/*
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_SPARC_VM_VM_VERSION_SPARC_HPP
#define CPU_SPARC_VM_VM_VERSION_SPARC_HPP
#include "runtime/globals_extension.hpp"
#include "runtime/vm_version.hpp"
class VM_Version: public Abstract_VM_Version {
protected:
enum Feature_Flag {
v8_instructions = 0,
hardware_mul32 = 1,
hardware_div32 = 2,
hardware_fsmuld = 3,
hardware_popc = 4,
v9_instructions = 5,
vis1_instructions = 6,
vis2_instructions = 7,
sun4v_instructions = 8,
blk_init_instructions = 9,
fmaf_instructions = 10,
fmau_instructions = 11,
vis3_instructions = 12,
cbcond_instructions = 13,
sparc64_family = 14,
M_family = 15,
T_family = 16,
T1_model = 17,
sparc5_instructions = 18,
aes_instructions = 19,
sha1_instruction = 20,
sha256_instruction = 21,
sha512_instruction = 22
};
enum Feature_Flag_Set {
unknown_m = 0,
all_features_m = -1,
v8_instructions_m = 1 << v8_instructions,
hardware_mul32_m = 1 << hardware_mul32,
hardware_div32_m = 1 << hardware_div32,
hardware_fsmuld_m = 1 << hardware_fsmuld,
hardware_popc_m = 1 << hardware_popc,
v9_instructions_m = 1 << v9_instructions,
vis1_instructions_m = 1 << vis1_instructions,
vis2_instructions_m = 1 << vis2_instructions,
sun4v_m = 1 << sun4v_instructions,
blk_init_instructions_m = 1 << blk_init_instructions,
fmaf_instructions_m = 1 << fmaf_instructions,
fmau_instructions_m = 1 << fmau_instructions,
vis3_instructions_m = 1 << vis3_instructions,
cbcond_instructions_m = 1 << cbcond_instructions,
sparc64_family_m = 1 << sparc64_family,
M_family_m = 1 << M_family,
T_family_m = 1 << T_family,
T1_model_m = 1 << T1_model,
sparc5_instructions_m = 1 << sparc5_instructions,
aes_instructions_m = 1 << aes_instructions,
sha1_instruction_m = 1 << sha1_instruction,
sha256_instruction_m = 1 << sha256_instruction,
sha512_instruction_m = 1 << sha512_instruction,
generic_v8_m = v8_instructions_m | hardware_mul32_m | hardware_div32_m | hardware_fsmuld_m,
generic_v9_m = generic_v8_m | v9_instructions_m,
ultra3_m = generic_v9_m | vis1_instructions_m | vis2_instructions_m,
// Temporary until we have something more accurate
niagara1_unique_m = sun4v_m,
niagara1_m = generic_v9_m | niagara1_unique_m
};
static int _features;
static const char* _features_str;
static unsigned int _L2_cache_line_size;
static unsigned int L2_cache_line_size() { return _L2_cache_line_size; }
static void print_features();
static int determine_features();
static int platform_features(int features);
// Returns true if the platform is in the niagara line (T series)
static bool is_M_family(int features) { return (features & M_family_m) != 0; }
static bool is_T_family(int features) { return (features & T_family_m) != 0; }
static bool is_niagara() { return is_T_family(_features); }
#ifdef ASSERT
static bool is_niagara(int features) {
// 'sun4v_m' may be defined on both Sun/Oracle Sparc CPUs as well as
// on Fujitsu Sparc64 CPUs, but only Sun/Oracle Sparcs can be 'niagaras'.
return (features & sun4v_m) != 0 && (features & sparc64_family_m) == 0;
}
#endif
// Returns true if it is niagara1 (T1).
static bool is_T1_model(int features) { return is_T_family(features) && ((features & T1_model_m) != 0); }
static int maximum_niagara1_processor_count() { return 32; }
public:
// Initialization
static void initialize();
// Instruction support
static bool has_v8() { return (_features & v8_instructions_m) != 0; }
static bool has_v9() { return (_features & v9_instructions_m) != 0; }
static bool has_hardware_mul32() { return (_features & hardware_mul32_m) != 0; }
static bool has_hardware_div32() { return (_features & hardware_div32_m) != 0; }
static bool has_hardware_fsmuld() { return (_features & hardware_fsmuld_m) != 0; }
static bool has_hardware_popc() { return (_features & hardware_popc_m) != 0; }
static bool has_vis1() { return (_features & vis1_instructions_m) != 0; }
static bool has_vis2() { return (_features & vis2_instructions_m) != 0; }
static bool has_vis3() { return (_features & vis3_instructions_m) != 0; }
static bool has_blk_init() { return (_features & blk_init_instructions_m) != 0; }
static bool has_cbcond() { return (_features & cbcond_instructions_m) != 0; }
static bool has_sparc5_instr() { return (_features & sparc5_instructions_m) != 0; }
static bool has_aes() { return (_features & aes_instructions_m) != 0; }
static bool has_sha1() { return (_features & sha1_instruction_m) != 0; }
static bool has_sha256() { return (_features & sha256_instruction_m) != 0; }
static bool has_sha512() { return (_features & sha512_instruction_m) != 0; }
static bool supports_compare_and_exchange()
{ return has_v9(); }
// Returns true if the platform is in the niagara line (T series)
// and newer than the niagara1.
static bool is_niagara_plus() { return is_T_family(_features) && !is_T1_model(_features); }
static bool is_M_series() { return is_M_family(_features); }
static bool is_T4() { return is_T_family(_features) && has_cbcond(); }
static bool is_T7() { return is_T_family(_features) && has_sparc5_instr(); }
// Fujitsu SPARC64
static bool is_sparc64() { return (_features & sparc64_family_m) != 0; }
static bool is_sun4v() { return (_features & sun4v_m) != 0; }
static bool is_ultra3() { return (_features & ultra3_m) == ultra3_m && !is_sun4v() && !is_sparc64(); }
static bool has_fast_fxtof() { return is_niagara() || is_sparc64() || has_v9() && !is_ultra3(); }
static bool has_fast_idiv() { return is_niagara_plus() || is_sparc64(); }
// T4 and newer Sparc have fast RDPC instruction.
static bool has_fast_rdpc() { return is_T4(); }
// On T4 and newer Sparc BIS to the beginning of cache line always zeros it.
static bool has_block_zeroing() { return has_blk_init() && is_T4(); }
static const char* cpu_features() { return _features_str; }
// default prefetch block size on sparc
static intx prefetch_data_size() { return L2_cache_line_size(); }
// Prefetch
static intx prefetch_copy_interval_in_bytes() {
intx interval = PrefetchCopyIntervalInBytes;
return interval >= 0 ? interval : (has_v9() ? 512 : 0);
}
static intx prefetch_scan_interval_in_bytes() {
intx interval = PrefetchScanIntervalInBytes;
return interval >= 0 ? interval : (has_v9() ? 512 : 0);
}
static intx prefetch_fields_ahead() {
intx count = PrefetchFieldsAhead;
return count >= 0 ? count : (is_ultra3() ? 1 : 0);
}
static intx allocate_prefetch_distance() {
// This method should be called before allocate_prefetch_style().
intx count = AllocatePrefetchDistance;
if (count < 0) { // default is not defined ?
count = 512;
}
return count;
}
static intx allocate_prefetch_style() {
assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
// Return 0 if AllocatePrefetchDistance was not defined.
return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
}
// Assembler testing
static void allow_all();
static void revert();
// Override the Abstract_VM_Version implementation.
static uint page_size_count() { return is_sun4v() ? 4 : 2; }
// Calculates the number of parallel threads
static unsigned int calc_parallel_worker_threads();
};
#endif // CPU_SPARC_VM_VM_VERSION_SPARC_HPP