8071462: Remove G1ParGCAllocator::alloc_buffer_waste
Summary: Removed G1ParGCAllocator::alloc_buffer_waste, added method to obtain waste
Reviewed-by: tschatzl, sjohanss
Contributed-by: Michail Chernov <michail.chernov@oracle.com>
/*
* Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/javaClasses.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/codeCache.hpp"
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/g1Log.hpp"
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1RootProcessor.hpp"
#include "gc_implementation/g1/g1StringDedup.hpp"
#include "gc_implementation/shared/markSweep.inline.hpp"
#include "gc_implementation/shared/gcHeapSummary.hpp"
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
#include "memory/gcLocker.hpp"
#include "memory/genCollectedHeap.hpp"
#include "memory/modRefBarrierSet.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/space.hpp"
#include "oops/instanceRefKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "runtime/atomic.inline.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/fprofiler.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/thread.hpp"
#include "runtime/vmThread.hpp"
#include "utilities/copy.hpp"
#include "utilities/events.hpp"
class HeapRegion;
void G1MarkSweep::invoke_at_safepoint(ReferenceProcessor* rp,
bool clear_all_softrefs) {
assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
#ifdef ASSERT
if (G1CollectedHeap::heap()->collector_policy()->should_clear_all_soft_refs()) {
assert(clear_all_softrefs, "Policy should have been checked earler");
}
#endif
// hook up weak ref data so it can be used during Mark-Sweep
assert(GenMarkSweep::ref_processor() == NULL, "no stomping");
assert(rp != NULL, "should be non-NULL");
assert(rp == G1CollectedHeap::heap()->ref_processor_stw(), "Precondition");
GenMarkSweep::_ref_processor = rp;
rp->setup_policy(clear_all_softrefs);
// When collecting the permanent generation Method*s may be moving,
// so we either have to flush all bcp data or convert it into bci.
CodeCache::gc_prologue();
bool marked_for_unloading = false;
allocate_stacks();
// We should save the marks of the currently locked biased monitors.
// The marking doesn't preserve the marks of biased objects.
BiasedLocking::preserve_marks();
mark_sweep_phase1(marked_for_unloading, clear_all_softrefs);
mark_sweep_phase2();
// Don't add any more derived pointers during phase3
COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
mark_sweep_phase3();
mark_sweep_phase4();
GenMarkSweep::restore_marks();
BiasedLocking::restore_marks();
GenMarkSweep::deallocate_stacks();
CodeCache::gc_epilogue();
JvmtiExport::gc_epilogue();
// refs processing: clean slate
GenMarkSweep::_ref_processor = NULL;
}
void G1MarkSweep::allocate_stacks() {
GenMarkSweep::_preserved_count_max = 0;
GenMarkSweep::_preserved_marks = NULL;
GenMarkSweep::_preserved_count = 0;
}
void G1MarkSweep::mark_sweep_phase1(bool& marked_for_unloading,
bool clear_all_softrefs) {
// Recursively traverse all live objects and mark them
GCTraceTime tm("phase 1", G1Log::fine() && Verbose, true, gc_timer(), gc_tracer()->gc_id());
G1CollectedHeap* g1h = G1CollectedHeap::heap();
// Need cleared claim bits for the roots processing
ClassLoaderDataGraph::clear_claimed_marks();
MarkingCodeBlobClosure follow_code_closure(&GenMarkSweep::follow_root_closure, !CodeBlobToOopClosure::FixRelocations);
{
G1RootProcessor root_processor(g1h);
root_processor.process_strong_roots(&GenMarkSweep::follow_root_closure,
&GenMarkSweep::follow_cld_closure,
&follow_code_closure);
}
// Process reference objects found during marking
ReferenceProcessor* rp = GenMarkSweep::ref_processor();
assert(rp == g1h->ref_processor_stw(), "Sanity");
rp->setup_policy(clear_all_softrefs);
const ReferenceProcessorStats& stats =
rp->process_discovered_references(&GenMarkSweep::is_alive,
&GenMarkSweep::keep_alive,
&GenMarkSweep::follow_stack_closure,
NULL,
gc_timer(),
gc_tracer()->gc_id());
gc_tracer()->report_gc_reference_stats(stats);
// This is the point where the entire marking should have completed.
assert(GenMarkSweep::_marking_stack.is_empty(), "Marking should have completed");
// Unload classes and purge the SystemDictionary.
bool purged_class = SystemDictionary::do_unloading(&GenMarkSweep::is_alive);
// Unload nmethods.
CodeCache::do_unloading(&GenMarkSweep::is_alive, purged_class);
// Prune dead klasses from subklass/sibling/implementor lists.
Klass::clean_weak_klass_links(&GenMarkSweep::is_alive);
// Delete entries for dead interned string and clean up unreferenced symbols in symbol table.
g1h->unlink_string_and_symbol_table(&GenMarkSweep::is_alive);
if (VerifyDuringGC) {
HandleMark hm; // handle scope
COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
g1h->prepare_for_verify();
// Note: we can verify only the heap here. When an object is
// marked, the previous value of the mark word (including
// identity hash values, ages, etc) is preserved, and the mark
// word is set to markOop::marked_value - effectively removing
// any hash values from the mark word. These hash values are
// used when verifying the dictionaries and so removing them
// from the mark word can make verification of the dictionaries
// fail. At the end of the GC, the original mark word values
// (including hash values) are restored to the appropriate
// objects.
if (!VerifySilently) {
gclog_or_tty->print(" VerifyDuringGC:(full)[Verifying ");
}
g1h->verify(VerifySilently, VerifyOption_G1UseMarkWord);
if (!VerifySilently) {
gclog_or_tty->print_cr("]");
}
}
gc_tracer()->report_object_count_after_gc(&GenMarkSweep::is_alive);
}
void G1MarkSweep::mark_sweep_phase2() {
// Now all live objects are marked, compute the new object addresses.
// It is not required that we traverse spaces in the same order in
// phase2, phase3 and phase4, but the ValidateMarkSweep live oops
// tracking expects us to do so. See comment under phase4.
GCTraceTime tm("phase 2", G1Log::fine() && Verbose, true, gc_timer(), gc_tracer()->gc_id());
prepare_compaction();
}
class G1AdjustPointersClosure: public HeapRegionClosure {
public:
bool doHeapRegion(HeapRegion* r) {
if (r->is_humongous()) {
if (r->is_starts_humongous()) {
// We must adjust the pointers on the single H object.
oop obj = oop(r->bottom());
// point all the oops to the new location
MarkSweep::adjust_pointers(obj);
}
} else {
// This really ought to be "as_CompactibleSpace"...
r->adjust_pointers();
}
return false;
}
};
class G1AlwaysTrueClosure: public BoolObjectClosure {
public:
bool do_object_b(oop p) { return true; }
};
static G1AlwaysTrueClosure always_true;
void G1MarkSweep::mark_sweep_phase3() {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
// Adjust the pointers to reflect the new locations
GCTraceTime tm("phase 3", G1Log::fine() && Verbose, true, gc_timer(), gc_tracer()->gc_id());
// Need cleared claim bits for the roots processing
ClassLoaderDataGraph::clear_claimed_marks();
CodeBlobToOopClosure adjust_code_closure(&GenMarkSweep::adjust_pointer_closure, CodeBlobToOopClosure::FixRelocations);
{
G1RootProcessor root_processor(g1h);
root_processor.process_all_roots(&GenMarkSweep::adjust_pointer_closure,
&GenMarkSweep::adjust_cld_closure,
&adjust_code_closure);
}
assert(GenMarkSweep::ref_processor() == g1h->ref_processor_stw(), "Sanity");
g1h->ref_processor_stw()->weak_oops_do(&GenMarkSweep::adjust_pointer_closure);
// Now adjust pointers in remaining weak roots. (All of which should
// have been cleared if they pointed to non-surviving objects.)
JNIHandles::weak_oops_do(&always_true, &GenMarkSweep::adjust_pointer_closure);
if (G1StringDedup::is_enabled()) {
G1StringDedup::oops_do(&GenMarkSweep::adjust_pointer_closure);
}
GenMarkSweep::adjust_marks();
G1AdjustPointersClosure blk;
g1h->heap_region_iterate(&blk);
}
class G1SpaceCompactClosure: public HeapRegionClosure {
public:
G1SpaceCompactClosure() {}
bool doHeapRegion(HeapRegion* hr) {
if (hr->is_humongous()) {
if (hr->is_starts_humongous()) {
oop obj = oop(hr->bottom());
if (obj->is_gc_marked()) {
obj->init_mark();
} else {
assert(hr->is_empty(), "Should have been cleared in phase 2.");
}
hr->reset_during_compaction();
}
} else {
hr->compact();
}
return false;
}
};
void G1MarkSweep::mark_sweep_phase4() {
// All pointers are now adjusted, move objects accordingly
// The ValidateMarkSweep live oops tracking expects us to traverse spaces
// in the same order in phase2, phase3 and phase4. We don't quite do that
// here (code and comment not fixed for perm removal), so we tell the validate code
// to use a higher index (saved from phase2) when verifying perm_gen.
G1CollectedHeap* g1h = G1CollectedHeap::heap();
GCTraceTime tm("phase 4", G1Log::fine() && Verbose, true, gc_timer(), gc_tracer()->gc_id());
G1SpaceCompactClosure blk;
g1h->heap_region_iterate(&blk);
}
void G1MarkSweep::prepare_compaction_work(G1PrepareCompactClosure* blk) {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
g1h->heap_region_iterate(blk);
blk->update_sets();
}
void G1PrepareCompactClosure::free_humongous_region(HeapRegion* hr) {
HeapWord* end = hr->end();
FreeRegionList dummy_free_list("Dummy Free List for G1MarkSweep");
assert(hr->is_starts_humongous(),
"Only the start of a humongous region should be freed.");
hr->set_containing_set(NULL);
_humongous_regions_removed.increment(1u, hr->capacity());
_g1h->free_humongous_region(hr, &dummy_free_list, false /* par */);
prepare_for_compaction(hr, end);
dummy_free_list.remove_all();
}
void G1PrepareCompactClosure::prepare_for_compaction(HeapRegion* hr, HeapWord* end) {
// If this is the first live region that we came across which we can compact,
// initialize the CompactPoint.
if (!is_cp_initialized()) {
_cp.space = hr;
_cp.threshold = hr->initialize_threshold();
}
prepare_for_compaction_work(&_cp, hr, end);
}
void G1PrepareCompactClosure::prepare_for_compaction_work(CompactPoint* cp,
HeapRegion* hr,
HeapWord* end) {
hr->prepare_for_compaction(cp);
// Also clear the part of the card table that will be unused after
// compaction.
_mrbs->clear(MemRegion(hr->compaction_top(), end));
}
void G1PrepareCompactClosure::update_sets() {
// We'll recalculate total used bytes and recreate the free list
// at the end of the GC, so no point in updating those values here.
HeapRegionSetCount empty_set;
_g1h->remove_from_old_sets(empty_set, _humongous_regions_removed);
}
bool G1PrepareCompactClosure::doHeapRegion(HeapRegion* hr) {
if (hr->is_humongous()) {
if (hr->is_starts_humongous()) {
oop obj = oop(hr->bottom());
if (obj->is_gc_marked()) {
obj->forward_to(obj);
} else {
free_humongous_region(hr);
}
} else {
assert(hr->is_continues_humongous(), "Invalid humongous.");
}
} else {
prepare_for_compaction(hr, hr->end());
}
return false;
}