/*
* Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "code/compiledIC.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/disassembler.hpp"
#include "oops/oop.inline.hpp"
#include "oops/objArrayOop.inline.hpp"
#include "runtime/javaCalls.hpp"
#include "jvmci/jvmciEnv.hpp"
#include "jvmci/jvmciCompiler.hpp"
#include "jvmci/jvmciCodeInstaller.hpp"
#include "jvmci/jvmciJavaClasses.hpp"
#include "jvmci/jvmciCompilerToVM.hpp"
#include "jvmci/jvmciRuntime.hpp"
#include "asm/register.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/vmreg.hpp"
#ifdef TARGET_ARCH_x86
# include "vmreg_x86.inline.hpp"
#endif
#ifdef TARGET_ARCH_sparc
# include "vmreg_sparc.inline.hpp"
#endif
#ifdef TARGET_ARCH_zero
# include "vmreg_zero.inline.hpp"
#endif
#ifdef TARGET_ARCH_arm
# include "vmreg_arm.inline.hpp"
#endif
#ifdef TARGET_ARCH_ppc
# include "vmreg_ppc.inline.hpp"
#endif
// frequently used constants
// Allocate them with new so they are never destroyed (otherwise, a
// forced exit could destroy these objects while they are still in
// use).
ConstantOopWriteValue* CodeInstaller::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL);
ConstantIntValue* CodeInstaller::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1);
ConstantIntValue* CodeInstaller::_int_0_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(0);
ConstantIntValue* CodeInstaller::_int_1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1);
ConstantIntValue* CodeInstaller::_int_2_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2);
LocationValue* CodeInstaller::_illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location());
Method* getMethodFromHotSpotMethod(oop hotspot_method) {
assert(hotspot_method != NULL && hotspot_method->is_a(HotSpotResolvedJavaMethodImpl::klass()), "sanity");
return CompilerToVM::asMethod(hotspot_method);
}
VMReg getVMRegFromLocation(oop location, int total_frame_size) {
oop reg = code_Location::reg(location);
jint offset = code_Location::offset(location);
if (reg != NULL) {
// register
jint number = code_Register::number(reg);
VMReg vmReg = CodeInstaller::get_hotspot_reg(number);
assert(offset % 4 == 0, "must be aligned");
return vmReg->next(offset / 4);
} else {
// stack slot
assert(offset % 4 == 0, "must be aligned");
return VMRegImpl::stack2reg(offset / 4);
}
}
// creates a HotSpot oop map out of the byte arrays provided by DebugInfo
OopMap* CodeInstaller::create_oop_map(oop debug_info) {
oop reference_map = DebugInfo::referenceMap(debug_info);
if (HotSpotReferenceMap::maxRegisterSize(reference_map) > 16) {
_has_wide_vector = true;
}
OopMap* map = new OopMap(_total_frame_size, _parameter_count);
objArrayOop objects = HotSpotReferenceMap::objects(reference_map);
objArrayOop derivedBase = HotSpotReferenceMap::derivedBase(reference_map);
typeArrayOop sizeInBytes = HotSpotReferenceMap::sizeInBytes(reference_map);
for (int i = 0; i < objects->length(); i++) {
oop location = objects->obj_at(i);
oop baseLocation = derivedBase->obj_at(i);
int bytes = sizeInBytes->int_at(i);
VMReg vmReg = getVMRegFromLocation(location, _total_frame_size);
if (baseLocation != NULL) {
// derived oop
assert(bytes == 8, "derived oop can't be compressed");
VMReg baseReg = getVMRegFromLocation(baseLocation, _total_frame_size);
map->set_derived_oop(vmReg, baseReg);
} else if (bytes == 8) {
// wide oop
map->set_oop(vmReg);
} else {
// narrow oop
assert(bytes == 4, "wrong size");
map->set_narrowoop(vmReg);
}
}
oop callee_save_info = (oop) DebugInfo::calleeSaveInfo(debug_info);
if (callee_save_info != NULL) {
objArrayOop registers = RegisterSaveLayout::registers(callee_save_info);
typeArrayOop slots = RegisterSaveLayout::slots(callee_save_info);
for (jint i = 0; i < slots->length(); i++) {
oop jvmci_reg = registers->obj_at(i);
jint jvmci_reg_number = code_Register::number(jvmci_reg);
VMReg hotspot_reg = CodeInstaller::get_hotspot_reg(jvmci_reg_number);
// HotSpot stack slots are 4 bytes
jint jvmci_slot = slots->int_at(i);
jint hotspot_slot = jvmci_slot * VMRegImpl::slots_per_word;
VMReg hotspot_slot_as_reg = VMRegImpl::stack2reg(hotspot_slot);
map->set_callee_saved(hotspot_slot_as_reg, hotspot_reg);
#ifdef _LP64
// (copied from generate_oop_map() in c1_Runtime1_x86.cpp)
VMReg hotspot_slot_hi_as_reg = VMRegImpl::stack2reg(hotspot_slot + 1);
map->set_callee_saved(hotspot_slot_hi_as_reg, hotspot_reg->next());
#endif
}
}
return map;
}
static void record_metadata_reference(oop obj, jlong prim, jboolean compressed, OopRecorder* oop_recorder) {
if (obj->is_a(HotSpotResolvedObjectTypeImpl::klass())) {
Klass* klass = java_lang_Class::as_Klass(HotSpotResolvedObjectTypeImpl::javaClass(obj));
if (compressed) {
assert(Klass::decode_klass((narrowKlass) prim) == klass, "%s @ " INTPTR_FORMAT " != " PTR64_FORMAT, klass->name()->as_C_string(), p2i(klass), prim);
} else {
assert((Klass*) prim == klass, "%s @ " INTPTR_FORMAT " != " PTR64_FORMAT, klass->name()->as_C_string(), p2i(klass), prim);
}
int index = oop_recorder->find_index(klass);
TRACE_jvmci_3("metadata[%d of %d] = %s", index, oop_recorder->metadata_count(), klass->name()->as_C_string());
} else if (obj->is_a(HotSpotResolvedJavaMethodImpl::klass())) {
Method* method = (Method*) (address) HotSpotResolvedJavaMethodImpl::metaspaceMethod(obj);
assert(!compressed, "unexpected compressed method pointer %s @ " INTPTR_FORMAT " = " PTR64_FORMAT, method->name()->as_C_string(), p2i(method), prim);
int index = oop_recorder->find_index(method);
TRACE_jvmci_3("metadata[%d of %d] = %s", index, oop_recorder->metadata_count(), method->name()->as_C_string());
} else {
assert(java_lang_String::is_instance(obj),
"unexpected metadata reference (%s) for constant " JLONG_FORMAT " (" PTR64_FORMAT ")", obj->klass()->name()->as_C_string(), prim, prim);
}
}
// Records any Metadata values embedded in a Constant (e.g., the value returned by HotSpotResolvedObjectTypeImpl.klass()).
static void record_metadata_in_constant(oop constant, OopRecorder* oop_recorder) {
if (constant->is_a(HotSpotMetaspaceConstantImpl::klass())) {
oop obj = HotSpotMetaspaceConstantImpl::metaspaceObject(constant);
jlong prim = HotSpotMetaspaceConstantImpl::primitive(constant);
assert(obj != NULL, "must have an object");
assert(prim != 0, "must have a primitive value");
record_metadata_reference(obj, prim, false, oop_recorder);
}
}
static void record_metadata_in_patch(Handle& constant, OopRecorder* oop_recorder) {
record_metadata_reference(HotSpotMetaspaceConstantImpl::metaspaceObject(constant), HotSpotMetaspaceConstantImpl::primitive(constant), HotSpotMetaspaceConstantImpl::compressed(constant), oop_recorder);
}
Location::Type CodeInstaller::get_oop_type(oop value) {
oop lirKind = Value::lirKind(value);
oop platformKind = LIRKind::platformKind(lirKind);
assert(LIRKind::referenceMask(lirKind) == 1, "unexpected referenceMask");
if (platformKind == word_kind()) {
return Location::oop;
} else {
return Location::narrowoop;
}
}
ScopeValue* CodeInstaller::get_scope_value(oop value, BasicType type, GrowableArray<ScopeValue*>* objects, ScopeValue* &second) {
second = NULL;
if (value == Value::ILLEGAL()) {
assert(type == T_ILLEGAL, "expected legal value");
return _illegal_value;
} else if (value->is_a(RegisterValue::klass())) {
oop reg = RegisterValue::reg(value);
jint number = code_Register::number(reg);
VMReg hotspotRegister = get_hotspot_reg(number);
if (is_general_purpose_reg(hotspotRegister)) {
Location::Type locationType;
if (type == T_OBJECT) {
locationType = get_oop_type(value);
} else if (type == T_LONG) {
locationType = Location::lng;
} else {
assert(type == T_INT || type == T_FLOAT || type == T_SHORT || type == T_CHAR || type == T_BYTE || type == T_BOOLEAN, "unexpected type in cpu register");
locationType = Location::int_in_long;
}
ScopeValue* value = new LocationValue(Location::new_reg_loc(locationType, hotspotRegister));
if (type == T_LONG) {
second = value;
}
return value;
} else {
assert(type == T_FLOAT || type == T_DOUBLE, "only float and double expected in xmm register");
Location::Type locationType;
if (type == T_FLOAT) {
// this seems weird, but the same value is used in c1_LinearScan
locationType = Location::normal;
} else {
locationType = Location::dbl;
}
ScopeValue* value = new LocationValue(Location::new_reg_loc(locationType, hotspotRegister));
if (type == T_DOUBLE) {
second = value;
}
return value;
}
} else if (value->is_a(StackSlot::klass())) {
jint offset = StackSlot::offset(value);
if (StackSlot::addFrameSize(value)) {
offset += _total_frame_size;
}
Location::Type locationType;
if (type == T_OBJECT) {
locationType = get_oop_type(value);
} else if (type == T_LONG) {
locationType = Location::lng;
} else if (type == T_DOUBLE) {
locationType = Location::dbl;
} else {
assert(type == T_INT || type == T_FLOAT || type == T_SHORT || type == T_CHAR || type == T_BYTE || type == T_BOOLEAN, "unexpected type in stack slot");
locationType = Location::normal;
}
ScopeValue* value = new LocationValue(Location::new_stk_loc(locationType, offset));
if (type == T_DOUBLE || type == T_LONG) {
second = value;
}
return value;
} else if (value->is_a(JavaConstant::klass())) {
record_metadata_in_constant(value, _oop_recorder);
if (value->is_a(PrimitiveConstant::klass())) {
if (value->is_a(RawConstant::klass())) {
jlong prim = PrimitiveConstant::primitive(value);
return new ConstantLongValue(prim);
} else {
assert(type == JVMCIRuntime::kindToBasicType(JavaKind::typeChar(PrimitiveConstant::kind(value))), "primitive constant type doesn't match");
if (type == T_INT || type == T_FLOAT) {
jint prim = (jint)PrimitiveConstant::primitive(value);
switch (prim) {
case -1: return _int_m1_scope_value;
case 0: return _int_0_scope_value;
case 1: return _int_1_scope_value;
case 2: return _int_2_scope_value;
default: return new ConstantIntValue(prim);
}
} else {
assert(type == T_LONG || type == T_DOUBLE, "unexpected primitive constant type");
jlong prim = PrimitiveConstant::primitive(value);
second = _int_1_scope_value;
return new ConstantLongValue(prim);
}
}
} else {
assert(type == T_OBJECT, "unexpected object constant");
if (value->is_a(NullConstant::klass()) || value->is_a(HotSpotCompressedNullConstant::klass())) {
return _oop_null_scope_value;
} else {
assert(value->is_a(HotSpotObjectConstantImpl::klass()), "unexpected constant type");
oop obj = HotSpotObjectConstantImpl::object(value);
assert(obj != NULL, "null value must be in NullConstant");
return new ConstantOopWriteValue(JNIHandles::make_local(obj));
}
}
} else if (value->is_a(VirtualObject::klass())) {
assert(type == T_OBJECT, "unexpected virtual object");
int id = VirtualObject::id(value);
ScopeValue* object = objects->at(id);
assert(object != NULL, "missing value");
return object;
} else {
value->klass()->print();
value->print();
}
ShouldNotReachHere();
return NULL;
}
void CodeInstaller::record_object_value(ObjectValue* sv, oop value, GrowableArray<ScopeValue*>* objects) {
oop type = VirtualObject::type(value);
int id = VirtualObject::id(value);
oop javaMirror = HotSpotResolvedObjectTypeImpl::javaClass(type);
Klass* klass = java_lang_Class::as_Klass(javaMirror);
bool isLongArray = klass == Universe::longArrayKlassObj();
objArrayOop values = VirtualObject::values(value);
objArrayOop slotKinds = VirtualObject::slotKinds(value);
for (jint i = 0; i < values->length(); i++) {
ScopeValue* cur_second = NULL;
oop object = values->obj_at(i);
oop kind = slotKinds->obj_at(i);
BasicType type = JVMCIRuntime::kindToBasicType(JavaKind::typeChar(kind));
ScopeValue* value = get_scope_value(object, type, objects, cur_second);
if (isLongArray && cur_second == NULL) {
// we're trying to put ints into a long array... this isn't really valid, but it's used for some optimizations.
// add an int 0 constant
cur_second = _int_0_scope_value;
}
if (cur_second != NULL) {
sv->field_values()->append(cur_second);
}
assert(value != NULL, "missing value");
sv->field_values()->append(value);
}
}
MonitorValue* CodeInstaller::get_monitor_value(oop value, GrowableArray<ScopeValue*>* objects) {
guarantee(value->is_a(StackLockValue::klass()), "Monitors must be of type StackLockValue");
ScopeValue* second = NULL;
ScopeValue* owner_value = get_scope_value(StackLockValue::owner(value), T_OBJECT, objects, second);
assert(second == NULL, "monitor cannot occupy two stack slots");
ScopeValue* lock_data_value = get_scope_value(StackLockValue::slot(value), T_LONG, objects, second);
assert(second == lock_data_value, "monitor is LONG value that occupies two stack slots");
assert(lock_data_value->is_location(), "invalid monitor location");
Location lock_data_loc = ((LocationValue*)lock_data_value)->location();
bool eliminated = false;
if (StackLockValue::eliminated(value)) {
eliminated = true;
}
return new MonitorValue(owner_value, lock_data_loc, eliminated);
}
void CodeInstaller::initialize_dependencies(oop compiled_code, OopRecorder* recorder) {
JavaThread* thread = JavaThread::current();
CompilerThread* compilerThread = thread->is_Compiler_thread() ? thread->as_CompilerThread() : NULL;
_oop_recorder = recorder;
_dependencies = new Dependencies(&_arena, _oop_recorder, compilerThread != NULL ? compilerThread->log() : NULL);
objArrayHandle assumptions = HotSpotCompiledCode::assumptions(compiled_code);
if (!assumptions.is_null()) {
int length = assumptions->length();
for (int i = 0; i < length; ++i) {
Handle assumption = assumptions->obj_at(i);
if (!assumption.is_null()) {
if (assumption->klass() == Assumptions_NoFinalizableSubclass::klass()) {
assumption_NoFinalizableSubclass(assumption);
} else if (assumption->klass() == Assumptions_ConcreteSubtype::klass()) {
assumption_ConcreteSubtype(assumption);
} else if (assumption->klass() == Assumptions_LeafType::klass()) {
assumption_LeafType(assumption);
} else if (assumption->klass() == Assumptions_ConcreteMethod::klass()) {
assumption_ConcreteMethod(assumption);
} else if (assumption->klass() == Assumptions_CallSiteTargetValue::klass()) {
assumption_CallSiteTargetValue(assumption);
} else {
assumption->print();
fatal("unexpected Assumption subclass");
}
}
}
}
objArrayHandle methods = HotSpotCompiledCode::methods(compiled_code);
if (!methods.is_null()) {
int length = methods->length();
for (int i = 0; i < length; ++i) {
Handle method_handle = methods->obj_at(i);
methodHandle method = getMethodFromHotSpotMethod(method_handle());
_dependencies->assert_evol_method(method());
}
}
}
RelocBuffer::~RelocBuffer() {
if (_buffer != NULL) {
FREE_C_HEAP_ARRAY(char, _buffer);
}
}
address RelocBuffer::begin() const {
if (_buffer != NULL) {
return (address) _buffer;
}
return (address) _static_buffer;
}
void RelocBuffer::set_size(size_t bytes) {
assert(bytes <= _size, "can't grow in size!");
_size = bytes;
}
void RelocBuffer::ensure_size(size_t bytes) {
assert(_buffer == NULL, "can only be used once");
assert(_size == 0, "can only be used once");
if (bytes >= RelocBuffer::stack_size) {
_buffer = NEW_C_HEAP_ARRAY(char, bytes, mtInternal);
}
_size = bytes;
}
JVMCIEnv::CodeInstallResult CodeInstaller::gather_metadata(Handle target, Handle& compiled_code, CodeMetadata& metadata) {
CodeBuffer buffer("JVMCI Compiler CodeBuffer for Metadata");
jobject compiled_code_obj = JNIHandles::make_local(compiled_code());
initialize_dependencies(JNIHandles::resolve(compiled_code_obj), NULL);
// Get instructions and constants CodeSections early because we need it.
_instructions = buffer.insts();
_constants = buffer.consts();
initialize_fields(target(), JNIHandles::resolve(compiled_code_obj));
if (!initialize_buffer(buffer)) {
return JVMCIEnv::code_too_large;
}
process_exception_handlers();
_debug_recorder->pcs_size(); // ehm, create the sentinel record
assert(_debug_recorder->pcs_length() >= 2, "must be at least 2");
metadata.set_pc_desc(_debug_recorder->pcs(), _debug_recorder->pcs_length());
metadata.set_scopes(_debug_recorder->stream()->buffer(), _debug_recorder->data_size());
metadata.set_exception_table(&_exception_handler_table);
RelocBuffer* reloc_buffer = metadata.get_reloc_buffer();
reloc_buffer->ensure_size(buffer.total_relocation_size());
size_t size = (size_t) buffer.copy_relocations_to(reloc_buffer->begin(), (CodeBuffer::csize_t) reloc_buffer->size(), true);
reloc_buffer->set_size(size);
return JVMCIEnv::ok;
}
// constructor used to create a method
JVMCIEnv::CodeInstallResult CodeInstaller::install(JVMCICompiler* compiler, Handle target, Handle& compiled_code, CodeBlob*& cb, Handle installed_code, Handle speculation_log) {
CodeBuffer buffer("JVMCI Compiler CodeBuffer");
jobject compiled_code_obj = JNIHandles::make_local(compiled_code());
OopRecorder* recorder = new OopRecorder(&_arena, true);
initialize_dependencies(JNIHandles::resolve(compiled_code_obj), recorder);
// Get instructions and constants CodeSections early because we need it.
_instructions = buffer.insts();
_constants = buffer.consts();
initialize_fields(target(), JNIHandles::resolve(compiled_code_obj));
JVMCIEnv::CodeInstallResult result = initialize_buffer(buffer);
if (result != JVMCIEnv::ok) {
return result;
}
process_exception_handlers();
int stack_slots = _total_frame_size / HeapWordSize; // conversion to words
if (!compiled_code->is_a(HotSpotCompiledNmethod::klass())) {
oop stubName = HotSpotCompiledCode::name(compiled_code_obj);
char* name = strdup(java_lang_String::as_utf8_string(stubName));
cb = RuntimeStub::new_runtime_stub(name,
&buffer,
CodeOffsets::frame_never_safe,
stack_slots,
_debug_recorder->_oopmaps,
false);
result = JVMCIEnv::ok;
} else {
nmethod* nm = NULL;
methodHandle method = getMethodFromHotSpotMethod(HotSpotCompiledNmethod::method(compiled_code));
jint entry_bci = HotSpotCompiledNmethod::entryBCI(compiled_code);
jint id = HotSpotCompiledNmethod::id(compiled_code);
bool has_unsafe_access = HotSpotCompiledNmethod::hasUnsafeAccess(compiled_code) == JNI_TRUE;
JVMCIEnv* env = (JVMCIEnv*) (address) HotSpotCompiledNmethod::jvmciEnv(compiled_code);
if (id == -1) {
// Make sure a valid compile_id is associated with every compile
id = CompileBroker::assign_compile_id_unlocked(Thread::current(), method, entry_bci);
}
result = JVMCIEnv::register_method(method, nm, entry_bci, &_offsets, _custom_stack_area_offset, &buffer,
stack_slots, _debug_recorder->_oopmaps, &_exception_handler_table,
compiler, _debug_recorder, _dependencies, env, id,
has_unsafe_access, _has_wide_vector, installed_code, compiled_code, speculation_log);
cb = nm;
}
if (cb != NULL) {
// Make sure the pre-calculated constants section size was correct.
guarantee((cb->code_begin() - cb->content_begin()) >= _constants_size, "%d < %d", (int)(cb->code_begin() - cb->content_begin()), _constants_size);
}
return result;
}
void CodeInstaller::initialize_fields(oop target, oop compiled_code) {
if (compiled_code->is_a(HotSpotCompiledNmethod::klass())) {
Handle hotspotJavaMethod = HotSpotCompiledNmethod::method(compiled_code);
methodHandle method = getMethodFromHotSpotMethod(hotspotJavaMethod());
_parameter_count = method->size_of_parameters();
TRACE_jvmci_2("installing code for %s", method->name_and_sig_as_C_string());
} else {
// Must be a HotSpotCompiledRuntimeStub.
// Only used in OopMap constructor for non-product builds
_parameter_count = 0;
}
_sites_handle = JNIHandles::make_local(HotSpotCompiledCode::sites(compiled_code));
_exception_handlers_handle = JNIHandles::make_local(HotSpotCompiledCode::exceptionHandlers(compiled_code));
_code_handle = JNIHandles::make_local(HotSpotCompiledCode::targetCode(compiled_code));
_code_size = HotSpotCompiledCode::targetCodeSize(compiled_code);
_total_frame_size = HotSpotCompiledCode::totalFrameSize(compiled_code);
_custom_stack_area_offset = HotSpotCompiledCode::customStackAreaOffset(compiled_code);
// Pre-calculate the constants section size. This is required for PC-relative addressing.
_data_section_handle = JNIHandles::make_local(HotSpotCompiledCode::dataSection(compiled_code));
guarantee(HotSpotCompiledCode::dataSectionAlignment(compiled_code) <= _constants->alignment(), "Alignment inside constants section is restricted by alignment of section begin");
_constants_size = data_section()->length();
_data_section_patches_handle = JNIHandles::make_local(HotSpotCompiledCode::dataSectionPatches(compiled_code));
#ifndef PRODUCT
_comments_handle = JNIHandles::make_local(HotSpotCompiledCode::comments(compiled_code));
#endif
_next_call_type = INVOKE_INVALID;
_has_wide_vector = false;
oop arch = TargetDescription::arch(target);
_word_kind_handle = JNIHandles::make_local(Architecture::wordKind(arch));
}
int CodeInstaller::estimate_stubs_size() {
// Return size for all stubs.
int static_call_stubs = 0;
objArrayOop sites = this->sites();
for (int i = 0; i < sites->length(); i++) {
oop site = sites->obj_at(i);
if (site->is_a(CompilationResult_Mark::klass())) {
oop id_obj = CompilationResult_Mark::id(site);
if (id_obj != NULL) {
assert(java_lang_boxing_object::is_instance(id_obj, T_INT), "Integer id expected");
jint id = id_obj->int_field(java_lang_boxing_object::value_offset_in_bytes(T_INT));
if (id == INVOKESTATIC || id == INVOKESPECIAL) {
static_call_stubs++;
}
}
}
}
return static_call_stubs * CompiledStaticCall::to_interp_stub_size();
}
// perform data and call relocation on the CodeBuffer
JVMCIEnv::CodeInstallResult CodeInstaller::initialize_buffer(CodeBuffer& buffer) {
objArrayHandle sites = this->sites();
int locs_buffer_size = sites->length() * (relocInfo::length_limit + sizeof(relocInfo));
// Allocate enough space in the stub section for the static call
// stubs. Stubs have extra relocs but they are managed by the stub
// section itself so they don't need to be accounted for in the
// locs_buffer above.
int stubs_size = estimate_stubs_size();
int total_size = round_to(_code_size, buffer.insts()->alignment()) + round_to(_constants_size, buffer.consts()->alignment()) + round_to(stubs_size, buffer.stubs()->alignment());
if (total_size > JVMCINMethodSizeLimit) {
return JVMCIEnv::code_too_large;
}
buffer.initialize(total_size, locs_buffer_size);
if (buffer.blob() == NULL) {
return JVMCIEnv::cache_full;
}
buffer.initialize_stubs_size(stubs_size);
buffer.initialize_consts_size(_constants_size);
_debug_recorder = new DebugInformationRecorder(_oop_recorder);
_debug_recorder->set_oopmaps(new OopMapSet());
buffer.initialize_oop_recorder(_oop_recorder);
// copy the constant data into the newly created CodeBuffer
address end_data = _constants->start() + _constants_size;
memcpy(_constants->start(), data_section()->base(T_BYTE), _constants_size);
_constants->set_end(end_data);
// copy the code into the newly created CodeBuffer
address end_pc = _instructions->start() + _code_size;
guarantee(_instructions->allocates2(end_pc), "initialize should have reserved enough space for all the code");
memcpy(_instructions->start(), code()->base(T_BYTE), _code_size);
_instructions->set_end(end_pc);
for (int i = 0; i < data_section_patches()->length(); i++) {
Handle patch = data_section_patches()->obj_at(i);
Handle reference = CompilationResult_DataPatch::reference(patch);
assert(reference->is_a(CompilationResult_ConstantReference::klass()), "patch in data section must be a ConstantReference");
Handle constant = CompilationResult_ConstantReference::constant(reference);
if (constant->is_a(HotSpotMetaspaceConstantImpl::klass())) {
record_metadata_in_patch(constant, _oop_recorder);
} else if (constant->is_a(HotSpotObjectConstantImpl::klass())) {
Handle obj = HotSpotObjectConstantImpl::object(constant);
jobject value = JNIHandles::make_local(obj());
int oop_index = _oop_recorder->find_index(value);
address dest = _constants->start() + CompilationResult_Site::pcOffset(patch);
if (HotSpotObjectConstantImpl::compressed(constant)) {
#ifdef _LP64
_constants->relocate(dest, oop_Relocation::spec(oop_index), relocInfo::narrow_oop_in_const);
#else
fatal("unexpected compressed oop in 32-bit mode");
#endif
} else {
_constants->relocate(dest, oop_Relocation::spec(oop_index));
}
} else {
ShouldNotReachHere();
}
}
jint last_pc_offset = -1;
for (int i = 0; i < sites->length(); i++) {
{
No_Safepoint_Verifier no_safepoint;
oop site = sites->obj_at(i);
jint pc_offset = CompilationResult_Site::pcOffset(site);
if (site->is_a(CompilationResult_Call::klass())) {
TRACE_jvmci_4("call at %i", pc_offset);
site_Call(buffer, pc_offset, site);
} else if (site->is_a(CompilationResult_Infopoint::klass())) {
// three reasons for infopoints denote actual safepoints
oop reason = CompilationResult_Infopoint::reason(site);
if (InfopointReason::SAFEPOINT() == reason || InfopointReason::CALL() == reason || InfopointReason::IMPLICIT_EXCEPTION() == reason) {
TRACE_jvmci_4("safepoint at %i", pc_offset);
site_Safepoint(buffer, pc_offset, site);
} else {
// if the infopoint is not an actual safepoint, it must have one of the other reasons
// (safeguard against new safepoint types that require handling above)
assert(InfopointReason::METHOD_START() == reason || InfopointReason::METHOD_END() == reason || InfopointReason::LINE_NUMBER() == reason, "");
site_Infopoint(buffer, pc_offset, site);
}
} else if (site->is_a(CompilationResult_DataPatch::klass())) {
TRACE_jvmci_4("datapatch at %i", pc_offset);
site_DataPatch(buffer, pc_offset, site);
} else if (site->is_a(CompilationResult_Mark::klass())) {
TRACE_jvmci_4("mark at %i", pc_offset);
site_Mark(buffer, pc_offset, site);
} else {
fatal("unexpected Site subclass");
}
last_pc_offset = pc_offset;
}
if (CodeInstallSafepointChecks && SafepointSynchronize::do_call_back()) {
// this is a hacky way to force a safepoint check but nothing else was jumping out at me.
ThreadToNativeFromVM ttnfv(JavaThread::current());
}
}
#ifndef PRODUCT
if (comments() != NULL) {
No_Safepoint_Verifier no_safepoint;
for (int i = 0; i < comments()->length(); i++) {
oop comment = comments()->obj_at(i);
assert(comment->is_a(HotSpotCompiledCode_Comment::klass()), "cce");
jint offset = HotSpotCompiledCode_Comment::pcOffset(comment);
char* text = java_lang_String::as_utf8_string(HotSpotCompiledCode_Comment::text(comment));
buffer.block_comment(offset, text);
}
}
#endif
return JVMCIEnv::ok;
}
void CodeInstaller::assumption_NoFinalizableSubclass(Handle assumption) {
Handle receiverType_handle = Assumptions_NoFinalizableSubclass::receiverType(assumption());
Klass* receiverType = java_lang_Class::as_Klass(HotSpotResolvedObjectTypeImpl::javaClass(receiverType_handle));
_dependencies->assert_has_no_finalizable_subclasses(receiverType);
}
void CodeInstaller::assumption_ConcreteSubtype(Handle assumption) {
Handle context_handle = Assumptions_ConcreteSubtype::context(assumption());
Handle subtype_handle = Assumptions_ConcreteSubtype::subtype(assumption());
Klass* context = java_lang_Class::as_Klass(HotSpotResolvedObjectTypeImpl::javaClass(context_handle));
Klass* subtype = java_lang_Class::as_Klass(HotSpotResolvedObjectTypeImpl::javaClass(subtype_handle));
assert(context->is_abstract(), "");
_dependencies->assert_abstract_with_unique_concrete_subtype(context, subtype);
}
void CodeInstaller::assumption_LeafType(Handle assumption) {
Handle context_handle = Assumptions_LeafType::context(assumption());
Klass* context = java_lang_Class::as_Klass(HotSpotResolvedObjectTypeImpl::javaClass(context_handle));
_dependencies->assert_leaf_type(context);
}
void CodeInstaller::assumption_ConcreteMethod(Handle assumption) {
Handle impl_handle = Assumptions_ConcreteMethod::impl(assumption());
Handle context_handle = Assumptions_ConcreteMethod::context(assumption());
methodHandle impl = getMethodFromHotSpotMethod(impl_handle());
Klass* context = java_lang_Class::as_Klass(HotSpotResolvedObjectTypeImpl::javaClass(context_handle));
_dependencies->assert_unique_concrete_method(context, impl());
}
void CodeInstaller::assumption_CallSiteTargetValue(Handle assumption) {
Handle callSite = Assumptions_CallSiteTargetValue::callSite(assumption());
Handle methodHandle = Assumptions_CallSiteTargetValue::methodHandle(assumption());
_dependencies->assert_call_site_target_value(callSite(), methodHandle());
}
void CodeInstaller::process_exception_handlers() {
if (exception_handlers() != NULL) {
objArrayOop handlers = exception_handlers();
for (int i = 0; i < handlers->length(); i++) {
oop exc = handlers->obj_at(i);
jint pc_offset = CompilationResult_Site::pcOffset(exc);
jint handler_offset = CompilationResult_ExceptionHandler::handlerPos(exc);
// Subtable header
_exception_handler_table.add_entry(HandlerTableEntry(1, pc_offset, 0));
// Subtable entry
_exception_handler_table.add_entry(HandlerTableEntry(-1, handler_offset, 0));
}
}
}
// If deoptimization happens, the interpreter should reexecute these bytecodes.
// This function mainly helps the compilers to set up the reexecute bit.
static bool bytecode_should_reexecute(Bytecodes::Code code) {
switch (code) {
case Bytecodes::_invokedynamic:
case Bytecodes::_invokevirtual:
case Bytecodes::_invokeinterface:
case Bytecodes::_invokespecial:
case Bytecodes::_invokestatic:
return false;
default:
return true;
}
return true;
}
GrowableArray<ScopeValue*>* CodeInstaller::record_virtual_objects(oop debug_info) {
objArrayOop virtualObjects = DebugInfo::virtualObjectMapping(debug_info);
if (virtualObjects == NULL) {
return NULL;
}
GrowableArray<ScopeValue*>* objects = new GrowableArray<ScopeValue*>(virtualObjects->length(), virtualObjects->length(), NULL);
// Create the unique ObjectValues
for (int i = 0; i < virtualObjects->length(); i++) {
oop value = virtualObjects->obj_at(i);
int id = VirtualObject::id(value);
oop type = VirtualObject::type(value);
oop javaMirror = HotSpotResolvedObjectTypeImpl::javaClass(type);
ObjectValue* sv = new ObjectValue(id, new ConstantOopWriteValue(JNIHandles::make_local(Thread::current(), javaMirror)));
assert(objects->at(id) == NULL, "once");
objects->at_put(id, sv);
}
// All the values which could be referenced by the VirtualObjects
// exist, so now describe all the VirtualObjects themselves.
for (int i = 0; i < virtualObjects->length(); i++) {
oop value = virtualObjects->obj_at(i);
int id = VirtualObject::id(value);
record_object_value(objects->at(id)->as_ObjectValue(), value, objects);
}
_debug_recorder->dump_object_pool(objects);
return objects;
}
void CodeInstaller::record_scope(jint pc_offset, oop debug_info) {
oop position = DebugInfo::bytecodePosition(debug_info);
if (position == NULL) {
// Stubs do not record scope info, just oop maps
return;
}
GrowableArray<ScopeValue*>* objectMapping = record_virtual_objects(debug_info);
record_scope(pc_offset, position, objectMapping);
}
void CodeInstaller::record_scope(jint pc_offset, oop position, GrowableArray<ScopeValue*>* objects) {
oop frame = NULL;
if (position->is_a(BytecodeFrame::klass())) {
frame = position;
}
oop caller_frame = BytecodePosition::caller(position);
if (caller_frame != NULL) {
record_scope(pc_offset, caller_frame, objects);
}
oop hotspot_method = BytecodePosition::method(position);
Method* method = getMethodFromHotSpotMethod(hotspot_method);
jint bci = BytecodePosition::bci(position);
if (bci == BytecodeFrame::BEFORE_BCI()) {
bci = SynchronizationEntryBCI;
}
TRACE_jvmci_2("Recording scope pc_offset=%d bci=%d method=%s", pc_offset, bci, method->name_and_sig_as_C_string());
bool reexecute = false;
if (frame != NULL) {
if (bci == SynchronizationEntryBCI){
reexecute = false;
} else {
Bytecodes::Code code = Bytecodes::java_code_at(method, method->bcp_from(bci));
reexecute = bytecode_should_reexecute(code);
if (frame != NULL) {
reexecute = (BytecodeFrame::duringCall(frame) == JNI_FALSE);
}
}
}
DebugToken* locals_token = NULL;
DebugToken* expressions_token = NULL;
DebugToken* monitors_token = NULL;
bool throw_exception = false;
if (frame != NULL) {
jint local_count = BytecodeFrame::numLocals(frame);
jint expression_count = BytecodeFrame::numStack(frame);
jint monitor_count = BytecodeFrame::numLocks(frame);
objArrayOop values = BytecodeFrame::values(frame);
objArrayOop slotKinds = BytecodeFrame::slotKinds(frame);
assert(local_count + expression_count + monitor_count == values->length(), "unexpected values length");
assert(local_count + expression_count == slotKinds->length(), "unexpected slotKinds length");
GrowableArray<ScopeValue*>* locals = local_count > 0 ? new GrowableArray<ScopeValue*> (local_count) : NULL;
GrowableArray<ScopeValue*>* expressions = expression_count > 0 ? new GrowableArray<ScopeValue*> (expression_count) : NULL;
GrowableArray<MonitorValue*>* monitors = monitor_count > 0 ? new GrowableArray<MonitorValue*> (monitor_count) : NULL;
TRACE_jvmci_2("Scope at bci %d with %d values", bci, values->length());
TRACE_jvmci_2("%d locals %d expressions, %d monitors", local_count, expression_count, monitor_count);
for (jint i = 0; i < values->length(); i++) {
ScopeValue* second = NULL;
oop value = values->obj_at(i);
if (i < local_count) {
oop kind = slotKinds->obj_at(i);
BasicType type = JVMCIRuntime::kindToBasicType(JavaKind::typeChar(kind));
ScopeValue* first = get_scope_value(value, type, objects, second);
if (second != NULL) {
locals->append(second);
}
locals->append(first);
} else if (i < local_count + expression_count) {
oop kind = slotKinds->obj_at(i);
BasicType type = JVMCIRuntime::kindToBasicType(JavaKind::typeChar(kind));
ScopeValue* first = get_scope_value(value, type, objects, second);
if (second != NULL) {
expressions->append(second);
}
expressions->append(first);
} else {
monitors->append(get_monitor_value(value, objects));
}
if (second != NULL) {
i++;
assert(i < values->length(), "double-slot value not followed by Value.ILLEGAL");
assert(values->obj_at(i) == Value::ILLEGAL(), "double-slot value not followed by Value.ILLEGAL");
}
}
locals_token = _debug_recorder->create_scope_values(locals);
expressions_token = _debug_recorder->create_scope_values(expressions);
monitors_token = _debug_recorder->create_monitor_values(monitors);
throw_exception = BytecodeFrame::rethrowException(frame) == JNI_TRUE;
}
_debug_recorder->describe_scope(pc_offset, method, NULL, bci, reexecute, throw_exception, false, false,
locals_token, expressions_token, monitors_token);
}
void CodeInstaller::site_Safepoint(CodeBuffer& buffer, jint pc_offset, oop site) {
oop debug_info = CompilationResult_Infopoint::debugInfo(site);
assert(debug_info != NULL, "debug info expected");
// address instruction = _instructions->start() + pc_offset;
// jint next_pc_offset = Assembler::locate_next_instruction(instruction) - _instructions->start();
_debug_recorder->add_safepoint(pc_offset, create_oop_map(debug_info));
record_scope(pc_offset, debug_info);
_debug_recorder->end_safepoint(pc_offset);
}
void CodeInstaller::site_Infopoint(CodeBuffer& buffer, jint pc_offset, oop site) {
oop debug_info = CompilationResult_Infopoint::debugInfo(site);
assert(debug_info != NULL, "debug info expected");
_debug_recorder->add_non_safepoint(pc_offset);
record_scope(pc_offset, debug_info);
_debug_recorder->end_non_safepoint(pc_offset);
}
void CodeInstaller::site_Call(CodeBuffer& buffer, jint pc_offset, oop site) {
oop target = CompilationResult_Call::target(site);
InstanceKlass* target_klass = InstanceKlass::cast(target->klass());
oop hotspot_method = NULL; // JavaMethod
oop foreign_call = NULL;
if (target_klass->is_subclass_of(SystemDictionary::HotSpotForeignCallTarget_klass())) {
foreign_call = target;
} else {
hotspot_method = target;
}
oop debug_info = CompilationResult_Call::debugInfo(site);
assert(!!hotspot_method ^ !!foreign_call, "Call site needs exactly one type");
NativeInstruction* inst = nativeInstruction_at(_instructions->start() + pc_offset);
jint next_pc_offset = CodeInstaller::pd_next_offset(inst, pc_offset, hotspot_method);
if (debug_info != NULL) {
_debug_recorder->add_safepoint(next_pc_offset, create_oop_map(debug_info));
record_scope(next_pc_offset, debug_info);
}
if (foreign_call != NULL) {
jlong foreign_call_destination = HotSpotForeignCallTarget::address(foreign_call);
CodeInstaller::pd_relocate_ForeignCall(inst, foreign_call_destination);
} else { // method != NULL
assert(hotspot_method != NULL, "unexpected JavaMethod");
assert(debug_info != NULL, "debug info expected");
TRACE_jvmci_3("method call");
CodeInstaller::pd_relocate_JavaMethod(hotspot_method, pc_offset);
if (_next_call_type == INVOKESTATIC || _next_call_type == INVOKESPECIAL) {
// Need a static call stub for transitions from compiled to interpreted.
CompiledStaticCall::emit_to_interp_stub(buffer, _instructions->start() + pc_offset);
}
}
_next_call_type = INVOKE_INVALID;
if (debug_info != NULL) {
_debug_recorder->end_safepoint(next_pc_offset);
}
}
void CodeInstaller::site_DataPatch(CodeBuffer& buffer, jint pc_offset, oop site) {
oop reference = CompilationResult_DataPatch::reference(site);
if (reference->is_a(CompilationResult_ConstantReference::klass())) {
Handle constant = CompilationResult_ConstantReference::constant(reference);
if (constant->is_a(HotSpotObjectConstantImpl::klass())) {
pd_patch_OopConstant(pc_offset, constant);
} else if (constant->is_a(HotSpotMetaspaceConstantImpl::klass())) {
record_metadata_in_patch(constant, _oop_recorder);
} else if (constant->is_a(HotSpotSentinelConstant::klass())) {
fatal("sentinel constant unsupported");
} else {
fatal("unknown constant type in data patch");
}
} else if (reference->is_a(CompilationResult_DataSectionReference::klass())) {
int data_offset = CompilationResult_DataSectionReference::offset(reference);
assert(0 <= data_offset && data_offset < _constants_size, "data offset 0x%X points outside data section (size 0x%X)", data_offset, _constants_size);
pd_patch_DataSectionReference(pc_offset, data_offset);
} else {
fatal("unknown data patch type");
}
}
void CodeInstaller::site_Mark(CodeBuffer& buffer, jint pc_offset, oop site) {
oop id_obj = CompilationResult_Mark::id(site);
if (id_obj != NULL) {
assert(java_lang_boxing_object::is_instance(id_obj, T_INT), "Integer id expected");
jint id = id_obj->int_field(java_lang_boxing_object::value_offset_in_bytes(T_INT));
address pc = _instructions->start() + pc_offset;
switch (id) {
case UNVERIFIED_ENTRY:
_offsets.set_value(CodeOffsets::Entry, pc_offset);
break;
case VERIFIED_ENTRY:
_offsets.set_value(CodeOffsets::Verified_Entry, pc_offset);
break;
case OSR_ENTRY:
_offsets.set_value(CodeOffsets::OSR_Entry, pc_offset);
break;
case EXCEPTION_HANDLER_ENTRY:
_offsets.set_value(CodeOffsets::Exceptions, pc_offset);
break;
case DEOPT_HANDLER_ENTRY:
_offsets.set_value(CodeOffsets::Deopt, pc_offset);
break;
case INVOKEVIRTUAL:
case INVOKEINTERFACE:
case INLINE_INVOKE:
case INVOKESTATIC:
case INVOKESPECIAL:
_next_call_type = (MarkId) id;
_invoke_mark_pc = pc;
break;
case POLL_NEAR:
case POLL_FAR:
case POLL_RETURN_NEAR:
case POLL_RETURN_FAR:
pd_relocate_poll(pc, id);
break;
case CARD_TABLE_ADDRESS:
case HEAP_TOP_ADDRESS:
case HEAP_END_ADDRESS:
case NARROW_KLASS_BASE_ADDRESS:
case CRC_TABLE_ADDRESS:
break;
default:
ShouldNotReachHere();
break;
}
}
}