/*
* Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_C1_C1_VALUESTACK_HPP
#define SHARE_VM_C1_C1_VALUESTACK_HPP
#include "c1/c1_Instruction.hpp"
class ValueStack: public CompilationResourceObj {
public:
enum Kind {
Parsing, // During abstract interpretation in GraphBuilder
CallerState, // Caller state when inlining
StateBefore, // Before before execution of instruction
StateAfter, // After execution of instruction
ExceptionState, // Exception handling of instruction
EmptyExceptionState, // Exception handling of instructions not covered by an xhandler
BlockBeginState // State of BlockBegin instruction with phi functions of this block
};
private:
IRScope* _scope; // the enclosing scope
ValueStack* _caller_state;
int _bci;
Kind _kind;
Values _locals; // the locals
Values _stack; // the expression stack
Values _locks; // the monitor stack (holding the locked values)
Value check(ValueTag tag, Value t) {
assert(tag == t->type()->tag() || tag == objectTag && t->type()->tag() == addressTag, "types must correspond");
return t;
}
Value check(ValueTag tag, Value t, Value h) {
assert(h == NULL, "hi-word of doubleword value must be NULL");
return check(tag, t);
}
// helper routine
static void apply(Values list, ValueVisitor* f);
// for simplified copying
ValueStack(ValueStack* copy_from, Kind kind, int bci);
public:
// creation
ValueStack(IRScope* scope, ValueStack* caller_state);
ValueStack* copy() { return new ValueStack(this, _kind, _bci); }
ValueStack* copy(Kind new_kind, int new_bci) { return new ValueStack(this, new_kind, new_bci); }
ValueStack* copy_for_parsing() { return new ValueStack(this, Parsing, -99); }
void set_caller_state(ValueStack* s) {
assert(kind() == EmptyExceptionState ||
(Compilation::current()->env()->jvmti_can_access_local_variables() && kind() == ExceptionState),
"only EmptyExceptionStates can be modified");
_caller_state = s;
}
bool is_same(ValueStack* s); // returns true if this & s's types match (w/o checking locals)
// accessors
IRScope* scope() const { return _scope; }
ValueStack* caller_state() const { return _caller_state; }
int bci() const { return _bci; }
Kind kind() const { return _kind; }
int locals_size() const { return _locals.length(); }
int stack_size() const { return _stack.length(); }
int locks_size() const { return _locks.length(); }
bool stack_is_empty() const { return _stack.is_empty(); }
bool no_active_locks() const { return _locks.is_empty(); }
int total_locks_size() const;
// locals access
void clear_locals(); // sets all locals to NULL;
void invalidate_local(int i) {
assert(_locals.at(i)->type()->is_single_word() ||
_locals.at(i + 1) == NULL, "hi-word of doubleword value must be NULL");
_locals.at_put(i, NULL);
}
Value local_at(int i) const {
Value x = _locals.at(i);
assert(x == NULL || x->type()->is_single_word() ||
_locals.at(i + 1) == NULL, "hi-word of doubleword value must be NULL");
return x;
}
void store_local(int i, Value x) {
// When overwriting local i, check if i - 1 was the start of a
// double word local and kill it.
if (i > 0) {
Value prev = _locals.at(i - 1);
if (prev != NULL && prev->type()->is_double_word()) {
_locals.at_put(i - 1, NULL);
}
}
_locals.at_put(i, x);
if (x->type()->is_double_word()) {
// hi-word of doubleword value is always NULL
_locals.at_put(i + 1, NULL);
}
}
// stack access
Value stack_at(int i) const {
Value x = _stack.at(i);
assert(x->type()->is_single_word() ||
_stack.at(i + 1) == NULL, "hi-word of doubleword value must be NULL");
return x;
}
Value stack_at_inc(int& i) const {
Value x = stack_at(i);
i += x->type()->size();
return x;
}
// pinning support
void pin_stack_for_linear_scan();
// iteration
void values_do(ValueVisitor* f);
// untyped manipulation (for dup_x1, etc.)
void truncate_stack(int size) { _stack.trunc_to(size); }
void raw_push(Value t) { _stack.push(t); }
Value raw_pop() { return _stack.pop(); }
// typed manipulation
void ipush(Value t) { _stack.push(check(intTag , t)); }
void fpush(Value t) { _stack.push(check(floatTag , t)); }
void apush(Value t) { _stack.push(check(objectTag , t)); }
void rpush(Value t) { _stack.push(check(addressTag, t)); }
void lpush(Value t) { _stack.push(check(longTag , t)); _stack.push(NULL); }
void dpush(Value t) { _stack.push(check(doubleTag , t)); _stack.push(NULL); }
void push(ValueType* type, Value t) {
switch (type->tag()) {
case intTag : ipush(t); return;
case longTag : lpush(t); return;
case floatTag : fpush(t); return;
case doubleTag : dpush(t); return;
case objectTag : apush(t); return;
case addressTag: rpush(t); return;
}
ShouldNotReachHere();
}
Value ipop() { return check(intTag , _stack.pop()); }
Value fpop() { return check(floatTag , _stack.pop()); }
Value apop() { return check(objectTag , _stack.pop()); }
Value rpop() { return check(addressTag, _stack.pop()); }
Value lpop() { Value h = _stack.pop(); return check(longTag , _stack.pop(), h); }
Value dpop() { Value h = _stack.pop(); return check(doubleTag, _stack.pop(), h); }
Value pop(ValueType* type) {
switch (type->tag()) {
case intTag : return ipop();
case longTag : return lpop();
case floatTag : return fpop();
case doubleTag : return dpop();
case objectTag : return apop();
case addressTag: return rpop();
}
ShouldNotReachHere();
return NULL;
}
Values* pop_arguments(int argument_size);
// locks access
int lock (Value obj);
int unlock();
Value lock_at(int i) const { return _locks.at(i); }
// SSA form IR support
void setup_phi_for_stack(BlockBegin* b, int index);
void setup_phi_for_local(BlockBegin* b, int index);
// debugging
void print() PRODUCT_RETURN;
void verify() PRODUCT_RETURN;
};
// Macro definitions for simple iteration of stack and local values of a ValueStack
// The macros can be used like a for-loop. All variables (state, index and value)
// must be defined before the loop.
// When states are nested because of inlining, the stack of the innermost state
// cumulates also the stack of the nested states. In contrast, the locals of all
// states must be iterated each.
// Use the following code pattern to iterate all stack values and all nested local values:
//
// ValueStack* state = ... // state that is iterated
// int index; // current loop index (overwritten in loop)
// Value value; // value at current loop index (overwritten in loop)
//
// for_each_stack_value(state, index, value {
// do something with value and index
// }
//
// for_each_state(state) {
// for_each_local_value(state, index, value) {
// do something with value and index
// }
// }
// as an invariant, state is NULL now
// construct a unique variable name with the line number where the macro is used
#define temp_var3(x) temp__ ## x
#define temp_var2(x) temp_var3(x)
#define temp_var temp_var2(__LINE__)
#define for_each_state(state) \
for (; state != NULL; state = state->caller_state())
#define for_each_local_value(state, index, value) \
int temp_var = state->locals_size(); \
for (index = 0; \
index < temp_var && (value = state->local_at(index), true); \
index += (value == NULL || value->type()->is_illegal() ? 1 : value->type()->size())) \
if (value != NULL)
#define for_each_stack_value(state, index, value) \
int temp_var = state->stack_size(); \
for (index = 0; \
index < temp_var && (value = state->stack_at(index), true); \
index += value->type()->size())
#define for_each_lock_value(state, index, value) \
int temp_var = state->locks_size(); \
for (index = 0; \
index < temp_var && (value = state->lock_at(index), true); \
index++) \
if (value != NULL)
// Macro definition for simple iteration of all state values of a ValueStack
// Because the code cannot be executed in a single loop, the code must be passed
// as a macro parameter.
// Use the following code pattern to iterate all stack values and all nested local values:
//
// ValueStack* state = ... // state that is iterated
// for_each_state_value(state, value,
// do something with value (note that this is a macro parameter)
// );
#define for_each_state_value(v_state, v_value, v_code) \
{ \
int cur_index; \
ValueStack* cur_state = v_state; \
Value v_value; \
for_each_state(cur_state) { \
{ \
for_each_local_value(cur_state, cur_index, v_value) { \
v_code; \
} \
} \
{ \
for_each_stack_value(cur_state, cur_index, v_value) { \
v_code; \
} \
} \
} \
}
// Macro definition for simple iteration of all phif functions of a block, i.e all
// phi functions of the ValueStack where the block matches.
// Use the following code pattern to iterate all phi functions of a block:
//
// BlockBegin* block = ... // block that is iterated
// for_each_phi_function(block, phi,
// do something with the phi function phi (note that this is a macro parameter)
// );
#define for_each_phi_fun(v_block, v_phi, v_code) \
{ \
int cur_index; \
ValueStack* cur_state = v_block->state(); \
Value value; \
{ \
for_each_stack_value(cur_state, cur_index, value) { \
Phi* v_phi = value->as_Phi(); \
if (v_phi != NULL && v_phi->block() == v_block) { \
v_code; \
} \
} \
} \
{ \
for_each_local_value(cur_state, cur_index, value) { \
Phi* v_phi = value->as_Phi(); \
if (v_phi != NULL && v_phi->block() == v_block) { \
v_code; \
} \
} \
} \
}
#endif // SHARE_VM_C1_C1_VALUESTACK_HPP