/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "code/codeCache.hpp"
#include "memory/resourceArea.hpp"
#include "nativeInst_sparc.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/ostream.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
void NativeInstruction::set_data64_sethi(address instaddr, intptr_t x) {
ResourceMark rm;
CodeBuffer buf(instaddr, 10 * BytesPerInstWord );
MacroAssembler* _masm = new MacroAssembler(&buf);
Register destreg;
destreg = inv_rd(*(unsigned int *)instaddr);
// Generate a the new sequence
_masm->patchable_sethi(x, destreg);
ICache::invalidate_range(instaddr, 7 * BytesPerInstWord);
}
void NativeInstruction::verify_data64_sethi(address instaddr, intptr_t x) {
ResourceMark rm;
unsigned char buffer[10 * BytesPerInstWord];
CodeBuffer buf(buffer, 10 * BytesPerInstWord);
MacroAssembler masm(&buf);
Register destreg = inv_rd(*(unsigned int *)instaddr);
// Generate the proper sequence into a temporary buffer and compare
// it with the original sequence.
masm.patchable_sethi(x, destreg);
int len = buffer - masm.pc();
for (int i = 0; i < len; i++) {
assert(instaddr[i] == buffer[i], "instructions must match");
}
}
void NativeInstruction::verify() {
// make sure code pattern is actually an instruction address
address addr = addr_at(0);
if (addr == 0 || ((intptr_t)addr & 3) != 0) {
fatal("not an instruction address");
}
}
void NativeInstruction::print() {
tty->print_cr(INTPTR_FORMAT ": 0x%x", p2i(addr_at(0)), long_at(0));
}
void NativeInstruction::set_long_at(int offset, int i) {
address addr = addr_at(offset);
*(int*)addr = i;
ICache::invalidate_word(addr);
}
void NativeInstruction::set_jlong_at(int offset, jlong i) {
address addr = addr_at(offset);
*(jlong*)addr = i;
// Don't need to invalidate 2 words here, because
// the flush instruction operates on doublewords.
ICache::invalidate_word(addr);
}
void NativeInstruction::set_addr_at(int offset, address x) {
address addr = addr_at(offset);
assert( ((intptr_t)addr & (wordSize-1)) == 0, "set_addr_at bad address alignment");
*(uintptr_t*)addr = (uintptr_t)x;
// Don't need to invalidate 2 words here in the 64-bit case,
// because the flush instruction operates on doublewords.
ICache::invalidate_word(addr);
// The Intel code has this assertion for NativeCall::set_destination,
// NativeMovConstReg::set_data, NativeMovRegMem::set_offset,
// NativeJump::set_jump_destination, and NativePushImm32::set_data
//assert (Patching_lock->owned_by_self(), "must hold lock to patch instruction")
}
bool NativeInstruction::is_zero_test(Register ®) {
int x = long_at(0);
Assembler::op3s temp = (Assembler::op3s) (Assembler::sub_op3 | Assembler::cc_bit_op3);
if (is_op3(x, temp, Assembler::arith_op) &&
inv_immed(x) && inv_rd(x) == G0) {
if (inv_rs1(x) == G0) {
reg = inv_rs2(x);
return true;
} else if (inv_rs2(x) == G0) {
reg = inv_rs1(x);
return true;
}
}
return false;
}
bool NativeInstruction::is_load_store_with_small_offset(Register reg) {
int x = long_at(0);
if (is_op(x, Assembler::ldst_op) &&
inv_rs1(x) == reg && inv_immed(x)) {
return true;
}
return false;
}
void NativeCall::verify() {
NativeInstruction::verify();
// make sure code pattern is actually a call instruction
if (!is_op(long_at(0), Assembler::call_op)) {
fatal("not a call");
}
}
void NativeCall::print() {
tty->print_cr(INTPTR_FORMAT ": call " INTPTR_FORMAT, p2i(instruction_address()), p2i(destination()));
}
// MT-safe patching of a call instruction (and following word).
// First patches the second word, and then atomicly replaces
// the first word with the first new instruction word.
// Other processors might briefly see the old first word
// followed by the new second word. This is OK if the old
// second word is harmless, and the new second word may be
// harmlessly executed in the delay slot of the call.
void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) {
assert(Patching_lock->is_locked() ||
SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
assert (instr_addr != NULL, "illegal address for code patching");
NativeCall* n_call = nativeCall_at (instr_addr); // checking that it is a call
assert(NativeCall::instruction_size == 8, "wrong instruction size; must be 8");
int i0 = ((int*)code_buffer)[0];
int i1 = ((int*)code_buffer)[1];
int* contention_addr = (int*) n_call->addr_at(1*BytesPerInstWord);
assert(inv_op(*contention_addr) == Assembler::arith_op ||
*contention_addr == nop_instruction(),
"must not interfere with original call");
// The set_long_at calls do the ICacheInvalidate so we just need to do them in reverse order
n_call->set_long_at(1*BytesPerInstWord, i1);
n_call->set_long_at(0*BytesPerInstWord, i0);
// NOTE: It is possible that another thread T will execute
// only the second patched word.
// In other words, since the original instruction is this
// call patching_stub; nop (NativeCall)
// and the new sequence from the buffer is this:
// sethi %hi(K), %r; add %r, %lo(K), %r (NativeMovConstReg)
// what T will execute is this:
// call patching_stub; add %r, %lo(K), %r
// thereby putting garbage into %r before calling the patching stub.
// This is OK, because the patching stub ignores the value of %r.
// Make sure the first-patched instruction, which may co-exist
// briefly with the call, will do something harmless.
assert(inv_op(*contention_addr) == Assembler::arith_op ||
*contention_addr == nop_instruction(),
"must not interfere with original call");
}
// Similar to replace_mt_safe, but just changes the destination. The
// important thing is that free-running threads are able to execute this
// call instruction at all times. Thus, the displacement field must be
// instruction-word-aligned. This is always true on SPARC.
//
// Used in the runtime linkage of calls; see class CompiledIC.
void NativeCall::set_destination_mt_safe(address dest) {
assert(Patching_lock->is_locked() ||
SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
// set_destination uses set_long_at which does the ICache::invalidate
set_destination(dest);
}
// Code for unit testing implementation of NativeCall class
void NativeCall::test() {
#ifdef ASSERT
ResourceMark rm;
CodeBuffer cb("test", 100, 100);
MacroAssembler* a = new MacroAssembler(&cb);
NativeCall *nc;
uint idx;
int offsets[] = {
0x0,
0xfffffff0,
0x7ffffff0,
0x80000000,
0x20,
0x4000,
};
VM_Version::allow_all();
a->call( a->pc(), relocInfo::none );
a->delayed()->nop();
nc = nativeCall_at( cb.insts_begin() );
nc->print();
nc = nativeCall_overwriting_at( nc->next_instruction_address() );
for (idx = 0; idx < ARRAY_SIZE(offsets); idx++) {
nc->set_destination( cb.insts_begin() + offsets[idx] );
assert(nc->destination() == (cb.insts_begin() + offsets[idx]), "check unit test");
nc->print();
}
nc = nativeCall_before( cb.insts_begin() + 8 );
nc->print();
VM_Version::revert();
#endif
}
// End code for unit testing implementation of NativeCall class
//-------------------------------------------------------------------
#ifdef _LP64
void NativeFarCall::set_destination(address dest) {
// Address materialized in the instruction stream, so nothing to do.
return;
#if 0 // What we'd do if we really did want to change the destination
if (destination() == dest) {
return;
}
ResourceMark rm;
CodeBuffer buf(addr_at(0), instruction_size + 1);
MacroAssembler* _masm = new MacroAssembler(&buf);
// Generate the new sequence
AddressLiteral(dest);
_masm->jumpl_to(dest, O7, O7);
ICache::invalidate_range(addr_at(0), instruction_size );
#endif
}
void NativeFarCall::verify() {
// make sure code pattern is actually a jumpl_to instruction
assert((int)instruction_size == (int)NativeJump::instruction_size, "same as jump_to");
assert((int)jmpl_offset == (int)NativeMovConstReg::add_offset, "sethi size ok");
nativeJump_at(addr_at(0))->verify();
}
bool NativeFarCall::is_call_at(address instr) {
return nativeInstruction_at(instr)->is_sethi();
}
void NativeFarCall::print() {
tty->print_cr(INTPTR_FORMAT ": call " INTPTR_FORMAT, p2i(instruction_address()), p2i(destination()));
}
bool NativeFarCall::destination_is_compiled_verified_entry_point() {
nmethod* callee = CodeCache::find_nmethod(destination());
if (callee == NULL) {
return false;
} else {
return destination() == callee->verified_entry_point();
}
}
// MT-safe patching of a far call.
void NativeFarCall::replace_mt_safe(address instr_addr, address code_buffer) {
Unimplemented();
}
// Code for unit testing implementation of NativeFarCall class
void NativeFarCall::test() {
Unimplemented();
}
// End code for unit testing implementation of NativeFarCall class
#endif // _LP64
//-------------------------------------------------------------------
void NativeMovConstReg::verify() {
NativeInstruction::verify();
// make sure code pattern is actually a "set_metadata" synthetic instruction
// see MacroAssembler::set_oop()
int i0 = long_at(sethi_offset);
int i1 = long_at(add_offset);
// verify the pattern "sethi %hi22(imm), reg ; add reg, %lo10(imm), reg"
Register rd = inv_rd(i0);
#ifndef _LP64
if (!(is_op2(i0, Assembler::sethi_op2) && rd != G0 &&
is_op3(i1, Assembler::add_op3, Assembler::arith_op) &&
inv_immed(i1) && (unsigned)get_simm13(i1) < (1 << 10) &&
rd == inv_rs1(i1) && rd == inv_rd(i1))) {
fatal("not a set_metadata");
}
#else
if (!is_op2(i0, Assembler::sethi_op2) && rd != G0 ) {
fatal("not a set_metadata");
}
#endif
}
void NativeMovConstReg::print() {
tty->print_cr(INTPTR_FORMAT ": mov reg, " INTPTR_FORMAT, p2i(instruction_address()), data());
}
#ifdef _LP64
intptr_t NativeMovConstReg::data() const {
return data64(addr_at(sethi_offset), long_at(add_offset));
}
#else
intptr_t NativeMovConstReg::data() const {
return data32(long_at(sethi_offset), long_at(add_offset));
}
#endif
void NativeMovConstReg::set_data(intptr_t x) {
#ifdef _LP64
set_data64_sethi(addr_at(sethi_offset), x);
#else
set_long_at(sethi_offset, set_data32_sethi( long_at(sethi_offset), x));
#endif
set_long_at(add_offset, set_data32_simm13( long_at(add_offset), x));
// also store the value into an oop_Relocation cell, if any
CodeBlob* cb = CodeCache::find_blob(instruction_address());
nmethod* nm = cb ? cb->as_nmethod_or_null() : NULL;
if (nm != NULL) {
RelocIterator iter(nm, instruction_address(), next_instruction_address());
oop* oop_addr = NULL;
Metadata** metadata_addr = NULL;
while (iter.next()) {
if (iter.type() == relocInfo::oop_type) {
oop_Relocation *r = iter.oop_reloc();
if (oop_addr == NULL) {
oop_addr = r->oop_addr();
*oop_addr = cast_to_oop(x);
} else {
assert(oop_addr == r->oop_addr(), "must be only one set-oop here");
}
}
if (iter.type() == relocInfo::metadata_type) {
metadata_Relocation *r = iter.metadata_reloc();
if (metadata_addr == NULL) {
metadata_addr = r->metadata_addr();
*metadata_addr = (Metadata*)x;
} else {
assert(metadata_addr == r->metadata_addr(), "must be only one set-metadata here");
}
}
}
}
}
// Code for unit testing implementation of NativeMovConstReg class
void NativeMovConstReg::test() {
#ifdef ASSERT
ResourceMark rm;
CodeBuffer cb("test", 100, 100);
MacroAssembler* a = new MacroAssembler(&cb);
NativeMovConstReg* nm;
uint idx;
int offsets[] = {
0x0,
0x7fffffff,
0x80000000,
0xffffffff,
0x20,
4096,
4097,
};
VM_Version::allow_all();
AddressLiteral al1(0xaaaabbbb, relocInfo::external_word_type);
a->sethi(al1, I3);
a->add(I3, al1.low10(), I3);
AddressLiteral al2(0xccccdddd, relocInfo::external_word_type);
a->sethi(al2, O2);
a->add(O2, al2.low10(), O2);
nm = nativeMovConstReg_at( cb.insts_begin() );
nm->print();
nm = nativeMovConstReg_at( nm->next_instruction_address() );
for (idx = 0; idx < ARRAY_SIZE(offsets); idx++) {
nm->set_data( offsets[idx] );
assert(nm->data() == offsets[idx], "check unit test");
}
nm->print();
VM_Version::revert();
#endif
}
// End code for unit testing implementation of NativeMovConstReg class
//-------------------------------------------------------------------
void NativeMovConstRegPatching::verify() {
NativeInstruction::verify();
// Make sure code pattern is sethi/nop/add.
int i0 = long_at(sethi_offset);
int i1 = long_at(nop_offset);
int i2 = long_at(add_offset);
assert((int)nop_offset == (int)NativeMovConstReg::add_offset, "sethi size ok");
// Verify the pattern "sethi %hi22(imm), reg; nop; add reg, %lo10(imm), reg"
// The casual reader should note that on Sparc a nop is a special case if sethi
// in which the destination register is %g0.
Register rd0 = inv_rd(i0);
Register rd1 = inv_rd(i1);
if (!(is_op2(i0, Assembler::sethi_op2) && rd0 != G0 &&
is_op2(i1, Assembler::sethi_op2) && rd1 == G0 && // nop is a special case of sethi
is_op3(i2, Assembler::add_op3, Assembler::arith_op) &&
inv_immed(i2) && (unsigned)get_simm13(i2) < (1 << 10) &&
rd0 == inv_rs1(i2) && rd0 == inv_rd(i2))) {
fatal("not a set_metadata");
}
}
void NativeMovConstRegPatching::print() {
tty->print_cr(INTPTR_FORMAT ": mov reg, 0x%x", p2i(instruction_address()), data());
}
int NativeMovConstRegPatching::data() const {
#ifdef _LP64
return data64(addr_at(sethi_offset), long_at(add_offset));
#else
return data32(long_at(sethi_offset), long_at(add_offset));
#endif
}
void NativeMovConstRegPatching::set_data(int x) {
#ifdef _LP64
set_data64_sethi(addr_at(sethi_offset), x);
#else
set_long_at(sethi_offset, set_data32_sethi(long_at(sethi_offset), x));
#endif
set_long_at(add_offset, set_data32_simm13(long_at(add_offset), x));
// also store the value into an oop_Relocation cell, if any
CodeBlob* cb = CodeCache::find_blob(instruction_address());
nmethod* nm = cb ? cb->as_nmethod_or_null() : NULL;
if (nm != NULL) {
RelocIterator iter(nm, instruction_address(), next_instruction_address());
oop* oop_addr = NULL;
Metadata** metadata_addr = NULL;
while (iter.next()) {
if (iter.type() == relocInfo::oop_type) {
oop_Relocation *r = iter.oop_reloc();
if (oop_addr == NULL) {
oop_addr = r->oop_addr();
*oop_addr = cast_to_oop(x);
} else {
assert(oop_addr == r->oop_addr(), "must be only one set-oop here");
}
}
if (iter.type() == relocInfo::metadata_type) {
metadata_Relocation *r = iter.metadata_reloc();
if (metadata_addr == NULL) {
metadata_addr = r->metadata_addr();
*metadata_addr = (Metadata*)x;
} else {
assert(metadata_addr == r->metadata_addr(), "must be only one set-metadata here");
}
}
}
}
}
// Code for unit testing implementation of NativeMovConstRegPatching class
void NativeMovConstRegPatching::test() {
#ifdef ASSERT
ResourceMark rm;
CodeBuffer cb("test", 100, 100);
MacroAssembler* a = new MacroAssembler(&cb);
NativeMovConstRegPatching* nm;
uint idx;
int offsets[] = {
0x0,
0x7fffffff,
0x80000000,
0xffffffff,
0x20,
4096,
4097,
};
VM_Version::allow_all();
AddressLiteral al1(0xaaaabbbb, relocInfo::external_word_type);
a->sethi(al1, I3);
a->nop();
a->add(I3, al1.low10(), I3);
AddressLiteral al2(0xccccdddd, relocInfo::external_word_type);
a->sethi(al2, O2);
a->nop();
a->add(O2, al2.low10(), O2);
nm = nativeMovConstRegPatching_at( cb.insts_begin() );
nm->print();
nm = nativeMovConstRegPatching_at( nm->next_instruction_address() );
for (idx = 0; idx < ARRAY_SIZE(offsets); idx++) {
nm->set_data( offsets[idx] );
assert(nm->data() == offsets[idx], "check unit test");
}
nm->print();
VM_Version::revert();
#endif // ASSERT
}
// End code for unit testing implementation of NativeMovConstRegPatching class
//-------------------------------------------------------------------
void NativeMovRegMem::copy_instruction_to(address new_instruction_address) {
Untested("copy_instruction_to");
int instruction_size = next_instruction_address() - instruction_address();
for (int i = 0; i < instruction_size; i += BytesPerInstWord) {
*(int*)(new_instruction_address + i) = *(int*)(address(this) + i);
}
}
void NativeMovRegMem::verify() {
NativeInstruction::verify();
// make sure code pattern is actually a "ld" or "st" of some sort.
int i0 = long_at(0);
int op3 = inv_op3(i0);
assert((int)add_offset == NativeMovConstReg::add_offset, "sethi size ok");
if (!(is_op(i0, Assembler::ldst_op) &&
inv_immed(i0) &&
0 != (op3 < op3_ldst_int_limit
? (1 << op3 ) & (op3_mask_ld | op3_mask_st)
: (1 << (op3 - op3_ldst_int_limit)) & (op3_mask_ldf | op3_mask_stf))))
{
int i1 = long_at(ldst_offset);
Register rd = inv_rd(i0);
op3 = inv_op3(i1);
if (!is_op(i1, Assembler::ldst_op) && rd == inv_rs2(i1) &&
0 != (op3 < op3_ldst_int_limit
? (1 << op3 ) & (op3_mask_ld | op3_mask_st)
: (1 << (op3 - op3_ldst_int_limit)) & (op3_mask_ldf | op3_mask_stf))) {
fatal("not a ld* or st* op");
}
}
}
void NativeMovRegMem::print() {
if (is_immediate()) {
// offset is a signed 13-bit immediate, so casting it to int will not lose significant bits
tty->print_cr(INTPTR_FORMAT ": mov reg, [reg + %d]", p2i(instruction_address()), (int)offset());
} else {
tty->print_cr(INTPTR_FORMAT ": mov reg, [reg + reg]", p2i(instruction_address()));
}
}
// Code for unit testing implementation of NativeMovRegMem class
void NativeMovRegMem::test() {
#ifdef ASSERT
ResourceMark rm;
CodeBuffer cb("test", 1000, 1000);
MacroAssembler* a = new MacroAssembler(&cb);
NativeMovRegMem* nm;
uint idx = 0;
uint idx1;
int offsets[] = {
0x0,
0xffffffff,
0x7fffffff,
0x80000000,
4096,
4097,
0x20,
0x4000,
};
VM_Version::allow_all();
AddressLiteral al1(0xffffffff, relocInfo::external_word_type);
AddressLiteral al2(0xaaaabbbb, relocInfo::external_word_type);
a->ldsw( G5, al1.low10(), G4 ); idx++;
a->sethi(al2, I3); a->add(I3, al2.low10(), I3);
a->ldsw( G5, I3, G4 ); idx++;
a->ldsb( G5, al1.low10(), G4 ); idx++;
a->sethi(al2, I3); a->add(I3, al2.low10(), I3);
a->ldsb( G5, I3, G4 ); idx++;
a->ldsh( G5, al1.low10(), G4 ); idx++;
a->sethi(al2, I3); a->add(I3, al2.low10(), I3);
a->ldsh( G5, I3, G4 ); idx++;
a->lduw( G5, al1.low10(), G4 ); idx++;
a->sethi(al2, I3); a->add(I3, al2.low10(), I3);
a->lduw( G5, I3, G4 ); idx++;
a->ldub( G5, al1.low10(), G4 ); idx++;
a->sethi(al2, I3); a->add(I3, al2.low10(), I3);
a->ldub( G5, I3, G4 ); idx++;
a->lduh( G5, al1.low10(), G4 ); idx++;
a->sethi(al2, I3); a->add(I3, al2.low10(), I3);
a->lduh( G5, I3, G4 ); idx++;
a->ldx( G5, al1.low10(), G4 ); idx++;
a->sethi(al2, I3); a->add(I3, al2.low10(), I3);
a->ldx( G5, I3, G4 ); idx++;
a->ldd( G5, al1.low10(), G4 ); idx++;
a->sethi(al2, I3); a->add(I3, al2.low10(), I3);
a->ldd( G5, I3, G4 ); idx++;
a->ldf( FloatRegisterImpl::D, O2, -1, F14 ); idx++;
a->sethi(al2, I3); a->add(I3, al2.low10(), I3);
a->ldf( FloatRegisterImpl::S, O0, I3, F15 ); idx++;
a->stw( G5, G4, al1.low10() ); idx++;
a->sethi(al2, I3); a->add(I3, al2.low10(), I3);
a->stw( G5, G4, I3 ); idx++;
a->stb( G5, G4, al1.low10() ); idx++;
a->sethi(al2, I3); a->add(I3, al2.low10(), I3);
a->stb( G5, G4, I3 ); idx++;
a->sth( G5, G4, al1.low10() ); idx++;
a->sethi(al2, I3); a->add(I3, al2.low10(), I3);
a->sth( G5, G4, I3 ); idx++;
a->stx( G5, G4, al1.low10() ); idx++;
a->sethi(al2, I3); a->add(I3, al2.low10(), I3);
a->stx( G5, G4, I3 ); idx++;
a->std( G5, G4, al1.low10() ); idx++;
a->sethi(al2, I3); a->add(I3, al2.low10(), I3);
a->std( G5, G4, I3 ); idx++;
a->stf( FloatRegisterImpl::S, F18, O2, -1 ); idx++;
a->sethi(al2, I3); a->add(I3, al2.low10(), I3);
a->stf( FloatRegisterImpl::S, F15, O0, I3 ); idx++;
nm = nativeMovRegMem_at( cb.insts_begin() );
nm->print();
nm->set_offset( low10(0) );
nm->print();
nm->add_offset_in_bytes( low10(0xbb) * wordSize );
nm->print();
while (--idx) {
nm = nativeMovRegMem_at( nm->next_instruction_address() );
nm->print();
for (idx1 = 0; idx1 < ARRAY_SIZE(offsets); idx1++) {
nm->set_offset( nm->is_immediate() ? low10(offsets[idx1]) : offsets[idx1] );
assert(nm->offset() == (nm->is_immediate() ? low10(offsets[idx1]) : offsets[idx1]),
"check unit test");
nm->print();
}
nm->add_offset_in_bytes( low10(0xbb) * wordSize );
nm->print();
}
VM_Version::revert();
#endif // ASSERT
}
// End code for unit testing implementation of NativeMovRegMem class
//--------------------------------------------------------------------------------
void NativeJump::verify() {
NativeInstruction::verify();
int i0 = long_at(sethi_offset);
int i1 = long_at(jmpl_offset);
assert((int)jmpl_offset == (int)NativeMovConstReg::add_offset, "sethi size ok");
// verify the pattern "sethi %hi22(imm), treg ; jmpl treg, %lo10(imm), lreg"
Register rd = inv_rd(i0);
#ifndef _LP64
if (!(is_op2(i0, Assembler::sethi_op2) && rd != G0 &&
(is_op3(i1, Assembler::jmpl_op3, Assembler::arith_op) ||
(TraceJumps && is_op3(i1, Assembler::add_op3, Assembler::arith_op))) &&
inv_immed(i1) && (unsigned)get_simm13(i1) < (1 << 10) &&
rd == inv_rs1(i1))) {
fatal("not a jump_to instruction");
}
#else
// In LP64, the jump instruction location varies for non relocatable
// jumps, for example is could be sethi, xor, jmp instead of the
// 7 instructions for sethi. So let's check sethi only.
if (!is_op2(i0, Assembler::sethi_op2) && rd != G0 ) {
fatal("not a jump_to instruction");
}
#endif
}
void NativeJump::print() {
tty->print_cr(INTPTR_FORMAT ": jmpl reg, " INTPTR_FORMAT, p2i(instruction_address()), p2i(jump_destination()));
}
// Code for unit testing implementation of NativeJump class
void NativeJump::test() {
#ifdef ASSERT
ResourceMark rm;
CodeBuffer cb("test", 100, 100);
MacroAssembler* a = new MacroAssembler(&cb);
NativeJump* nj;
uint idx;
int offsets[] = {
0x0,
0xffffffff,
0x7fffffff,
0x80000000,
4096,
4097,
0x20,
0x4000,
};
VM_Version::allow_all();
AddressLiteral al(0x7fffbbbb, relocInfo::external_word_type);
a->sethi(al, I3);
a->jmpl(I3, al.low10(), G0, RelocationHolder::none);
a->delayed()->nop();
a->sethi(al, I3);
a->jmpl(I3, al.low10(), L3, RelocationHolder::none);
a->delayed()->nop();
nj = nativeJump_at( cb.insts_begin() );
nj->print();
nj = nativeJump_at( nj->next_instruction_address() );
for (idx = 0; idx < ARRAY_SIZE(offsets); idx++) {
nj->set_jump_destination( nj->instruction_address() + offsets[idx] );
assert(nj->jump_destination() == (nj->instruction_address() + offsets[idx]), "check unit test");
nj->print();
}
VM_Version::revert();
#endif // ASSERT
}
// End code for unit testing implementation of NativeJump class
void NativeJump::insert(address code_pos, address entry) {
Unimplemented();
}
// MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie)
// The problem: jump_to <dest> is a 3-word instruction (including its delay slot).
// Atomic write can be only with 1 word.
void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
// Here's one way to do it: Pre-allocate a three-word jump sequence somewhere
// in the header of the nmethod, within a short branch's span of the patch point.
// Set up the jump sequence using NativeJump::insert, and then use an annulled
// unconditional branch at the target site (an atomic 1-word update).
// Limitations: You can only patch nmethods, with any given nmethod patched at
// most once, and the patch must be in the nmethod's header.
// It's messy, but you can ask the CodeCache for the nmethod containing the
// target address.
// %%%%% For now, do something MT-stupid:
ResourceMark rm;
int code_size = 1 * BytesPerInstWord;
CodeBuffer cb(verified_entry, code_size + 1);
MacroAssembler* a = new MacroAssembler(&cb);
a->ldsw(G0, 0, O7); // "ld" must agree with code in the signal handler
ICache::invalidate_range(verified_entry, code_size);
}
void NativeIllegalInstruction::insert(address code_pos) {
NativeIllegalInstruction* nii = (NativeIllegalInstruction*) nativeInstruction_at(code_pos);
nii->set_long_at(0, illegal_instruction());
}
static int illegal_instruction_bits = 0;
int NativeInstruction::illegal_instruction() {
if (illegal_instruction_bits == 0) {
ResourceMark rm;
char buf[40];
CodeBuffer cbuf((address)&buf[0], 20);
MacroAssembler* a = new MacroAssembler(&cbuf);
address ia = a->pc();
a->trap(ST_RESERVED_FOR_USER_0 + 1);
int bits = *(int*)ia;
assert(is_op3(bits, Assembler::trap_op3, Assembler::arith_op), "bad instruction");
illegal_instruction_bits = bits;
assert(illegal_instruction_bits != 0, "oops");
}
return illegal_instruction_bits;
}
static int ic_miss_trap_bits = 0;
bool NativeInstruction::is_ic_miss_trap() {
if (ic_miss_trap_bits == 0) {
ResourceMark rm;
char buf[40];
CodeBuffer cbuf((address)&buf[0], 20);
MacroAssembler* a = new MacroAssembler(&cbuf);
address ia = a->pc();
a->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0 + 2);
int bits = *(int*)ia;
assert(is_op3(bits, Assembler::trap_op3, Assembler::arith_op), "bad instruction");
ic_miss_trap_bits = bits;
assert(ic_miss_trap_bits != 0, "oops");
}
return long_at(0) == ic_miss_trap_bits;
}
bool NativeInstruction::is_illegal() {
if (illegal_instruction_bits == 0) {
return false;
}
return long_at(0) == illegal_instruction_bits;
}
void NativeGeneralJump::verify() {
assert(((NativeInstruction *)this)->is_jump() ||
((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction");
}
void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
Assembler::Condition condition = Assembler::always;
int x = Assembler::op2(Assembler::br_op2) | Assembler::annul(false) |
Assembler::cond(condition) | Assembler::wdisp((intptr_t)entry, (intptr_t)code_pos, 22);
NativeGeneralJump* ni = (NativeGeneralJump*) nativeInstruction_at(code_pos);
ni->set_long_at(0, x);
}
// MT-safe patching of a jmp instruction (and following word).
// First patches the second word, and then atomicly replaces
// the first word with the first new instruction word.
// Other processors might briefly see the old first word
// followed by the new second word. This is OK if the old
// second word is harmless, and the new second word may be
// harmlessly executed in the delay slot of the call.
void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
assert(Patching_lock->is_locked() ||
SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
assert (instr_addr != NULL, "illegal address for code patching");
NativeGeneralJump* h_jump = nativeGeneralJump_at (instr_addr); // checking that it is a call
assert(NativeGeneralJump::instruction_size == 8, "wrong instruction size; must be 8");
int i0 = ((int*)code_buffer)[0];
int i1 = ((int*)code_buffer)[1];
int* contention_addr = (int*) h_jump->addr_at(1*BytesPerInstWord);
assert(inv_op(*contention_addr) == Assembler::arith_op ||
*contention_addr == nop_instruction(),
"must not interfere with original call");
// The set_long_at calls do the ICacheInvalidate so we just need to do them in reverse order
h_jump->set_long_at(1*BytesPerInstWord, i1);
h_jump->set_long_at(0*BytesPerInstWord, i0);
// NOTE: It is possible that another thread T will execute
// only the second patched word.
// In other words, since the original instruction is this
// jmp patching_stub; nop (NativeGeneralJump)
// and the new sequence from the buffer is this:
// sethi %hi(K), %r; add %r, %lo(K), %r (NativeMovConstReg)
// what T will execute is this:
// jmp patching_stub; add %r, %lo(K), %r
// thereby putting garbage into %r before calling the patching stub.
// This is OK, because the patching stub ignores the value of %r.
// Make sure the first-patched instruction, which may co-exist
// briefly with the call, will do something harmless.
assert(inv_op(*contention_addr) == Assembler::arith_op ||
*contention_addr == nop_instruction(),
"must not interfere with original call");
}