList>();
}
public MultiSynonymKey(MyList... arg) {
keys = Arrays.asList(arg);
}
public List<MyList> getKeys() {
return keys;
}
public int hashCode() {
return this.getKeys().hashCode();
}
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (!(obj instanceof MultiSynonymKey)) {
return false;
}
MultiSynonymKey that = (MultiSynonymKey) obj;
return this.getKeys().equals(that.getKeys());
}
public String toString() {
return this.getClass().getName() + this.getKeys().toString();
}
}
public class Test extends Thread {
static public Test test;
static private byte[] arg1;
static private byte[] arg2;
static public WeakPool<MultiSynonymKey> wp;
public volatile MultiSynonymKey ml1;
public volatile MultiSynonymKey ml2;
private volatile MultiSynonymKey ml3;
public void run() {
int count=0;
while (true) {
try {
Thread.sleep(10);
} catch (Exception e) {}
synchronized (wp) {
ml2 = new MultiSynonymKey(new DoubletonList(new String(arg1), new String(arg2)));
wp.put(ml2);
ml3 = new MultiSynonymKey(new DoubletonList(new String(arg1), new String(arg2)));
}
try {
Thread.sleep(10);
} catch (Exception e) {}
synchronized (wp) {
ml1 = new MultiSynonymKey(new SingletonList(new String(arg1)));
wp.put(ml1);
ml3 = new MultiSynonymKey(new SingletonList(new String(arg1)));
}
if (count++==100)
System.exit(95);
}
}
public static void main(String[] args) throws Exception {
wp = new WeakPool<MultiSynonymKey>();
test = new Test();
test.arg1 = args[0].getBytes();
test.arg2 = args[1].getBytes();
test.ml1 = new MultiSynonymKey(new SingletonList(new String(test.arg1)));
test.ml2 = new MultiSynonymKey(new DoubletonList(new String(test.arg1), new String(test.arg2)));
test.ml3 = new MultiSynonymKey(new DoubletonList(new String(test.arg1), new String(test.arg2)));
wp.put(test.ml1);
wp.put(test.ml2);
test.setDaemon(true);
test.start();
int counter = 0;
while (true) {
synchronized (wp) {
MultiSynonymKey foo = test.ml3;
if (wp.put(foo) == foo) {
// System.out.println("foo " + counter);
// System.out.println(foo);
}
}
counter++;
}
}
private boolean eq(Object x, Object y) {
return x == y || x.equals(y);
}
}