/*
* Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "c1/c1_IR.hpp"
#include "c1/c1_Instruction.hpp"
#include "c1/c1_InstructionPrinter.hpp"
#include "c1/c1_ValueStack.hpp"
#include "ci/ciObjArrayKlass.hpp"
#include "ci/ciTypeArrayKlass.hpp"
// Implementation of Instruction
int Instruction::dominator_depth() {
int result = -1;
if (block()) {
result = block()->dominator_depth();
}
assert(result != -1 || this->as_Local(), "Only locals have dominator depth -1");
return result;
}
Instruction::Condition Instruction::mirror(Condition cond) {
switch (cond) {
case eql: return eql;
case neq: return neq;
case lss: return gtr;
case leq: return geq;
case gtr: return lss;
case geq: return leq;
case aeq: return beq;
case beq: return aeq;
}
ShouldNotReachHere();
return eql;
}
Instruction::Condition Instruction::negate(Condition cond) {
switch (cond) {
case eql: return neq;
case neq: return eql;
case lss: return geq;
case leq: return gtr;
case gtr: return leq;
case geq: return lss;
case aeq: assert(false, "Above equal cannot be negated");
case beq: assert(false, "Below equal cannot be negated");
}
ShouldNotReachHere();
return eql;
}
void Instruction::update_exception_state(ValueStack* state) {
if (state != NULL && (state->kind() == ValueStack::EmptyExceptionState || state->kind() == ValueStack::ExceptionState)) {
assert(state->kind() == ValueStack::EmptyExceptionState || Compilation::current()->env()->should_retain_local_variables(), "unexpected state kind");
_exception_state = state;
} else {
_exception_state = NULL;
}
}
// Prev without need to have BlockBegin
Instruction* Instruction::prev() {
Instruction* p = NULL;
Instruction* q = block();
while (q != this) {
assert(q != NULL, "this is not in the block's instruction list");
p = q; q = q->next();
}
return p;
}
void Instruction::state_values_do(ValueVisitor* f) {
if (state_before() != NULL) {
state_before()->values_do(f);
}
if (exception_state() != NULL){
exception_state()->values_do(f);
}
}
ciType* Instruction::exact_type() const {
ciType* t = declared_type();
if (t != NULL && t->is_klass()) {
return t->as_klass()->exact_klass();
}
return NULL;
}
#ifndef PRODUCT
void Instruction::check_state(ValueStack* state) {
if (state != NULL) {
state->verify();
}
}
void Instruction::print() {
InstructionPrinter ip;
print(ip);
}
void Instruction::print_line() {
InstructionPrinter ip;
ip.print_line(this);
}
void Instruction::print(InstructionPrinter& ip) {
ip.print_head();
ip.print_line(this);
tty->cr();
}
#endif // PRODUCT
// perform constant and interval tests on index value
bool AccessIndexed::compute_needs_range_check() {
if (length()) {
Constant* clength = length()->as_Constant();
Constant* cindex = index()->as_Constant();
if (clength && cindex) {
IntConstant* l = clength->type()->as_IntConstant();
IntConstant* i = cindex->type()->as_IntConstant();
if (l && i && i->value() < l->value() && i->value() >= 0) {
return false;
}
}
}
if (!this->check_flag(NeedsRangeCheckFlag)) {
return false;
}
return true;
}
ciType* Constant::exact_type() const {
if (type()->is_object() && type()->as_ObjectType()->is_loaded()) {
return type()->as_ObjectType()->exact_type();
}
return NULL;
}
ciType* LoadIndexed::exact_type() const {
ciType* array_type = array()->exact_type();
if (array_type != NULL) {
assert(array_type->is_array_klass(), "what else?");
ciArrayKlass* ak = (ciArrayKlass*)array_type;
if (ak->element_type()->is_instance_klass()) {
ciInstanceKlass* ik = (ciInstanceKlass*)ak->element_type();
if (ik->is_loaded() && ik->is_final()) {
return ik;
}
}
}
return Instruction::exact_type();
}
ciType* LoadIndexed::declared_type() const {
ciType* array_type = array()->declared_type();
if (array_type == NULL || !array_type->is_loaded()) {
return NULL;
}
assert(array_type->is_array_klass(), "what else?");
ciArrayKlass* ak = (ciArrayKlass*)array_type;
return ak->element_type();
}
ciType* LoadField::declared_type() const {
return field()->type();
}
ciType* NewTypeArray::exact_type() const {
return ciTypeArrayKlass::make(elt_type());
}
ciType* NewObjectArray::exact_type() const {
return ciObjArrayKlass::make(klass());
}
ciType* NewArray::declared_type() const {
return exact_type();
}
ciType* NewInstance::exact_type() const {
return klass();
}
ciType* NewInstance::declared_type() const {
return exact_type();
}
ciType* CheckCast::declared_type() const {
return klass();
}
// Implementation of ArithmeticOp
bool ArithmeticOp::is_commutative() const {
switch (op()) {
case Bytecodes::_iadd: // fall through
case Bytecodes::_ladd: // fall through
case Bytecodes::_fadd: // fall through
case Bytecodes::_dadd: // fall through
case Bytecodes::_imul: // fall through
case Bytecodes::_lmul: // fall through
case Bytecodes::_fmul: // fall through
case Bytecodes::_dmul: return true;
}
return false;
}
bool ArithmeticOp::can_trap() const {
switch (op()) {
case Bytecodes::_idiv: // fall through
case Bytecodes::_ldiv: // fall through
case Bytecodes::_irem: // fall through
case Bytecodes::_lrem: return true;
}
return false;
}
// Implementation of LogicOp
bool LogicOp::is_commutative() const {
#ifdef ASSERT
switch (op()) {
case Bytecodes::_iand: // fall through
case Bytecodes::_land: // fall through
case Bytecodes::_ior : // fall through
case Bytecodes::_lor : // fall through
case Bytecodes::_ixor: // fall through
case Bytecodes::_lxor: break;
default : ShouldNotReachHere();
}
#endif
// all LogicOps are commutative
return true;
}
// Implementation of IfOp
bool IfOp::is_commutative() const {
return cond() == eql || cond() == neq;
}
// Implementation of StateSplit
void StateSplit::substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block) {
NOT_PRODUCT(bool assigned = false;)
for (int i = 0; i < list.length(); i++) {
BlockBegin** b = list.adr_at(i);
if (*b == old_block) {
*b = new_block;
NOT_PRODUCT(assigned = true;)
}
}
assert(assigned == true, "should have assigned at least once");
}
IRScope* StateSplit::scope() const {
return _state->scope();
}
void StateSplit::state_values_do(ValueVisitor* f) {
Instruction::state_values_do(f);
if (state() != NULL) state()->values_do(f);
}
void BlockBegin::state_values_do(ValueVisitor* f) {
StateSplit::state_values_do(f);
if (is_set(BlockBegin::exception_entry_flag)) {
for (int i = 0; i < number_of_exception_states(); i++) {
exception_state_at(i)->values_do(f);
}
}
}
// Implementation of Invoke
Invoke::Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args,
int vtable_index, ciMethod* target, ValueStack* state_before)
: StateSplit(result_type, state_before)
, _code(code)
, _recv(recv)
, _args(args)
, _vtable_index(vtable_index)
, _target(target)
{
set_flag(TargetIsLoadedFlag, target->is_loaded());
set_flag(TargetIsFinalFlag, target_is_loaded() && target->is_final_method());
set_flag(TargetIsStrictfpFlag, target_is_loaded() && target->is_strict());
assert(args != NULL, "args must exist");
#ifdef ASSERT
AssertValues assert_value;
values_do(&assert_value);
#endif
// provide an initial guess of signature size.
_signature = new BasicTypeList(number_of_arguments() + (has_receiver() ? 1 : 0));
if (has_receiver()) {
_signature->append(as_BasicType(receiver()->type()));
}
for (int i = 0; i < number_of_arguments(); i++) {
ValueType* t = argument_at(i)->type();
BasicType bt = as_BasicType(t);
_signature->append(bt);
}
}
void Invoke::state_values_do(ValueVisitor* f) {
StateSplit::state_values_do(f);
if (state_before() != NULL) state_before()->values_do(f);
if (state() != NULL) state()->values_do(f);
}
ciType* Invoke::declared_type() const {
ciType *t = _target->signature()->return_type();
assert(t->basic_type() != T_VOID, "need return value of void method?");
return t;
}
// Implementation of Contant
intx Constant::hash() const {
if (state_before() == NULL) {
switch (type()->tag()) {
case intTag:
return HASH2(name(), type()->as_IntConstant()->value());
case addressTag:
return HASH2(name(), type()->as_AddressConstant()->value());
case longTag:
{
jlong temp = type()->as_LongConstant()->value();
return HASH3(name(), high(temp), low(temp));
}
case floatTag:
return HASH2(name(), jint_cast(type()->as_FloatConstant()->value()));
case doubleTag:
{
jlong temp = jlong_cast(type()->as_DoubleConstant()->value());
return HASH3(name(), high(temp), low(temp));
}
case objectTag:
assert(type()->as_ObjectType()->is_loaded(), "can't handle unloaded values");
return HASH2(name(), type()->as_ObjectType()->constant_value());
case metaDataTag:
assert(type()->as_MetadataType()->is_loaded(), "can't handle unloaded values");
return HASH2(name(), type()->as_MetadataType()->constant_value());
default:
ShouldNotReachHere();
}
}
return 0;
}
bool Constant::is_equal(Value v) const {
if (v->as_Constant() == NULL) return false;
switch (type()->tag()) {
case intTag:
{
IntConstant* t1 = type()->as_IntConstant();
IntConstant* t2 = v->type()->as_IntConstant();
return (t1 != NULL && t2 != NULL &&
t1->value() == t2->value());
}
case longTag:
{
LongConstant* t1 = type()->as_LongConstant();
LongConstant* t2 = v->type()->as_LongConstant();
return (t1 != NULL && t2 != NULL &&
t1->value() == t2->value());
}
case floatTag:
{
FloatConstant* t1 = type()->as_FloatConstant();
FloatConstant* t2 = v->type()->as_FloatConstant();
return (t1 != NULL && t2 != NULL &&
jint_cast(t1->value()) == jint_cast(t2->value()));
}
case doubleTag:
{
DoubleConstant* t1 = type()->as_DoubleConstant();
DoubleConstant* t2 = v->type()->as_DoubleConstant();
return (t1 != NULL && t2 != NULL &&
jlong_cast(t1->value()) == jlong_cast(t2->value()));
}
case objectTag:
{
ObjectType* t1 = type()->as_ObjectType();
ObjectType* t2 = v->type()->as_ObjectType();
return (t1 != NULL && t2 != NULL &&
t1->is_loaded() && t2->is_loaded() &&
t1->constant_value() == t2->constant_value());
}
case metaDataTag:
{
MetadataType* t1 = type()->as_MetadataType();
MetadataType* t2 = v->type()->as_MetadataType();
return (t1 != NULL && t2 != NULL &&
t1->is_loaded() && t2->is_loaded() &&
t1->constant_value() == t2->constant_value());
}
}
return false;
}
Constant::CompareResult Constant::compare(Instruction::Condition cond, Value right) const {
Constant* rc = right->as_Constant();
// other is not a constant
if (rc == NULL) return not_comparable;
ValueType* lt = type();
ValueType* rt = rc->type();
// different types
if (lt->base() != rt->base()) return not_comparable;
switch (lt->tag()) {
case intTag: {
int x = lt->as_IntConstant()->value();
int y = rt->as_IntConstant()->value();
switch (cond) {
case If::eql: return x == y ? cond_true : cond_false;
case If::neq: return x != y ? cond_true : cond_false;
case If::lss: return x < y ? cond_true : cond_false;
case If::leq: return x <= y ? cond_true : cond_false;
case If::gtr: return x > y ? cond_true : cond_false;
case If::geq: return x >= y ? cond_true : cond_false;
}
break;
}
case longTag: {
jlong x = lt->as_LongConstant()->value();
jlong y = rt->as_LongConstant()->value();
switch (cond) {
case If::eql: return x == y ? cond_true : cond_false;
case If::neq: return x != y ? cond_true : cond_false;
case If::lss: return x < y ? cond_true : cond_false;
case If::leq: return x <= y ? cond_true : cond_false;
case If::gtr: return x > y ? cond_true : cond_false;
case If::geq: return x >= y ? cond_true : cond_false;
}
break;
}
case objectTag: {
ciObject* xvalue = lt->as_ObjectType()->constant_value();
ciObject* yvalue = rt->as_ObjectType()->constant_value();
assert(xvalue != NULL && yvalue != NULL, "not constants");
if (xvalue->is_loaded() && yvalue->is_loaded()) {
switch (cond) {
case If::eql: return xvalue == yvalue ? cond_true : cond_false;
case If::neq: return xvalue != yvalue ? cond_true : cond_false;
}
}
break;
}
case metaDataTag: {
ciMetadata* xvalue = lt->as_MetadataType()->constant_value();
ciMetadata* yvalue = rt->as_MetadataType()->constant_value();
assert(xvalue != NULL && yvalue != NULL, "not constants");
if (xvalue->is_loaded() && yvalue->is_loaded()) {
switch (cond) {
case If::eql: return xvalue == yvalue ? cond_true : cond_false;
case If::neq: return xvalue != yvalue ? cond_true : cond_false;
}
}
break;
}
}
return not_comparable;
}
// Implementation of BlockBegin
void BlockBegin::set_end(BlockEnd* end) {
assert(end != NULL, "should not reset block end to NULL");
if (end == _end) {
return;
}
clear_end();
// Set the new end
_end = end;
_successors.clear();
// Now reset successors list based on BlockEnd
for (int i = 0; i < end->number_of_sux(); i++) {
BlockBegin* sux = end->sux_at(i);
_successors.append(sux);
sux->_predecessors.append(this);
}
_end->set_begin(this);
}
void BlockBegin::clear_end() {
// Must make the predecessors/successors match up with the
// BlockEnd's notion.
if (_end != NULL) {
// disconnect from the old end
_end->set_begin(NULL);
// disconnect this block from it's current successors
for (int i = 0; i < _successors.length(); i++) {
_successors.at(i)->remove_predecessor(this);
}
_end = NULL;
}
}
void BlockBegin::disconnect_edge(BlockBegin* from, BlockBegin* to) {
// disconnect any edges between from and to
#ifndef PRODUCT
if (PrintIR && Verbose) {
tty->print_cr("Disconnected edge B%d -> B%d", from->block_id(), to->block_id());
}
#endif
for (int s = 0; s < from->number_of_sux();) {
BlockBegin* sux = from->sux_at(s);
if (sux == to) {
int index = sux->_predecessors.find(from);
if (index >= 0) {
sux->_predecessors.remove_at(index);
}
from->_successors.remove_at(s);
} else {
s++;
}
}
}
void BlockBegin::disconnect_from_graph() {
// disconnect this block from all other blocks
for (int p = 0; p < number_of_preds(); p++) {
pred_at(p)->remove_successor(this);
}
for (int s = 0; s < number_of_sux(); s++) {
sux_at(s)->remove_predecessor(this);
}
}
void BlockBegin::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
// modify predecessors before substituting successors
for (int i = 0; i < number_of_sux(); i++) {
if (sux_at(i) == old_sux) {
// remove old predecessor before adding new predecessor
// otherwise there is a dead predecessor in the list
new_sux->remove_predecessor(old_sux);
new_sux->add_predecessor(this);
}
}
old_sux->remove_predecessor(this);
end()->substitute_sux(old_sux, new_sux);
}
// In general it is not possible to calculate a value for the field "depth_first_number"
// of the inserted block, without recomputing the values of the other blocks
// in the CFG. Therefore the value of "depth_first_number" in BlockBegin becomes meaningless.
BlockBegin* BlockBegin::insert_block_between(BlockBegin* sux) {
int bci = sux->bci();
// critical edge splitting may introduce a goto after a if and array
// bound check elimination may insert a predicate between the if and
// goto. The bci of the goto can't be the one of the if otherwise
// the state and bci are inconsistent and a deoptimization triggered
// by the predicate would lead to incorrect execution/a crash.
BlockBegin* new_sux = new BlockBegin(bci);
// mark this block (special treatment when block order is computed)
new_sux->set(critical_edge_split_flag);
// This goto is not a safepoint.
Goto* e = new Goto(sux, false);
new_sux->set_next(e, bci);
new_sux->set_end(e);
// setup states
ValueStack* s = end()->state();
new_sux->set_state(s->copy(s->kind(), bci));
e->set_state(s->copy(s->kind(), bci));
assert(new_sux->state()->locals_size() == s->locals_size(), "local size mismatch!");
assert(new_sux->state()->stack_size() == s->stack_size(), "stack size mismatch!");
assert(new_sux->state()->locks_size() == s->locks_size(), "locks size mismatch!");
// link predecessor to new block
end()->substitute_sux(sux, new_sux);
// The ordering needs to be the same, so remove the link that the
// set_end call above added and substitute the new_sux for this
// block.
sux->remove_predecessor(new_sux);
// the successor could be the target of a switch so it might have
// multiple copies of this predecessor, so substitute the new_sux
// for the first and delete the rest.
bool assigned = false;
BlockList& list = sux->_predecessors;
for (int i = 0; i < list.length(); i++) {
BlockBegin** b = list.adr_at(i);
if (*b == this) {
if (assigned) {
list.remove_at(i);
// reprocess this index
i--;
} else {
assigned = true;
*b = new_sux;
}
// link the new block back to it's predecessors.
new_sux->add_predecessor(this);
}
}
assert(assigned == true, "should have assigned at least once");
return new_sux;
}
void BlockBegin::remove_successor(BlockBegin* pred) {
int idx;
while ((idx = _successors.find(pred)) >= 0) {
_successors.remove_at(idx);
}
}
void BlockBegin::add_predecessor(BlockBegin* pred) {
_predecessors.append(pred);
}
void BlockBegin::remove_predecessor(BlockBegin* pred) {
int idx;
while ((idx = _predecessors.find(pred)) >= 0) {
_predecessors.remove_at(idx);
}
}
void BlockBegin::add_exception_handler(BlockBegin* b) {
assert(b != NULL && (b->is_set(exception_entry_flag)), "exception handler must exist");
// add only if not in the list already
if (!_exception_handlers.contains(b)) _exception_handlers.append(b);
}
int BlockBegin::add_exception_state(ValueStack* state) {
assert(is_set(exception_entry_flag), "only for xhandlers");
if (_exception_states == NULL) {
_exception_states = new ValueStackStack(4);
}
_exception_states->append(state);
return _exception_states->length() - 1;
}
void BlockBegin::iterate_preorder(boolArray& mark, BlockClosure* closure) {
if (!mark.at(block_id())) {
mark.at_put(block_id(), true);
closure->block_do(this);
BlockEnd* e = end(); // must do this after block_do because block_do may change it!
{ for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_preorder(mark, closure); }
{ for (int i = e->number_of_sux () - 1; i >= 0; i--) e->sux_at (i)->iterate_preorder(mark, closure); }
}
}
void BlockBegin::iterate_postorder(boolArray& mark, BlockClosure* closure) {
if (!mark.at(block_id())) {
mark.at_put(block_id(), true);
BlockEnd* e = end();
{ for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_postorder(mark, closure); }
{ for (int i = e->number_of_sux () - 1; i >= 0; i--) e->sux_at (i)->iterate_postorder(mark, closure); }
closure->block_do(this);
}
}
void BlockBegin::iterate_preorder(BlockClosure* closure) {
int mark_len = number_of_blocks();
boolArray mark(mark_len, mark_len, false);
iterate_preorder(mark, closure);
}
void BlockBegin::iterate_postorder(BlockClosure* closure) {
int mark_len = number_of_blocks();
boolArray mark(mark_len, mark_len, false);
iterate_postorder(mark, closure);
}
void BlockBegin::block_values_do(ValueVisitor* f) {
for (Instruction* n = this; n != NULL; n = n->next()) n->values_do(f);
}
#ifndef PRODUCT
#define TRACE_PHI(code) if (PrintPhiFunctions) { code; }
#else
#define TRACE_PHI(coce)
#endif
bool BlockBegin::try_merge(ValueStack* new_state) {
TRACE_PHI(tty->print_cr("********** try_merge for block B%d", block_id()));
// local variables used for state iteration
int index;
Value new_value, existing_value;
ValueStack* existing_state = state();
if (existing_state == NULL) {
TRACE_PHI(tty->print_cr("first call of try_merge for this block"));
if (is_set(BlockBegin::was_visited_flag)) {
// this actually happens for complicated jsr/ret structures
return false; // BAILOUT in caller
}
// copy state because it is altered
new_state = new_state->copy(ValueStack::BlockBeginState, bci());
// Use method liveness to invalidate dead locals
MethodLivenessResult liveness = new_state->scope()->method()->liveness_at_bci(bci());
if (liveness.is_valid()) {
assert((int)liveness.size() == new_state->locals_size(), "error in use of liveness");
for_each_local_value(new_state, index, new_value) {
if (!liveness.at(index) || new_value->type()->is_illegal()) {
new_state->invalidate_local(index);
TRACE_PHI(tty->print_cr("invalidating dead local %d", index));
}
}
}
if (is_set(BlockBegin::parser_loop_header_flag)) {
TRACE_PHI(tty->print_cr("loop header block, initializing phi functions"));
for_each_stack_value(new_state, index, new_value) {
new_state->setup_phi_for_stack(this, index);
TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", new_state->stack_at(index)->type()->tchar(), new_state->stack_at(index)->id(), index));
}
BitMap& requires_phi_function = new_state->scope()->requires_phi_function();
for_each_local_value(new_state, index, new_value) {
bool requires_phi = requires_phi_function.at(index) || (new_value->type()->is_double_word() && requires_phi_function.at(index + 1));
if (requires_phi || !SelectivePhiFunctions) {
new_state->setup_phi_for_local(this, index);
TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", new_state->local_at(index)->type()->tchar(), new_state->local_at(index)->id(), index));
}
}
}
// initialize state of block
set_state(new_state);
} else if (existing_state->is_same(new_state)) {
TRACE_PHI(tty->print_cr("exisiting state found"));
assert(existing_state->scope() == new_state->scope(), "not matching");
assert(existing_state->locals_size() == new_state->locals_size(), "not matching");
assert(existing_state->stack_size() == new_state->stack_size(), "not matching");
if (is_set(BlockBegin::was_visited_flag)) {
TRACE_PHI(tty->print_cr("loop header block, phis must be present"));
if (!is_set(BlockBegin::parser_loop_header_flag)) {
// this actually happens for complicated jsr/ret structures
return false; // BAILOUT in caller
}
for_each_local_value(existing_state, index, existing_value) {
Value new_value = new_state->local_at(index);
if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
// The old code invalidated the phi function here
// Because dead locals are replaced with NULL, this is a very rare case now, so simply bail out
return false; // BAILOUT in caller
}
}
#ifdef ASSERT
// check that all necessary phi functions are present
for_each_stack_value(existing_state, index, existing_value) {
assert(existing_value->as_Phi() != NULL && existing_value->as_Phi()->block() == this, "phi function required");
}
for_each_local_value(existing_state, index, existing_value) {
assert(existing_value == new_state->local_at(index) || (existing_value->as_Phi() != NULL && existing_value->as_Phi()->as_Phi()->block() == this), "phi function required");
}
#endif
} else {
TRACE_PHI(tty->print_cr("creating phi functions on demand"));
// create necessary phi functions for stack
for_each_stack_value(existing_state, index, existing_value) {
Value new_value = new_state->stack_at(index);
Phi* existing_phi = existing_value->as_Phi();
if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
existing_state->setup_phi_for_stack(this, index);
TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", existing_state->stack_at(index)->type()->tchar(), existing_state->stack_at(index)->id(), index));
}
}
// create necessary phi functions for locals
for_each_local_value(existing_state, index, existing_value) {
Value new_value = new_state->local_at(index);
Phi* existing_phi = existing_value->as_Phi();
if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
existing_state->invalidate_local(index);
TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
} else if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
existing_state->setup_phi_for_local(this, index);
TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", existing_state->local_at(index)->type()->tchar(), existing_state->local_at(index)->id(), index));
}
}
}
assert(existing_state->caller_state() == new_state->caller_state(), "caller states must be equal");
} else {
assert(false, "stack or locks not matching (invalid bytecodes)");
return false;
}
TRACE_PHI(tty->print_cr("********** try_merge for block B%d successful", block_id()));
return true;
}
#ifndef PRODUCT
void BlockBegin::print_block() {
InstructionPrinter ip;
print_block(ip, false);
}
void BlockBegin::print_block(InstructionPrinter& ip, bool live_only) {
ip.print_instr(this); tty->cr();
ip.print_stack(this->state()); tty->cr();
ip.print_inline_level(this);
ip.print_head();
for (Instruction* n = next(); n != NULL; n = n->next()) {
if (!live_only || n->is_pinned() || n->use_count() > 0) {
ip.print_line(n);
}
}
tty->cr();
}
#endif // PRODUCT
// Implementation of BlockList
void BlockList::iterate_forward (BlockClosure* closure) {
const int l = length();
for (int i = 0; i < l; i++) closure->block_do(at(i));
}
void BlockList::iterate_backward(BlockClosure* closure) {
for (int i = length() - 1; i >= 0; i--) closure->block_do(at(i));
}
void BlockList::blocks_do(void f(BlockBegin*)) {
for (int i = length() - 1; i >= 0; i--) f(at(i));
}
void BlockList::values_do(ValueVisitor* f) {
for (int i = length() - 1; i >= 0; i--) at(i)->block_values_do(f);
}
#ifndef PRODUCT
void BlockList::print(bool cfg_only, bool live_only) {
InstructionPrinter ip;
for (int i = 0; i < length(); i++) {
BlockBegin* block = at(i);
if (cfg_only) {
ip.print_instr(block); tty->cr();
} else {
block->print_block(ip, live_only);
}
}
}
#endif // PRODUCT
// Implementation of BlockEnd
void BlockEnd::set_begin(BlockBegin* begin) {
BlockList* sux = NULL;
if (begin != NULL) {
sux = begin->successors();
} else if (this->begin() != NULL) {
// copy our sux list
BlockList* sux = new BlockList(this->begin()->number_of_sux());
for (int i = 0; i < this->begin()->number_of_sux(); i++) {
sux->append(this->begin()->sux_at(i));
}
}
_sux = sux;
}
void BlockEnd::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
substitute(*_sux, old_sux, new_sux);
}
// Implementation of Phi
// Normal phi functions take their operands from the last instruction of the
// predecessor. Special handling is needed for xhanlder entries because there
// the state of arbitrary instructions are needed.
Value Phi::operand_at(int i) const {
ValueStack* state;
if (_block->is_set(BlockBegin::exception_entry_flag)) {
state = _block->exception_state_at(i);
} else {
state = _block->pred_at(i)->end()->state();
}
assert(state != NULL, "");
if (is_local()) {
return state->local_at(local_index());
} else {
return state->stack_at(stack_index());
}
}
int Phi::operand_count() const {
if (_block->is_set(BlockBegin::exception_entry_flag)) {
return _block->number_of_exception_states();
} else {
return _block->number_of_preds();
}
}
#ifdef ASSERT
// Constructor of Assert
Assert::Assert(Value x, Condition cond, bool unordered_is_true, Value y) : Instruction(illegalType)
, _x(x)
, _cond(cond)
, _y(y)
{
set_flag(UnorderedIsTrueFlag, unordered_is_true);
assert(x->type()->tag() == y->type()->tag(), "types must match");
pin();
stringStream strStream;
Compilation::current()->method()->print_name(&strStream);
stringStream strStream1;
InstructionPrinter ip1(1, &strStream1);
ip1.print_instr(x);
stringStream strStream2;
InstructionPrinter ip2(1, &strStream2);
ip2.print_instr(y);
stringStream ss;
ss.print("Assertion %s %s %s in method %s", strStream1.as_string(), ip2.cond_name(cond), strStream2.as_string(), strStream.as_string());
_message = ss.as_string();
}
#endif
void RangeCheckPredicate::check_state() {
assert(state()->kind() != ValueStack::EmptyExceptionState && state()->kind() != ValueStack::ExceptionState, "will deopt with empty state");
}
void ProfileInvoke::state_values_do(ValueVisitor* f) {
if (state() != NULL) state()->values_do(f);
}