8183232: Avoid resolving method_kind in AbstractInterpreter::can_be_compiled
Reviewed-by: coleenp, mdoerr, neliasso
/*
* Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "c1/c1_Defs.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_Runtime1.hpp"
#include "interpreter/interpreter.hpp"
#include "nativeInst_s390.hpp"
#include "oops/compiledICHolder.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "register_s390.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/signature.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/macros.hpp"
#include "vmreg_s390.inline.hpp"
#include "registerSaver_s390.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1SATBCardTableModRefBS.hpp"
#endif
// Implementation of StubAssembler
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry_point, int number_of_arguments) {
set_num_rt_args(0); // Nothing on stack.
assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different");
// We cannot trust that code generated by the C++ compiler saves R14
// to z_abi_160.return_pc, because sometimes it spills R14 using stmg at
// z_abi_160.gpr14 (e.g. InterpreterRuntime::_new()).
// Therefore we load the PC into Z_R1_scratch and let set_last_Java_frame() save
// it into the frame anchor.
address pc = get_PC(Z_R1_scratch);
int call_offset = (int)(pc - addr_at(0));
set_last_Java_frame(Z_SP, Z_R1_scratch);
// ARG1 must hold thread address.
z_lgr(Z_ARG1, Z_thread);
address return_pc = NULL;
align_call_far_patchable(this->pc());
return_pc = call_c_opt(entry_point);
assert(return_pc != NULL, "const section overflow");
reset_last_Java_frame();
// Check for pending exceptions.
{
load_and_test_long(Z_R0_scratch, Address(Z_thread, Thread::pending_exception_offset()));
// This used to conditionally jump to forward_exception however it is
// possible if we relocate that the branch will not reach. So we must jump
// around so we can always reach.
Label ok;
z_bre(ok); // Bcondequal is the same as bcondZero.
// exception pending => forward to exception handler
// Make sure that the vm_results are cleared.
if (oop_result1->is_valid()) {
clear_mem(Address(Z_thread, JavaThread::vm_result_offset()), sizeof(jlong));
}
if (metadata_result->is_valid()) {
clear_mem(Address(Z_thread, JavaThread::vm_result_2_offset()), sizeof(jlong));
}
if (frame_size() == no_frame_size) {
// Pop the stub frame.
pop_frame();
restore_return_pc();
load_const_optimized(Z_R1, StubRoutines::forward_exception_entry());
z_br(Z_R1);
} else if (_stub_id == Runtime1::forward_exception_id) {
should_not_reach_here();
} else {
load_const_optimized(Z_R1, Runtime1::entry_for (Runtime1::forward_exception_id));
z_br(Z_R1);
}
bind(ok);
}
// Get oop results if there are any and reset the values in the thread.
if (oop_result1->is_valid()) {
get_vm_result(oop_result1);
}
if (metadata_result->is_valid()) {
get_vm_result_2(metadata_result);
}
return call_offset;
}
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
// Z_ARG1 is reserved for the thread.
lgr_if_needed(Z_ARG2, arg1);
return call_RT(oop_result1, metadata_result, entry, 1);
}
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
// Z_ARG1 is reserved for the thread.
lgr_if_needed(Z_ARG2, arg1);
assert(arg2 != Z_ARG2, "smashed argument");
lgr_if_needed(Z_ARG3, arg2);
return call_RT(oop_result1, metadata_result, entry, 2);
}
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
// Z_ARG1 is reserved for the thread.
lgr_if_needed(Z_ARG2, arg1);
assert(arg2 != Z_ARG2, "smashed argument");
lgr_if_needed(Z_ARG3, arg2);
assert(arg3 != Z_ARG3, "smashed argument");
lgr_if_needed(Z_ARG4, arg3);
return call_RT(oop_result1, metadata_result, entry, 3);
}
// Implementation of Runtime1
#define __ sasm->
#ifndef PRODUCT
#undef __
#define __ (Verbose ? (sasm->block_comment(FILE_AND_LINE),sasm):sasm)->
#endif // !PRODUCT
#define BLOCK_COMMENT(str) if (PrintAssembly) __ block_comment(str)
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
static OopMap* generate_oop_map(StubAssembler* sasm) {
RegisterSaver::RegisterSet reg_set = RegisterSaver::all_registers;
int frame_size_in_slots =
RegisterSaver::live_reg_frame_size(reg_set) / VMRegImpl::stack_slot_size;
sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word);
return RegisterSaver::generate_oop_map(sasm, reg_set);
}
static OopMap* save_live_registers(StubAssembler* sasm, bool save_fpu_registers = true, Register return_pc = Z_R14) {
__ block_comment("save_live_registers");
RegisterSaver::RegisterSet reg_set =
save_fpu_registers ? RegisterSaver::all_registers : RegisterSaver::all_integer_registers;
int frame_size_in_slots =
RegisterSaver::live_reg_frame_size(reg_set) / VMRegImpl::stack_slot_size;
sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word);
return RegisterSaver::save_live_registers(sasm, reg_set, return_pc);
}
static OopMap* save_live_registers_except_r2(StubAssembler* sasm, bool save_fpu_registers = true) {
if (!save_fpu_registers) {
__ unimplemented(FILE_AND_LINE);
}
__ block_comment("save_live_registers");
RegisterSaver::RegisterSet reg_set = RegisterSaver::all_registers_except_r2;
int frame_size_in_slots =
RegisterSaver::live_reg_frame_size(reg_set) / VMRegImpl::stack_slot_size;
sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word);
return RegisterSaver::save_live_registers(sasm, reg_set);
}
static OopMap* save_volatile_registers(StubAssembler* sasm, Register return_pc = Z_R14) {
__ block_comment("save_volatile_registers");
RegisterSaver::RegisterSet reg_set = RegisterSaver::all_volatile_registers;
int frame_size_in_slots =
RegisterSaver::live_reg_frame_size(reg_set) / VMRegImpl::stack_slot_size;
sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word);
return RegisterSaver::save_live_registers(sasm, reg_set, return_pc);
}
static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
__ block_comment("restore_live_registers");
RegisterSaver::RegisterSet reg_set =
restore_fpu_registers ? RegisterSaver::all_registers : RegisterSaver::all_integer_registers;
RegisterSaver::restore_live_registers(sasm, reg_set);
}
static void restore_live_registers_except_r2(StubAssembler* sasm, bool restore_fpu_registers = true) {
if (!restore_fpu_registers) {
__ unimplemented(FILE_AND_LINE);
}
__ block_comment("restore_live_registers_except_r2");
RegisterSaver::restore_live_registers(sasm, RegisterSaver::all_registers_except_r2);
}
static void restore_volatile_registers(StubAssembler* sasm) {
__ block_comment("restore_volatile_registers");
RegisterSaver::RegisterSet reg_set = RegisterSaver::all_volatile_registers;
RegisterSaver::restore_live_registers(sasm, reg_set);
}
void Runtime1::initialize_pd() {
// Nothing to do.
}
OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
// Make a frame and preserve the caller's caller-save registers.
OopMap* oop_map = save_live_registers(sasm);
int call_offset;
if (!has_argument) {
call_offset = __ call_RT(noreg, noreg, target);
} else {
call_offset = __ call_RT(noreg, noreg, target, Z_R1_scratch, Z_R0_scratch);
}
OopMapSet* oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
__ should_not_reach_here();
return oop_maps;
}
void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
// Incoming parameters: Z_EXC_OOP and Z_EXC_PC.
// Keep copies in callee-saved registers during runtime call.
const Register exception_oop_callee_saved = Z_R11;
const Register exception_pc_callee_saved = Z_R12;
// Other registers used in this stub.
const Register handler_addr = Z_R4;
// Verify that only exception_oop, is valid at this time.
__ invalidate_registers(Z_EXC_OOP, Z_EXC_PC);
// Check that fields in JavaThread for exception oop and issuing pc are set.
__ asm_assert_mem8_is_zero(in_bytes(JavaThread::exception_oop_offset()), Z_thread, "exception oop already set : " FILE_AND_LINE, 0);
__ asm_assert_mem8_is_zero(in_bytes(JavaThread::exception_pc_offset()), Z_thread, "exception pc already set : " FILE_AND_LINE, 0);
// Save exception_oop and pc in callee-saved register to preserve it
// during runtime calls.
__ verify_not_null_oop(Z_EXC_OOP);
__ lgr_if_needed(exception_oop_callee_saved, Z_EXC_OOP);
__ lgr_if_needed(exception_pc_callee_saved, Z_EXC_PC);
__ push_frame_abi160(0); // Runtime code needs the z_abi_160.
// Search the exception handler address of the caller (using the return address).
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), Z_thread, Z_EXC_PC);
// Z_RET(Z_R2): exception handler address of the caller.
__ pop_frame();
__ invalidate_registers(exception_oop_callee_saved, exception_pc_callee_saved, Z_RET);
// Move result of call into correct register.
__ lgr_if_needed(handler_addr, Z_RET);
// Restore exception oop and pc to Z_EXC_OOP and Z_EXC_PC (required convention of exception handler).
__ lgr_if_needed(Z_EXC_OOP, exception_oop_callee_saved);
__ lgr_if_needed(Z_EXC_PC, exception_pc_callee_saved);
// Verify that there is really a valid exception in Z_EXC_OOP.
__ verify_not_null_oop(Z_EXC_OOP);
__ z_br(handler_addr); // Jump to exception handler.
}
OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
// Make a frame and preserve the caller's caller-save registers.
OopMap* oop_map = save_live_registers(sasm);
// Call the runtime patching routine, returns non-zero if nmethod got deopted.
int call_offset = __ call_RT(noreg, noreg, target);
OopMapSet* oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
// Re-execute the patched instruction or, if the nmethod was
// deoptmized, return to the deoptimization handler entry that will
// cause re-execution of the current bytecode.
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
__ z_ltr(Z_RET, Z_RET); // return value == 0
restore_live_registers(sasm);
__ z_bcr(Assembler::bcondZero, Z_R14);
// Return to the deoptimization handler entry for unpacking and
// rexecute if we simply returned then we'd deopt as if any call we
// patched had just returned.
AddressLiteral dest(deopt_blob->unpack_with_reexecution());
__ load_const_optimized(Z_R1_scratch, dest);
__ z_br(Z_R1_scratch);
return oop_maps;
}
OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
// for better readability
const bool must_gc_arguments = true;
const bool dont_gc_arguments = false;
// Default value; overwritten for some optimized stubs that are
// called from methods that do not use the fpu.
bool save_fpu_registers = true;
// Stub code and info for the different stubs.
OopMapSet* oop_maps = NULL;
switch (id) {
case forward_exception_id:
{
oop_maps = generate_handle_exception(id, sasm);
// will not return
}
break;
case new_instance_id:
case fast_new_instance_id:
case fast_new_instance_init_check_id:
{
Register klass = Z_R11; // Incoming
Register obj = Z_R2; // Result
if (id == new_instance_id) {
__ set_info("new_instance", dont_gc_arguments);
} else if (id == fast_new_instance_id) {
__ set_info("fast new_instance", dont_gc_arguments);
} else {
assert(id == fast_new_instance_init_check_id, "bad StubID");
__ set_info("fast new_instance init check", dont_gc_arguments);
}
if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
UseTLAB && FastTLABRefill) {
// Sapjvm: must call RT to generate allocation events.
}
OopMap* map = save_live_registers_except_r2(sasm);
int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
restore_live_registers_except_r2(sasm);
__ verify_oop(obj);
__ z_br(Z_R14);
}
break;
case counter_overflow_id:
{
// Arguments :
// bci : stack param 0
// method : stack param 1
//
Register bci = Z_ARG2, method = Z_ARG3;
// frame size in bytes
OopMap* map = save_live_registers(sasm);
const int frame_size = sasm->frame_size() * VMRegImpl::slots_per_word * VMRegImpl::stack_slot_size;
__ z_lg(bci, 0*BytesPerWord + FrameMap::first_available_sp_in_frame + frame_size, Z_SP);
__ z_lg(method, 1*BytesPerWord + FrameMap::first_available_sp_in_frame + frame_size, Z_SP);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
restore_live_registers(sasm);
__ z_br(Z_R14);
}
break;
case new_type_array_id:
case new_object_array_id:
{
Register length = Z_R13; // Incoming
Register klass = Z_R11; // Incoming
Register obj = Z_R2; // Result
if (id == new_type_array_id) {
__ set_info("new_type_array", dont_gc_arguments);
} else {
__ set_info("new_object_array", dont_gc_arguments);
}
#ifdef ASSERT
// Assert object type is really an array of the proper kind.
{
NearLabel ok;
Register t0 = obj;
__ mem2reg_opt(t0, Address(klass, Klass::layout_helper_offset()), false);
__ z_sra(t0, Klass::_lh_array_tag_shift);
int tag = ((id == new_type_array_id)
? Klass::_lh_array_tag_type_value
: Klass::_lh_array_tag_obj_value);
__ compare32_and_branch(t0, tag, Assembler::bcondEqual, ok);
__ stop("assert(is an array klass)");
__ should_not_reach_here();
__ bind(ok);
}
#endif // ASSERT
if (UseTLAB && FastTLABRefill) {
// sapjvm: must call RT to generate allocation events.
}
OopMap* map = save_live_registers_except_r2(sasm);
int call_offset;
if (id == new_type_array_id) {
call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
} else {
call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
}
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
restore_live_registers_except_r2(sasm);
__ verify_oop(obj);
__ z_br(Z_R14);
}
break;
case new_multi_array_id:
{ __ set_info("new_multi_array", dont_gc_arguments);
// Z_R3,: klass
// Z_R4,: rank
// Z_R5: address of 1st dimension
OopMap* map = save_live_registers(sasm);
int call_offset = __ call_RT(Z_R2, noreg, CAST_FROM_FN_PTR(address, new_multi_array), Z_R3, Z_R4, Z_R5);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
restore_live_registers_except_r2(sasm);
// Z_R2,: new multi array
__ verify_oop(Z_R2);
__ z_br(Z_R14);
}
break;
case register_finalizer_id:
{
__ set_info("register_finalizer", dont_gc_arguments);
// Load the klass and check the has finalizer flag.
Register klass = Z_ARG2;
__ load_klass(klass, Z_ARG1);
__ testbit(Address(klass, Klass::access_flags_offset()), exact_log2(JVM_ACC_HAS_FINALIZER));
__ z_bcr(Assembler::bcondAllZero, Z_R14); // Return if bit is not set.
OopMap* oop_map = save_live_registers(sasm);
int call_offset = __ call_RT(noreg, noreg,
CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), Z_ARG1);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
// Now restore all the live registers.
restore_live_registers(sasm);
__ z_br(Z_R14);
}
break;
case throw_range_check_failed_id:
{ __ set_info("range_check_failed", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
}
break;
case throw_index_exception_id:
{ __ set_info("index_range_check_failed", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
}
break;
case throw_div0_exception_id:
{ __ set_info("throw_div0_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
}
break;
case throw_null_pointer_exception_id:
{ __ set_info("throw_null_pointer_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
}
break;
case handle_exception_nofpu_id:
case handle_exception_id:
{ __ set_info("handle_exception", dont_gc_arguments);
oop_maps = generate_handle_exception(id, sasm);
}
break;
case handle_exception_from_callee_id:
{ __ set_info("handle_exception_from_callee", dont_gc_arguments);
oop_maps = generate_handle_exception(id, sasm);
}
break;
case unwind_exception_id:
{ __ set_info("unwind_exception", dont_gc_arguments);
// Note: no stubframe since we are about to leave the current
// activation and we are calling a leaf VM function only.
generate_unwind_exception(sasm);
}
break;
case throw_array_store_exception_id:
{ __ set_info("throw_array_store_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
}
break;
case throw_class_cast_exception_id:
{ // Z_R1_scratch: object
__ set_info("throw_class_cast_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
}
break;
case throw_incompatible_class_change_error_id:
{ __ set_info("throw_incompatible_class_cast_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
}
break;
case slow_subtype_check_id:
{
// Arguments :
// sub : stack param 0
// super: stack param 1
// raddr: Z_R14, blown by call
//
// Result : condition code 0 for match (bcondEqual will be true),
// condition code 2 for miss (bcondNotEqual will be true)
NearLabel miss;
const Register Rsubklass = Z_ARG2; // sub
const Register Rsuperklass = Z_ARG3; // super
// No args, but tmp registers that are killed.
const Register Rlength = Z_ARG4; // cache array length
const Register Rarray_ptr = Z_ARG5; // Current value from cache array.
if (UseCompressedOops) {
assert(Universe::heap() != NULL, "java heap must be initialized to generate partial_subtype_check stub");
}
const int frame_size = 4*BytesPerWord + frame::z_abi_160_size;
// Save return pc. This is not necessary, but could be helpful
// in the case of crashes.
__ save_return_pc();
__ push_frame(frame_size);
// Save registers before changing them.
int i = 0;
__ z_stg(Rsubklass, (i++)*BytesPerWord + frame::z_abi_160_size, Z_SP);
__ z_stg(Rsuperklass, (i++)*BytesPerWord + frame::z_abi_160_size, Z_SP);
__ z_stg(Rlength, (i++)*BytesPerWord + frame::z_abi_160_size, Z_SP);
__ z_stg(Rarray_ptr, (i++)*BytesPerWord + frame::z_abi_160_size, Z_SP);
assert(i*BytesPerWord + frame::z_abi_160_size == frame_size, "check");
// Get sub and super from stack.
__ z_lg(Rsubklass, 0*BytesPerWord + FrameMap::first_available_sp_in_frame + frame_size, Z_SP);
__ z_lg(Rsuperklass, 1*BytesPerWord + FrameMap::first_available_sp_in_frame + frame_size, Z_SP);
__ check_klass_subtype_slow_path(Rsubklass, Rsuperklass, Rarray_ptr, Rlength, NULL, &miss);
// Match falls through here.
i = 0;
__ z_lg(Rsubklass, (i++)*BytesPerWord + frame::z_abi_160_size, Z_SP);
__ z_lg(Rsuperklass, (i++)*BytesPerWord + frame::z_abi_160_size, Z_SP);
__ z_lg(Rlength, (i++)*BytesPerWord + frame::z_abi_160_size, Z_SP);
__ z_lg(Rarray_ptr, (i++)*BytesPerWord + frame::z_abi_160_size, Z_SP);
assert(i*BytesPerWord + frame::z_abi_160_size == frame_size, "check");
__ pop_frame();
// Return pc is still in R_14.
__ clear_reg(Z_R0_scratch); // Zero indicates a match. Set CC 0 (bcondEqual will be true)
__ z_br(Z_R14);
__ BIND(miss);
i = 0;
__ z_lg(Rsubklass, (i++)*BytesPerWord + frame::z_abi_160_size, Z_SP);
__ z_lg(Rsuperklass, (i++)*BytesPerWord + frame::z_abi_160_size, Z_SP);
__ z_lg(Rlength, (i++)*BytesPerWord + frame::z_abi_160_size, Z_SP);
__ z_lg(Rarray_ptr, (i++)*BytesPerWord + frame::z_abi_160_size, Z_SP);
assert(i*BytesPerWord + frame::z_abi_160_size == frame_size, "check");
__ pop_frame();
// return pc is still in R_14
__ load_const_optimized(Z_R0_scratch, 1); // One indicates a miss.
__ z_ltgr(Z_R0_scratch, Z_R0_scratch); // Set CC 2 (bcondNotEqual will be true).
__ z_br(Z_R14);
}
break;
case monitorenter_nofpu_id:
case monitorenter_id:
{ // Z_R1_scratch : object
// Z_R13 : lock address (see LIRGenerator::syncTempOpr())
__ set_info("monitorenter", dont_gc_arguments);
int save_fpu_registers = (id == monitorenter_id);
// Make a frame and preserve the caller's caller-save registers.
OopMap* oop_map = save_live_registers(sasm, save_fpu_registers);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), Z_R1_scratch, Z_R13);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
restore_live_registers(sasm, save_fpu_registers);
__ z_br(Z_R14);
}
break;
case monitorexit_nofpu_id:
case monitorexit_id:
{ // Z_R1_scratch : lock address
// Note: really a leaf routine but must setup last java sp
// => Use call_RT for now (speed can be improved by
// doing last java sp setup manually).
__ set_info("monitorexit", dont_gc_arguments);
int save_fpu_registers = (id == monitorexit_id);
// Make a frame and preserve the caller's caller-save registers.
OopMap* oop_map = save_live_registers(sasm, save_fpu_registers);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), Z_R1_scratch);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
restore_live_registers(sasm, save_fpu_registers);
__ z_br(Z_R14);
}
break;
case deoptimize_id:
{ // Args: Z_R1_scratch: trap request
__ set_info("deoptimize", dont_gc_arguments);
Register trap_request = Z_R1_scratch;
OopMap* oop_map = save_live_registers(sasm);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize), trap_request);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
restore_live_registers(sasm);
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
AddressLiteral dest(deopt_blob->unpack_with_reexecution());
__ load_const_optimized(Z_R1_scratch, dest);
__ z_br(Z_R1_scratch);
}
break;
case access_field_patching_id:
{ __ set_info("access_field_patching", dont_gc_arguments);
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
}
break;
case load_klass_patching_id:
{ __ set_info("load_klass_patching", dont_gc_arguments);
// We should set up register map.
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
}
break;
case load_mirror_patching_id:
{ __ set_info("load_mirror_patching", dont_gc_arguments);
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
}
break;
case load_appendix_patching_id:
{ __ set_info("load_appendix_patching", dont_gc_arguments);
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
}
break;
#if 0
case dtrace_object_alloc_id:
{ // rax,: object
StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
// We can't gc here so skip the oopmap but make sure that all
// the live registers get saved.
save_live_registers(sasm, 1);
__ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
NOT_LP64(__ pop(rax));
restore_live_registers(sasm);
}
break;
case fpu2long_stub_id:
{
// rax, and rdx are destroyed, but should be free since the result is returned there
// preserve rsi,ecx
__ push(rsi);
__ push(rcx);
LP64_ONLY(__ push(rdx);)
// check for NaN
Label return0, do_return, return_min_jlong, do_convert;
Address value_high_word(rsp, wordSize + 4);
Address value_low_word(rsp, wordSize);
Address result_high_word(rsp, 3*wordSize + 4);
Address result_low_word(rsp, 3*wordSize);
__ subptr(rsp, 32); // more than enough on 32bit
__ fst_d(value_low_word);
__ movl(rax, value_high_word);
__ andl(rax, 0x7ff00000);
__ cmpl(rax, 0x7ff00000);
__ jcc(Assembler::notEqual, do_convert);
__ movl(rax, value_high_word);
__ andl(rax, 0xfffff);
__ orl(rax, value_low_word);
__ jcc(Assembler::notZero, return0);
__ bind(do_convert);
__ fnstcw(Address(rsp, 0));
__ movzwl(rax, Address(rsp, 0));
__ orl(rax, 0xc00);
__ movw(Address(rsp, 2), rax);
__ fldcw(Address(rsp, 2));
__ fwait();
__ fistp_d(result_low_word);
__ fldcw(Address(rsp, 0));
__ fwait();
// This gets the entire long in rax on 64bit
__ movptr(rax, result_low_word);
// testing of high bits
__ movl(rdx, result_high_word);
__ mov(rcx, rax);
// What the heck is the point of the next instruction???
__ xorl(rcx, 0x0);
__ movl(rsi, 0x80000000);
__ xorl(rsi, rdx);
__ orl(rcx, rsi);
__ jcc(Assembler::notEqual, do_return);
__ fldz();
__ fcomp_d(value_low_word);
__ fnstsw_ax();
__ testl(rax, 0x4100); // ZF & CF == 0
__ jcc(Assembler::equal, return_min_jlong);
// return max_jlong
__ mov64(rax, CONST64(0x7fffffffffffffff));
__ jmp(do_return);
__ bind(return_min_jlong);
__ mov64(rax, UCONST64(0x8000000000000000));
__ jmp(do_return);
__ bind(return0);
__ fpop();
__ xorptr(rax, rax);
__ bind(do_return);
__ addptr(rsp, 32);
LP64_ONLY(__ pop(rdx);)
__ pop(rcx);
__ pop(rsi);
__ ret(0);
}
break;
#endif // TODO
#if INCLUDE_ALL_GCS
case g1_pre_barrier_slow_id:
{ // Z_R1_scratch: previous value of memory
BarrierSet* bs = Universe::heap()->barrier_set();
if (bs->kind() != BarrierSet::G1SATBCTLogging) {
__ should_not_reach_here(FILE_AND_LINE);
break;
}
__ set_info("g1_pre_barrier_slow_id", dont_gc_arguments);
Register pre_val = Z_R1_scratch;
Register tmp = Z_R6; // Must be non-volatile because it is used to save pre_val.
Register tmp2 = Z_R7;
Label refill, restart, marking_not_active;
int satb_q_active_byte_offset =
in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_active());
int satb_q_index_byte_offset =
in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_index());
int satb_q_buf_byte_offset =
in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_buf());
// Save tmp registers (see assertion in G1PreBarrierStub::emit_code()).
__ z_stg(tmp, 0*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
__ z_stg(tmp2, 1*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
// Is marking still active?
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
__ load_and_test_int(tmp, Address(Z_thread, satb_q_active_byte_offset));
} else {
assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
__ load_and_test_byte(tmp, Address(Z_thread, satb_q_active_byte_offset));
}
__ z_bre(marking_not_active); // Activity indicator is zero, so there is no marking going on currently.
__ bind(restart);
// Load the index into the SATB buffer. SATBMarkQueue::_index is a
// size_t so ld_ptr is appropriate.
__ z_ltg(tmp, satb_q_index_byte_offset, Z_R0, Z_thread);
// index == 0?
__ z_brz(refill);
__ z_lg(tmp2, satb_q_buf_byte_offset, Z_thread);
__ add2reg(tmp, -oopSize);
__ z_stg(pre_val, 0, tmp, tmp2); // [_buf + index] := <address_of_card>
__ z_stg(tmp, satb_q_index_byte_offset, Z_thread);
__ bind(marking_not_active);
// Restore tmp registers (see assertion in G1PreBarrierStub::emit_code()).
__ z_lg(tmp, 0*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
__ z_lg(tmp2, 1*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
__ z_br(Z_R14);
__ bind(refill);
save_volatile_registers(sasm);
__ z_lgr(tmp, pre_val); // save pre_val
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SATBMarkQueueSet::handle_zero_index_for_thread),
Z_thread);
__ z_lgr(pre_val, tmp); // restore pre_val
restore_volatile_registers(sasm);
__ z_bru(restart);
}
break;
case g1_post_barrier_slow_id:
{ // Z_R1_scratch: oop address, address of updated memory slot
BarrierSet* bs = Universe::heap()->barrier_set();
if (bs->kind() != BarrierSet::G1SATBCTLogging) {
__ should_not_reach_here(FILE_AND_LINE);
break;
}
__ set_info("g1_post_barrier_slow_id", dont_gc_arguments);
Register addr_oop = Z_R1_scratch;
Register addr_card = Z_R1_scratch;
Register r1 = Z_R6; // Must be saved/restored.
Register r2 = Z_R7; // Must be saved/restored.
Register cardtable = r1; // Must be non-volatile, because it is used to save addr_card.
jbyte* byte_map_base = ((CardTableModRefBS*)bs)->byte_map_base;
// Save registers used below (see assertion in G1PreBarrierStub::emit_code()).
__ z_stg(r1, 0*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
Label not_already_dirty, restart, refill, young_card;
// Calculate address of card corresponding to the updated oop slot.
AddressLiteral rs(byte_map_base);
__ z_srlg(addr_card, addr_oop, CardTableModRefBS::card_shift);
addr_oop = noreg; // dead now
__ load_const_optimized(cardtable, rs); // cardtable := <card table base>
__ z_agr(addr_card, cardtable); // addr_card := addr_oop>>card_shift + cardtable
__ z_cli(0, addr_card, (int)G1SATBCardTableModRefBS::g1_young_card_val());
__ z_bre(young_card);
__ z_sync(); // Required to support concurrent cleaning.
__ z_cli(0, addr_card, (int)CardTableModRefBS::dirty_card_val());
__ z_brne(not_already_dirty);
__ bind(young_card);
// We didn't take the branch, so we're already dirty: restore
// used registers and return.
__ z_lg(r1, 0*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
__ z_br(Z_R14);
// Not dirty.
__ bind(not_already_dirty);
// First, dirty it: [addr_card] := 0
__ z_mvi(0, addr_card, CardTableModRefBS::dirty_card_val());
Register idx = cardtable; // Must be non-volatile, because it is used to save addr_card.
Register buf = r2;
cardtable = noreg; // now dead
// Save registers used below (see assertion in G1PreBarrierStub::emit_code()).
__ z_stg(r2, 1*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
ByteSize dirty_card_q_index_byte_offset =
JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_index();
ByteSize dirty_card_q_buf_byte_offset =
JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_buf();
__ bind(restart);
// Get the index into the update buffer. DirtyCardQueue::_index is
// a size_t so z_ltg is appropriate here.
__ z_ltg(idx, Address(Z_thread, dirty_card_q_index_byte_offset));
// index == 0?
__ z_brz(refill);
__ z_lg(buf, Address(Z_thread, dirty_card_q_buf_byte_offset));
__ add2reg(idx, -oopSize);
__ z_stg(addr_card, 0, idx, buf); // [_buf + index] := <address_of_card>
__ z_stg(idx, Address(Z_thread, dirty_card_q_index_byte_offset));
// Restore killed registers and return.
__ z_lg(r1, 0*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
__ z_lg(r2, 1*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
__ z_br(Z_R14);
__ bind(refill);
save_volatile_registers(sasm);
__ z_lgr(idx, addr_card); // Save addr_card, tmp3 must be non-volatile.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, DirtyCardQueueSet::handle_zero_index_for_thread),
Z_thread);
__ z_lgr(addr_card, idx);
restore_volatile_registers(sasm); // Restore addr_card.
__ z_bru(restart);
}
break;
#endif // INCLUDE_ALL_GCS
case predicate_failed_trap_id:
{
__ set_info("predicate_failed_trap", dont_gc_arguments);
OopMap* map = save_live_registers(sasm);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
restore_live_registers(sasm);
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
__ load_const_optimized(Z_R1_scratch, deopt_blob->unpack_with_reexecution());
__ z_br(Z_R1_scratch);
}
break;
default:
{
__ should_not_reach_here(FILE_AND_LINE, id);
}
break;
}
return oop_maps;
}
OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
__ block_comment("generate_handle_exception");
// incoming parameters: Z_EXC_OOP, Z_EXC_PC
// Save registers if required.
OopMapSet* oop_maps = new OopMapSet();
OopMap* oop_map = NULL;
Register reg_fp = Z_R1_scratch;
switch (id) {
case forward_exception_id: {
// We're handling an exception in the context of a compiled frame.
// The registers have been saved in the standard places. Perform
// an exception lookup in the caller and dispatch to the handler
// if found. Otherwise unwind and dispatch to the callers
// exception handler.
oop_map = generate_oop_map(sasm);
// Load and clear pending exception oop into.
__ z_lg(Z_EXC_OOP, Address(Z_thread, Thread::pending_exception_offset()));
__ clear_mem(Address(Z_thread, Thread::pending_exception_offset()), 8);
// Different stubs forward their exceptions; they should all have similar frame layouts
// (a) to find their return address (b) for a correct oop_map generated above.
assert(RegisterSaver::live_reg_frame_size(RegisterSaver::all_registers) ==
RegisterSaver::live_reg_frame_size(RegisterSaver::all_registers_except_r2), "requirement");
// Load issuing PC (the return address for this stub).
const int frame_size_in_bytes = sasm->frame_size() * VMRegImpl::slots_per_word * VMRegImpl::stack_slot_size;
__ z_lg(Z_EXC_PC, Address(Z_SP, frame_size_in_bytes + _z_abi16(return_pc)));
DEBUG_ONLY(__ z_lay(reg_fp, Address(Z_SP, frame_size_in_bytes));)
// Make sure that the vm_results are cleared (may be unnecessary).
__ clear_mem(Address(Z_thread, JavaThread::vm_result_offset()), sizeof(oop));
__ clear_mem(Address(Z_thread, JavaThread::vm_result_2_offset()), sizeof(Metadata*));
break;
}
case handle_exception_nofpu_id:
case handle_exception_id:
// At this point all registers MAY be live.
DEBUG_ONLY(__ z_lgr(reg_fp, Z_SP);)
oop_map = save_live_registers(sasm, id != handle_exception_nofpu_id, Z_EXC_PC);
break;
case handle_exception_from_callee_id: {
// At this point all registers except Z_EXC_OOP and Z_EXC_PC are dead.
DEBUG_ONLY(__ z_lgr(reg_fp, Z_SP);)
__ save_return_pc(Z_EXC_PC);
const int frame_size_in_bytes = __ push_frame_abi160(0);
oop_map = new OopMap(frame_size_in_bytes / VMRegImpl::stack_slot_size, 0);
sasm->set_frame_size(frame_size_in_bytes / BytesPerWord);
break;
}
default: ShouldNotReachHere();
}
// Verify that only Z_EXC_OOP, and Z_EXC_PC are valid at this time.
__ invalidate_registers(Z_EXC_OOP, Z_EXC_PC, reg_fp);
// Verify that Z_EXC_OOP, contains a valid exception.
__ verify_not_null_oop(Z_EXC_OOP);
// Check that fields in JavaThread for exception oop and issuing pc
// are empty before writing to them.
__ asm_assert_mem8_is_zero(in_bytes(JavaThread::exception_oop_offset()), Z_thread, "exception oop already set : " FILE_AND_LINE, 0);
__ asm_assert_mem8_is_zero(in_bytes(JavaThread::exception_pc_offset()), Z_thread, "exception pc already set : " FILE_AND_LINE, 0);
// Save exception oop and issuing pc into JavaThread.
// (Exception handler will load it from here.)
__ z_stg(Z_EXC_OOP, Address(Z_thread, JavaThread::exception_oop_offset()));
__ z_stg(Z_EXC_PC, Address(Z_thread, JavaThread::exception_pc_offset()));
#ifdef ASSERT
{ NearLabel ok;
__ z_cg(Z_EXC_PC, Address(reg_fp, _z_abi16(return_pc)));
__ branch_optimized(Assembler::bcondEqual, ok);
__ stop("use throwing pc as return address (has bci & oop map)");
__ bind(ok);
}
#endif
// Compute the exception handler.
// The exception oop and the throwing pc are read from the fields in JavaThread.
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
oop_maps->add_gc_map(call_offset, oop_map);
// Z_RET(Z_R2): handler address
// will be the deopt blob if nmethod was deoptimized while we looked up
// handler regardless of whether handler existed in the nmethod.
// Only Z_R2, is valid at this time, all other registers have been destroyed by the runtime call.
__ invalidate_registers(Z_R2);
switch(id) {
case forward_exception_id:
case handle_exception_nofpu_id:
case handle_exception_id:
// Restore the registers that were saved at the beginning.
__ z_lgr(Z_R1_scratch, Z_R2); // Restoring live registers kills Z_R2.
restore_live_registers(sasm, id != handle_exception_nofpu_id); // Pops as well the frame.
__ z_br(Z_R1_scratch);
break;
case handle_exception_from_callee_id: {
__ pop_frame();
__ z_br(Z_R2); // Jump to exception handler.
}
break;
default: ShouldNotReachHere();
}
return oop_maps;
}
#undef __
const char *Runtime1::pd_name_for_address(address entry) {
return "<unknown function>";
}