4957990: Perm heap bloat in JVM
Summary: Treat ProfileData in MDO's as a source of weak, not strong, roots. Fixes the bug for stop-world collection -- the case of concurrent collection will be fixed separately.
Reviewed-by: jcoomes, jmasa, kvn, never
/*
* Copyright 2001-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
#include "incls/_precompiled.incl"
#include "incls/_genMarkSweep.cpp.incl"
void GenMarkSweep::invoke_at_safepoint(int level, ReferenceProcessor* rp,
bool clear_all_softrefs) {
assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
// hook up weak ref data so it can be used during Mark-Sweep
assert(ref_processor() == NULL, "no stomping");
assert(rp != NULL, "should be non-NULL");
_ref_processor = rp;
rp->setup_policy(clear_all_softrefs);
TraceTime t1("Full GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
// When collecting the permanent generation methodOops may be moving,
// so we either have to flush all bcp data or convert it into bci.
CodeCache::gc_prologue();
Threads::gc_prologue();
// Increment the invocation count for the permanent generation, since it is
// implicitly collected whenever we do a full mark sweep collection.
GenCollectedHeap* gch = GenCollectedHeap::heap();
gch->perm_gen()->stat_record()->invocations++;
// Capture heap size before collection for printing.
size_t gch_prev_used = gch->used();
// Some of the card table updates below assume that the perm gen is
// also being collected.
assert(level == gch->n_gens() - 1,
"All generations are being collected, ergo perm gen too.");
// Capture used regions for each generation that will be
// subject to collection, so that card table adjustments can
// be made intelligently (see clear / invalidate further below).
gch->save_used_regions(level, true /* perm */);
allocate_stacks();
mark_sweep_phase1(level, clear_all_softrefs);
mark_sweep_phase2();
// Don't add any more derived pointers during phase3
COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
mark_sweep_phase3(level);
VALIDATE_MARK_SWEEP_ONLY(
if (ValidateMarkSweep) {
guarantee(_root_refs_stack->length() == 0, "should be empty by now");
}
)
mark_sweep_phase4();
VALIDATE_MARK_SWEEP_ONLY(
if (ValidateMarkSweep) {
guarantee(_live_oops->length() == _live_oops_moved_to->length(),
"should be the same size");
}
)
restore_marks();
// Set saved marks for allocation profiler (and other things? -- dld)
// (Should this be in general part?)
gch->save_marks();
deallocate_stacks();
// If compaction completely evacuated all generations younger than this
// one, then we can clear the card table. Otherwise, we must invalidate
// it (consider all cards dirty). In the future, we might consider doing
// compaction within generations only, and doing card-table sliding.
bool all_empty = true;
for (int i = 0; all_empty && i < level; i++) {
Generation* g = gch->get_gen(i);
all_empty = all_empty && gch->get_gen(i)->used() == 0;
}
GenRemSet* rs = gch->rem_set();
// Clear/invalidate below make use of the "prev_used_regions" saved earlier.
if (all_empty) {
// We've evacuated all generations below us.
Generation* g = gch->get_gen(level);
rs->clear_into_younger(g, true /* perm */);
} else {
// Invalidate the cards corresponding to the currently used
// region and clear those corresponding to the evacuated region
// of all generations just collected (i.e. level and younger).
rs->invalidate_or_clear(gch->get_gen(level),
true /* younger */,
true /* perm */);
}
Threads::gc_epilogue();
CodeCache::gc_epilogue();
if (PrintGC && !PrintGCDetails) {
gch->print_heap_change(gch_prev_used);
}
// refs processing: clean slate
_ref_processor = NULL;
// Update heap occupancy information which is used as
// input to soft ref clearing policy at the next gc.
Universe::update_heap_info_at_gc();
// Update time of last gc for all generations we collected
// (which curently is all the generations in the heap).
gch->update_time_of_last_gc(os::javaTimeMillis());
}
void GenMarkSweep::allocate_stacks() {
GenCollectedHeap* gch = GenCollectedHeap::heap();
// Scratch request on behalf of oldest generation; will do no
// allocation.
ScratchBlock* scratch = gch->gather_scratch(gch->_gens[gch->_n_gens-1], 0);
// $$$ To cut a corner, we'll only use the first scratch block, and then
// revert to malloc.
if (scratch != NULL) {
_preserved_count_max =
scratch->num_words * HeapWordSize / sizeof(PreservedMark);
} else {
_preserved_count_max = 0;
}
_preserved_marks = (PreservedMark*)scratch;
_preserved_count = 0;
_preserved_mark_stack = NULL;
_preserved_oop_stack = NULL;
_marking_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(4000, true);
int size = SystemDictionary::number_of_classes() * 2;
_revisit_klass_stack = new (ResourceObj::C_HEAP) GrowableArray<Klass*>(size, true);
// (#klass/k)^2 for k ~ 10 appears to be a better fit, but this will have to do for
// now until we have had a chance to investigate a more optimal setting.
_revisit_mdo_stack = new (ResourceObj::C_HEAP) GrowableArray<DataLayout*>(2*size, true);
#ifdef VALIDATE_MARK_SWEEP
if (ValidateMarkSweep) {
_root_refs_stack = new (ResourceObj::C_HEAP) GrowableArray<void*>(100, true);
_other_refs_stack = new (ResourceObj::C_HEAP) GrowableArray<void*>(100, true);
_adjusted_pointers = new (ResourceObj::C_HEAP) GrowableArray<void*>(100, true);
_live_oops = new (ResourceObj::C_HEAP) GrowableArray<oop>(100, true);
_live_oops_moved_to = new (ResourceObj::C_HEAP) GrowableArray<oop>(100, true);
_live_oops_size = new (ResourceObj::C_HEAP) GrowableArray<size_t>(100, true);
}
if (RecordMarkSweepCompaction) {
if (_cur_gc_live_oops == NULL) {
_cur_gc_live_oops = new(ResourceObj::C_HEAP) GrowableArray<HeapWord*>(100, true);
_cur_gc_live_oops_moved_to = new(ResourceObj::C_HEAP) GrowableArray<HeapWord*>(100, true);
_cur_gc_live_oops_size = new(ResourceObj::C_HEAP) GrowableArray<size_t>(100, true);
_last_gc_live_oops = new(ResourceObj::C_HEAP) GrowableArray<HeapWord*>(100, true);
_last_gc_live_oops_moved_to = new(ResourceObj::C_HEAP) GrowableArray<HeapWord*>(100, true);
_last_gc_live_oops_size = new(ResourceObj::C_HEAP) GrowableArray<size_t>(100, true);
} else {
_cur_gc_live_oops->clear();
_cur_gc_live_oops_moved_to->clear();
_cur_gc_live_oops_size->clear();
}
}
#endif
}
void GenMarkSweep::deallocate_stacks() {
if (!UseG1GC) {
GenCollectedHeap* gch = GenCollectedHeap::heap();
gch->release_scratch();
}
if (_preserved_oop_stack) {
delete _preserved_mark_stack;
_preserved_mark_stack = NULL;
delete _preserved_oop_stack;
_preserved_oop_stack = NULL;
}
delete _marking_stack;
delete _revisit_klass_stack;
delete _revisit_mdo_stack;
#ifdef VALIDATE_MARK_SWEEP
if (ValidateMarkSweep) {
delete _root_refs_stack;
delete _other_refs_stack;
delete _adjusted_pointers;
delete _live_oops;
delete _live_oops_size;
delete _live_oops_moved_to;
_live_oops_index = 0;
_live_oops_index_at_perm = 0;
}
#endif
}
void GenMarkSweep::mark_sweep_phase1(int level,
bool clear_all_softrefs) {
// Recursively traverse all live objects and mark them
EventMark m("1 mark object");
TraceTime tm("phase 1", PrintGC && Verbose, true, gclog_or_tty);
trace(" 1");
VALIDATE_MARK_SWEEP_ONLY(reset_live_oop_tracking(false));
GenCollectedHeap* gch = GenCollectedHeap::heap();
// Because follow_root_closure is created statically, cannot
// use OopsInGenClosure constructor which takes a generation,
// as the Universe has not been created when the static constructors
// are run.
follow_root_closure.set_orig_generation(gch->get_gen(level));
gch->gen_process_strong_roots(level,
false, // Younger gens are not roots.
true, // Collecting permanent generation.
SharedHeap::SO_SystemClasses,
&follow_root_closure, &follow_root_closure);
// Process reference objects found during marking
{
ref_processor()->setup_policy(clear_all_softrefs);
ref_processor()->process_discovered_references(
&is_alive, &keep_alive, &follow_stack_closure, NULL);
}
// Follow system dictionary roots and unload classes
bool purged_class = SystemDictionary::do_unloading(&is_alive);
// Follow code cache roots
CodeCache::do_unloading(&is_alive, &keep_alive, purged_class);
follow_stack(); // Flush marking stack
// Update subklass/sibling/implementor links of live klasses
follow_weak_klass_links();
assert(_marking_stack->is_empty(), "just drained");
// Visit memoized MDO's and clear any unmarked weak refs
follow_mdo_weak_refs();
assert(_marking_stack->is_empty(), "just drained");
// Visit symbol and interned string tables and delete unmarked oops
SymbolTable::unlink(&is_alive);
StringTable::unlink(&is_alive);
assert(_marking_stack->is_empty(), "stack should be empty by now");
}
void GenMarkSweep::mark_sweep_phase2() {
// Now all live objects are marked, compute the new object addresses.
// It is imperative that we traverse perm_gen LAST. If dead space is
// allowed a range of dead object may get overwritten by a dead int
// array. If perm_gen is not traversed last a klassOop may get
// overwritten. This is fine since it is dead, but if the class has dead
// instances we have to skip them, and in order to find their size we
// need the klassOop!
//
// It is not required that we traverse spaces in the same order in
// phase2, phase3 and phase4, but the ValidateMarkSweep live oops
// tracking expects us to do so. See comment under phase4.
GenCollectedHeap* gch = GenCollectedHeap::heap();
Generation* pg = gch->perm_gen();
EventMark m("2 compute new addresses");
TraceTime tm("phase 2", PrintGC && Verbose, true, gclog_or_tty);
trace("2");
VALIDATE_MARK_SWEEP_ONLY(reset_live_oop_tracking(false));
gch->prepare_for_compaction();
VALIDATE_MARK_SWEEP_ONLY(_live_oops_index_at_perm = _live_oops_index);
CompactPoint perm_cp(pg, NULL, NULL);
pg->prepare_for_compaction(&perm_cp);
}
class GenAdjustPointersClosure: public GenCollectedHeap::GenClosure {
public:
void do_generation(Generation* gen) {
gen->adjust_pointers();
}
};
void GenMarkSweep::mark_sweep_phase3(int level) {
GenCollectedHeap* gch = GenCollectedHeap::heap();
Generation* pg = gch->perm_gen();
// Adjust the pointers to reflect the new locations
EventMark m("3 adjust pointers");
TraceTime tm("phase 3", PrintGC && Verbose, true, gclog_or_tty);
trace("3");
VALIDATE_MARK_SWEEP_ONLY(reset_live_oop_tracking(false));
// Needs to be done before the system dictionary is adjusted.
pg->pre_adjust_pointers();
// Because the two closures below are created statically, cannot
// use OopsInGenClosure constructor which takes a generation,
// as the Universe has not been created when the static constructors
// are run.
adjust_root_pointer_closure.set_orig_generation(gch->get_gen(level));
adjust_pointer_closure.set_orig_generation(gch->get_gen(level));
gch->gen_process_strong_roots(level,
false, // Younger gens are not roots.
true, // Collecting permanent generation.
SharedHeap::SO_AllClasses,
&adjust_root_pointer_closure,
&adjust_root_pointer_closure);
// Now adjust pointers in remaining weak roots. (All of which should
// have been cleared if they pointed to non-surviving objects.)
gch->gen_process_weak_roots(&adjust_root_pointer_closure,
&adjust_pointer_closure);
adjust_marks();
GenAdjustPointersClosure blk;
gch->generation_iterate(&blk, true);
pg->adjust_pointers();
}
class GenCompactClosure: public GenCollectedHeap::GenClosure {
public:
void do_generation(Generation* gen) {
gen->compact();
}
};
void GenMarkSweep::mark_sweep_phase4() {
// All pointers are now adjusted, move objects accordingly
// It is imperative that we traverse perm_gen first in phase4. All
// classes must be allocated earlier than their instances, and traversing
// perm_gen first makes sure that all klassOops have moved to their new
// location before any instance does a dispatch through it's klass!
// The ValidateMarkSweep live oops tracking expects us to traverse spaces
// in the same order in phase2, phase3 and phase4. We don't quite do that
// here (perm_gen first rather than last), so we tell the validate code
// to use a higher index (saved from phase2) when verifying perm_gen.
GenCollectedHeap* gch = GenCollectedHeap::heap();
Generation* pg = gch->perm_gen();
EventMark m("4 compact heap");
TraceTime tm("phase 4", PrintGC && Verbose, true, gclog_or_tty);
trace("4");
VALIDATE_MARK_SWEEP_ONLY(reset_live_oop_tracking(true));
pg->compact();
VALIDATE_MARK_SWEEP_ONLY(reset_live_oop_tracking(false));
GenCompactClosure blk;
gch->generation_iterate(&blk, true);
VALIDATE_MARK_SWEEP_ONLY(compaction_complete());
pg->post_compact(); // Shared spaces verification.
}