8169069: Module system implementation refresh (11/2016)
Reviewed-by: plevart, chegar, psandoz, mchung, alanb, dfuchs, naoto, coffeys, weijun
Contributed-by: alan.bateman@oracle.com, mandy.chung@oracle.com, claes.redestad@oracle.com, mark.reinhold@oracle.com
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.lang;
import java.util.*;
/**
* This interface imposes a total ordering on the objects of each class that
* implements it. This ordering is referred to as the class's <i>natural
* ordering</i>, and the class's {@code compareTo} method is referred to as
* its <i>natural comparison method</i>.<p>
*
* Lists (and arrays) of objects that implement this interface can be sorted
* automatically by {@link Collections#sort(List) Collections.sort} (and
* {@link Arrays#sort(Object[]) Arrays.sort}). Objects that implement this
* interface can be used as keys in a {@linkplain SortedMap sorted map} or as
* elements in a {@linkplain SortedSet sorted set}, without the need to
* specify a {@linkplain Comparator comparator}.<p>
*
* The natural ordering for a class {@code C} is said to be <i>consistent
* with equals</i> if and only if {@code e1.compareTo(e2) == 0} has
* the same boolean value as {@code e1.equals(e2)} for every
* {@code e1} and {@code e2} of class {@code C}. Note that {@code null}
* is not an instance of any class, and {@code e.compareTo(null)} should
* throw a {@code NullPointerException} even though {@code e.equals(null)}
* returns {@code false}.<p>
*
* It is strongly recommended (though not required) that natural orderings be
* consistent with equals. This is so because sorted sets (and sorted maps)
* without explicit comparators behave "strangely" when they are used with
* elements (or keys) whose natural ordering is inconsistent with equals. In
* particular, such a sorted set (or sorted map) violates the general contract
* for set (or map), which is defined in terms of the {@code equals}
* method.<p>
*
* For example, if one adds two keys {@code a} and {@code b} such that
* {@code (!a.equals(b) && a.compareTo(b) == 0)} to a sorted
* set that does not use an explicit comparator, the second {@code add}
* operation returns false (and the size of the sorted set does not increase)
* because {@code a} and {@code b} are equivalent from the sorted set's
* perspective.<p>
*
* Virtually all Java core classes that implement {@code Comparable} have natural
* orderings that are consistent with equals. One exception is
* {@code java.math.BigDecimal}, whose natural ordering equates
* {@code BigDecimal} objects with equal values and different precisions
* (such as 4.0 and 4.00).<p>
*
* For the mathematically inclined, the <i>relation</i> that defines
* the natural ordering on a given class C is:<pre>{@code
* {(x, y) such that x.compareTo(y) <= 0}.
* }</pre> The <i>quotient</i> for this total order is: <pre>{@code
* {(x, y) such that x.compareTo(y) == 0}.
* }</pre>
*
* It follows immediately from the contract for {@code compareTo} that the
* quotient is an <i>equivalence relation</i> on {@code C}, and that the
* natural ordering is a <i>total order</i> on {@code C}. When we say that a
* class's natural ordering is <i>consistent with equals</i>, we mean that the
* quotient for the natural ordering is the equivalence relation defined by
* the class's {@link Object#equals(Object) equals(Object)} method:<pre>
* {(x, y) such that x.equals(y)}. </pre><p>
*
* This interface is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @param <T> the type of objects that this object may be compared to
*
* @author Josh Bloch
* @see java.util.Comparator
* @since 1.2
*/
public interface Comparable<T> {
/**
* Compares this object with the specified object for order. Returns a
* negative integer, zero, or a positive integer as this object is less
* than, equal to, or greater than the specified object.
*
* <p>The implementor must ensure
* {@code sgn(x.compareTo(y)) == -sgn(y.compareTo(x))}
* for all {@code x} and {@code y}. (This
* implies that {@code x.compareTo(y)} must throw an exception iff
* {@code y.compareTo(x)} throws an exception.)
*
* <p>The implementor must also ensure that the relation is transitive:
* {@code (x.compareTo(y) > 0 && y.compareTo(z) > 0)} implies
* {@code x.compareTo(z) > 0}.
*
* <p>Finally, the implementor must ensure that {@code x.compareTo(y)==0}
* implies that {@code sgn(x.compareTo(z)) == sgn(y.compareTo(z))}, for
* all {@code z}.
*
* <p>It is strongly recommended, but <i>not</i> strictly required that
* {@code (x.compareTo(y)==0) == (x.equals(y))}. Generally speaking, any
* class that implements the {@code Comparable} interface and violates
* this condition should clearly indicate this fact. The recommended
* language is "Note: this class has a natural ordering that is
* inconsistent with equals."
*
* <p>In the foregoing description, the notation
* {@code sgn(}<i>expression</i>{@code )} designates the mathematical
* <i>signum</i> function, which is defined to return one of {@code -1},
* {@code 0}, or {@code 1} according to whether the value of
* <i>expression</i> is negative, zero or positive.
*
* @param o the object to be compared.
* @return a negative integer, zero, or a positive integer as this object
* is less than, equal to, or greater than the specified object.
*
* @throws NullPointerException if the specified object is null
* @throws ClassCastException if the specified object's type prevents it
* from being compared to this object.
*/
public int compareTo(T o);
}