8183232: Avoid resolving method_kind in AbstractInterpreter::can_be_compiled
Reviewed-by: coleenp, mdoerr, neliasso
/*
* Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "c1/c1_FrameMap.hpp"
#include "c1/c1_LIR.hpp"
#include "runtime/sharedRuntime.hpp"
#include "vmreg_s390.inline.hpp"
const int FrameMap::pd_c_runtime_reserved_arg_size = 7;
LIR_Opr FrameMap::map_to_opr(BasicType type, VMRegPair* reg, bool outgoing) {
LIR_Opr opr = LIR_OprFact::illegalOpr;
VMReg r_1 = reg->first();
VMReg r_2 = reg->second();
if (r_1->is_stack()) {
// Convert stack slot to an SP offset.
// The calling convention does not count the SharedRuntime::out_preserve_stack_slots() value
// so we must add it in here.
int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
opr = LIR_OprFact::address(new LIR_Address(Z_SP_opr, st_off, type));
} else if (r_1->is_Register()) {
Register reg = r_1->as_Register();
if (r_2->is_Register() && (type == T_LONG || type == T_DOUBLE)) {
opr = as_long_opr(reg);
} else if (type == T_OBJECT || type == T_ARRAY) {
opr = as_oop_opr(reg);
} else if (type == T_METADATA) {
opr = as_metadata_opr(reg);
} else {
opr = as_opr(reg);
}
} else if (r_1->is_FloatRegister()) {
assert(type == T_DOUBLE || type == T_FLOAT, "wrong type");
FloatRegister f = r_1->as_FloatRegister();
if (type == T_FLOAT) {
opr = as_float_opr(f);
} else {
opr = as_double_opr(f);
}
} else {
ShouldNotReachHere();
}
return opr;
}
// FrameMap
//--------------------------------------------------------
FloatRegister FrameMap::_fpu_rnr2reg [FrameMap::nof_fpu_regs]; // mapping c1 regnr. -> FloatRegister
int FrameMap::_fpu_reg2rnr [FrameMap::nof_fpu_regs]; // mapping assembler encoding -> c1 regnr.
// Some useful constant RInfo's:
LIR_Opr FrameMap::Z_R0_opr;
LIR_Opr FrameMap::Z_R1_opr;
LIR_Opr FrameMap::Z_R2_opr;
LIR_Opr FrameMap::Z_R3_opr;
LIR_Opr FrameMap::Z_R4_opr;
LIR_Opr FrameMap::Z_R5_opr;
LIR_Opr FrameMap::Z_R6_opr;
LIR_Opr FrameMap::Z_R7_opr;
LIR_Opr FrameMap::Z_R8_opr;
LIR_Opr FrameMap::Z_R9_opr;
LIR_Opr FrameMap::Z_R10_opr;
LIR_Opr FrameMap::Z_R11_opr;
LIR_Opr FrameMap::Z_R12_opr;
LIR_Opr FrameMap::Z_R13_opr;
LIR_Opr FrameMap::Z_R14_opr;
LIR_Opr FrameMap::Z_R15_opr;
LIR_Opr FrameMap::Z_R0_oop_opr;
LIR_Opr FrameMap::Z_R1_oop_opr;
LIR_Opr FrameMap::Z_R2_oop_opr;
LIR_Opr FrameMap::Z_R3_oop_opr;
LIR_Opr FrameMap::Z_R4_oop_opr;
LIR_Opr FrameMap::Z_R5_oop_opr;
LIR_Opr FrameMap::Z_R6_oop_opr;
LIR_Opr FrameMap::Z_R7_oop_opr;
LIR_Opr FrameMap::Z_R8_oop_opr;
LIR_Opr FrameMap::Z_R9_oop_opr;
LIR_Opr FrameMap::Z_R10_oop_opr;
LIR_Opr FrameMap::Z_R11_oop_opr;
LIR_Opr FrameMap::Z_R12_oop_opr;
LIR_Opr FrameMap::Z_R13_oop_opr;
LIR_Opr FrameMap::Z_R14_oop_opr;
LIR_Opr FrameMap::Z_R15_oop_opr;
LIR_Opr FrameMap::Z_R0_metadata_opr;
LIR_Opr FrameMap::Z_R1_metadata_opr;
LIR_Opr FrameMap::Z_R2_metadata_opr;
LIR_Opr FrameMap::Z_R3_metadata_opr;
LIR_Opr FrameMap::Z_R4_metadata_opr;
LIR_Opr FrameMap::Z_R5_metadata_opr;
LIR_Opr FrameMap::Z_R6_metadata_opr;
LIR_Opr FrameMap::Z_R7_metadata_opr;
LIR_Opr FrameMap::Z_R8_metadata_opr;
LIR_Opr FrameMap::Z_R9_metadata_opr;
LIR_Opr FrameMap::Z_R10_metadata_opr;
LIR_Opr FrameMap::Z_R11_metadata_opr;
LIR_Opr FrameMap::Z_R12_metadata_opr;
LIR_Opr FrameMap::Z_R13_metadata_opr;
LIR_Opr FrameMap::Z_R14_metadata_opr;
LIR_Opr FrameMap::Z_R15_metadata_opr;
LIR_Opr FrameMap::Z_SP_opr;
LIR_Opr FrameMap::Z_FP_opr;
LIR_Opr FrameMap::Z_R2_long_opr;
LIR_Opr FrameMap::Z_R10_long_opr;
LIR_Opr FrameMap::Z_R11_long_opr;
LIR_Opr FrameMap::Z_F0_opr;
LIR_Opr FrameMap::Z_F0_double_opr;
LIR_Opr FrameMap::_caller_save_cpu_regs[] = { 0, };
LIR_Opr FrameMap::_caller_save_fpu_regs[] = { 0, };
// c1 rnr -> FloatRegister
FloatRegister FrameMap::nr2floatreg (int rnr) {
assert(_init_done, "tables not initialized");
debug_only(fpu_range_check(rnr);)
return _fpu_rnr2reg[rnr];
}
void FrameMap::map_float_register(int rnr, FloatRegister reg) {
debug_only(fpu_range_check(rnr);)
debug_only(fpu_range_check(reg->encoding());)
_fpu_rnr2reg[rnr] = reg; // mapping c1 regnr. -> FloatRegister
_fpu_reg2rnr[reg->encoding()] = rnr; // mapping assembler encoding -> c1 regnr.
}
void FrameMap::initialize() {
assert(!_init_done, "once");
DEBUG_ONLY(int allocated = 0;)
DEBUG_ONLY(int unallocated = 0;)
// Register usage:
// Z_thread (Z_R8)
// Z_fp (Z_R9)
// Z_SP (Z_R15)
DEBUG_ONLY(allocated++); map_register(0, Z_R2);
DEBUG_ONLY(allocated++); map_register(1, Z_R3);
DEBUG_ONLY(allocated++); map_register(2, Z_R4);
DEBUG_ONLY(allocated++); map_register(3, Z_R5);
DEBUG_ONLY(allocated++); map_register(4, Z_R6);
DEBUG_ONLY(allocated++); map_register(5, Z_R7);
DEBUG_ONLY(allocated++); map_register(6, Z_R10);
DEBUG_ONLY(allocated++); map_register(7, Z_R11);
DEBUG_ONLY(allocated++); map_register(8, Z_R12);
DEBUG_ONLY(allocated++); map_register(9, Z_R13); // <- last register visible in RegAlloc
DEBUG_ONLY(unallocated++); map_register(11, Z_R0); // Z_R0_scratch
DEBUG_ONLY(unallocated++); map_register(12, Z_R1); // Z_R1_scratch
DEBUG_ONLY(unallocated++); map_register(10, Z_R14); // return pc; TODO: Try to let c1/c2 allocate R14.
// The following registers are usually unavailable.
DEBUG_ONLY(unallocated++); map_register(13, Z_R8);
DEBUG_ONLY(unallocated++); map_register(14, Z_R9);
DEBUG_ONLY(unallocated++); map_register(15, Z_R15);
assert(allocated-1 == pd_last_cpu_reg, "wrong number/mapping of allocated CPU registers");
assert(unallocated == pd_nof_cpu_regs_unallocated, "wrong number of unallocated CPU registers");
assert(nof_cpu_regs == allocated+unallocated, "wrong number of CPU registers");
int j = 0;
for (int i = 0; i < nof_fpu_regs; i++) {
if (as_FloatRegister(i) == Z_fscratch_1) continue; // unallocated
map_float_register(j++, as_FloatRegister(i));
}
assert(j == nof_fpu_regs-1, "missed one fpu reg?");
map_float_register(j++, Z_fscratch_1);
_init_done = true;
Z_R0_opr = as_opr(Z_R0);
Z_R1_opr = as_opr(Z_R1);
Z_R2_opr = as_opr(Z_R2);
Z_R3_opr = as_opr(Z_R3);
Z_R4_opr = as_opr(Z_R4);
Z_R5_opr = as_opr(Z_R5);
Z_R6_opr = as_opr(Z_R6);
Z_R7_opr = as_opr(Z_R7);
Z_R8_opr = as_opr(Z_R8);
Z_R9_opr = as_opr(Z_R9);
Z_R10_opr = as_opr(Z_R10);
Z_R11_opr = as_opr(Z_R11);
Z_R12_opr = as_opr(Z_R12);
Z_R13_opr = as_opr(Z_R13);
Z_R14_opr = as_opr(Z_R14);
Z_R15_opr = as_opr(Z_R15);
Z_R0_oop_opr = as_oop_opr(Z_R0);
Z_R1_oop_opr = as_oop_opr(Z_R1);
Z_R2_oop_opr = as_oop_opr(Z_R2);
Z_R3_oop_opr = as_oop_opr(Z_R3);
Z_R4_oop_opr = as_oop_opr(Z_R4);
Z_R5_oop_opr = as_oop_opr(Z_R5);
Z_R6_oop_opr = as_oop_opr(Z_R6);
Z_R7_oop_opr = as_oop_opr(Z_R7);
Z_R8_oop_opr = as_oop_opr(Z_R8);
Z_R9_oop_opr = as_oop_opr(Z_R9);
Z_R10_oop_opr = as_oop_opr(Z_R10);
Z_R11_oop_opr = as_oop_opr(Z_R11);
Z_R12_oop_opr = as_oop_opr(Z_R12);
Z_R13_oop_opr = as_oop_opr(Z_R13);
Z_R14_oop_opr = as_oop_opr(Z_R14);
Z_R15_oop_opr = as_oop_opr(Z_R15);
Z_R0_metadata_opr = as_metadata_opr(Z_R0);
Z_R1_metadata_opr = as_metadata_opr(Z_R1);
Z_R2_metadata_opr = as_metadata_opr(Z_R2);
Z_R3_metadata_opr = as_metadata_opr(Z_R3);
Z_R4_metadata_opr = as_metadata_opr(Z_R4);
Z_R5_metadata_opr = as_metadata_opr(Z_R5);
Z_R6_metadata_opr = as_metadata_opr(Z_R6);
Z_R7_metadata_opr = as_metadata_opr(Z_R7);
Z_R8_metadata_opr = as_metadata_opr(Z_R8);
Z_R9_metadata_opr = as_metadata_opr(Z_R9);
Z_R10_metadata_opr = as_metadata_opr(Z_R10);
Z_R11_metadata_opr = as_metadata_opr(Z_R11);
Z_R12_metadata_opr = as_metadata_opr(Z_R12);
Z_R13_metadata_opr = as_metadata_opr(Z_R13);
Z_R14_metadata_opr = as_metadata_opr(Z_R14);
Z_R15_metadata_opr = as_metadata_opr(Z_R15);
// TODO: needed? Or can we make Z_R9 available for linear scan allocation.
Z_FP_opr = as_pointer_opr(Z_fp);
Z_SP_opr = as_pointer_opr(Z_SP);
Z_R2_long_opr = LIR_OprFact::double_cpu(cpu_reg2rnr(Z_R2), cpu_reg2rnr(Z_R2));
Z_R10_long_opr = LIR_OprFact::double_cpu(cpu_reg2rnr(Z_R10), cpu_reg2rnr(Z_R10));
Z_R11_long_opr = LIR_OprFact::double_cpu(cpu_reg2rnr(Z_R11), cpu_reg2rnr(Z_R11));
Z_F0_opr = as_float_opr(Z_F0);
Z_F0_double_opr = as_double_opr(Z_F0);
// All allocated cpu regs are caller saved.
for (int c1rnr = 0; c1rnr < max_nof_caller_save_cpu_regs; c1rnr++) {
_caller_save_cpu_regs[c1rnr] = as_opr(cpu_rnr2reg(c1rnr));
}
// All allocated fpu regs are caller saved.
for (int c1rnr = 0; c1rnr < nof_caller_save_fpu_regs; c1rnr++) {
_caller_save_fpu_regs[c1rnr] = as_float_opr(nr2floatreg(c1rnr));
}
}
Address FrameMap::make_new_address(ByteSize sp_offset) const {
return Address(Z_SP, sp_offset);
}
VMReg FrameMap::fpu_regname (int n) {
return nr2floatreg(n)->as_VMReg();
}
LIR_Opr FrameMap::stack_pointer() {
return Z_SP_opr;
}
// JSR 292
// On ZARCH_64, there is no need to save the SP, because neither
// method handle intrinsics nor compiled lambda forms modify it.
LIR_Opr FrameMap::method_handle_invoke_SP_save_opr() {
return LIR_OprFact::illegalOpr;
}
bool FrameMap::validate_frame() {
return true;
}