8232232: G1RemSetSummary::_rs_threads_vtimes is not initialized to zero
Summary: Fix error in "Concurrent refinement threads times" in GC log and cleanup.
Reviewed-by: tschatzl, kbarrett
/*
* Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "runtime/atomic.hpp"
#include "runtime/orderAccess.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/lockFreeStack.hpp"
#include "threadHelper.inline.hpp"
#include "unittest.hpp"
#include <new>
class LockFreeStackTestElement {
typedef LockFreeStackTestElement Element;
Element* volatile _entry;
Element* volatile _entry1;
size_t _id;
static Element* volatile* entry_ptr(Element& e) { return &e._entry; }
static Element* volatile* entry1_ptr(Element& e) { return &e._entry1; }
public:
LockFreeStackTestElement(size_t id = 0) : _entry(), _entry1(), _id(id) {}
size_t id() const { return _id; }
void set_id(size_t value) { _id = value; }
typedef LockFreeStack<Element, &entry_ptr> TestStack;
typedef LockFreeStack<Element, &entry1_ptr> TestStack1;
};
typedef LockFreeStackTestElement Element;
typedef Element::TestStack TestStack;
typedef Element::TestStack1 TestStack1;
static void initialize_ids(Element* elements, size_t size) {
for (size_t i = 0; i < size; ++i) {
elements[i].set_id(i);
}
}
class LockFreeStackTestBasics : public ::testing::Test {
public:
LockFreeStackTestBasics();
static const size_t nelements = 10;
Element elements[nelements];
TestStack stack;
private:
void initialize();
};
const size_t LockFreeStackTestBasics::nelements;
LockFreeStackTestBasics::LockFreeStackTestBasics() : stack() {
initialize_ids(elements, nelements);
initialize();
}
void LockFreeStackTestBasics::initialize() {
ASSERT_TRUE(stack.empty());
ASSERT_EQ(0u, stack.length());
ASSERT_TRUE(stack.pop() == NULL);
ASSERT_TRUE(stack.top() == NULL);
for (size_t id = 0; id < nelements; ++id) {
ASSERT_EQ(id, stack.length());
Element* e = &elements[id];
ASSERT_EQ(id, e->id());
stack.push(*e);
ASSERT_FALSE(stack.empty());
ASSERT_EQ(e, stack.top());
}
}
TEST_F(LockFreeStackTestBasics, push_pop) {
for (size_t i = nelements; i > 0; ) {
ASSERT_FALSE(stack.empty());
ASSERT_EQ(i, stack.length());
--i;
Element* e = stack.pop();
ASSERT_TRUE(e != NULL);
ASSERT_EQ(&elements[i], e);
ASSERT_EQ(i, e->id());
}
ASSERT_TRUE(stack.empty());
ASSERT_EQ(0u, stack.length());
ASSERT_TRUE(stack.pop() == NULL);
}
TEST_F(LockFreeStackTestBasics, prepend_one) {
TestStack other_stack;
ASSERT_TRUE(other_stack.empty());
ASSERT_TRUE(other_stack.pop() == NULL);
ASSERT_EQ(0u, other_stack.length());
ASSERT_TRUE(other_stack.top() == NULL);
ASSERT_TRUE(other_stack.pop() == NULL);
other_stack.prepend(*stack.pop_all());
ASSERT_EQ(nelements, other_stack.length());
ASSERT_TRUE(stack.empty());
ASSERT_EQ(0u, stack.length());
ASSERT_TRUE(stack.pop() == NULL);
ASSERT_TRUE(stack.top() == NULL);
for (size_t i = nelements; i > 0; ) {
ASSERT_EQ(i, other_stack.length());
--i;
Element* e = other_stack.pop();
ASSERT_TRUE(e != NULL);
ASSERT_EQ(&elements[i], e);
ASSERT_EQ(i, e->id());
}
ASSERT_EQ(0u, other_stack.length());
ASSERT_TRUE(other_stack.pop() == NULL);
}
TEST_F(LockFreeStackTestBasics, prepend_two) {
TestStack other_stack;
ASSERT_TRUE(other_stack.empty());
ASSERT_EQ(0u, other_stack.length());
ASSERT_TRUE(other_stack.top() == NULL);
ASSERT_TRUE(other_stack.pop() == NULL);
Element* top = stack.pop_all();
ASSERT_EQ(top, &elements[nelements - 1]);
other_stack.prepend(*top, elements[0]);
for (size_t i = nelements; i > 0; ) {
ASSERT_EQ(i, other_stack.length());
--i;
Element* e = other_stack.pop();
ASSERT_TRUE(e != NULL);
ASSERT_EQ(&elements[i], e);
ASSERT_EQ(i, e->id());
}
ASSERT_EQ(0u, other_stack.length());
ASSERT_TRUE(other_stack.pop() == NULL);
}
TEST_F(LockFreeStackTestBasics, two_stacks) {
TestStack1 stack1;
ASSERT_TRUE(stack1.pop() == NULL);
for (size_t id = 0; id < nelements; ++id) {
stack1.push(elements[id]);
}
ASSERT_EQ(nelements, stack1.length());
Element* e0 = stack.top();
Element* e1 = stack1.top();
while (true) {
ASSERT_EQ(e0, e1);
if (e0 == NULL) break;
e0 = stack.next(*e0);
e1 = stack1.next(*e1);
}
for (size_t i = nelements; i > 0; ) {
ASSERT_EQ(i, stack.length());
ASSERT_EQ(i, stack1.length());
--i;
Element* e = stack.pop();
ASSERT_TRUE(e != NULL);
ASSERT_EQ(&elements[i], e);
ASSERT_EQ(i, e->id());
Element* e1 = stack1.pop();
ASSERT_TRUE(e1 != NULL);
ASSERT_EQ(&elements[i], e1);
ASSERT_EQ(i, e1->id());
ASSERT_EQ(e, e1);
}
ASSERT_EQ(0u, stack.length());
ASSERT_EQ(0u, stack1.length());
ASSERT_TRUE(stack.pop() == NULL);
ASSERT_TRUE(stack1.pop() == NULL);
}
class LockFreeStackTestThread : public JavaTestThread {
uint _id;
TestStack* _from;
TestStack* _to;
volatile size_t* _processed;
size_t _process_limit;
size_t _local_processed;
volatile bool _ready;
public:
LockFreeStackTestThread(Semaphore* post,
uint id,
TestStack* from,
TestStack* to,
volatile size_t* processed,
size_t process_limit) :
JavaTestThread(post),
_id(id),
_from(from),
_to(to),
_processed(processed),
_process_limit(process_limit),
_local_processed(0),
_ready(false)
{}
virtual void main_run() {
OrderAccess::release_store_fence(&_ready, true);
while (true) {
Element* e = _from->pop();
if (e != NULL) {
_to->push(*e);
Atomic::inc(_processed);
++_local_processed;
} else if (OrderAccess::load_acquire(_processed) == _process_limit) {
tty->print_cr("thread %u processed " SIZE_FORMAT, _id, _local_processed);
return;
}
}
}
bool ready() const { return OrderAccess::load_acquire(&_ready); }
};
TEST_VM(LockFreeStackTest, stress) {
Semaphore post;
TestStack initial_stack;
TestStack start_stack;
TestStack middle_stack;
TestStack final_stack;
volatile size_t stage1_processed = 0;
volatile size_t stage2_processed = 0;
const size_t nelements = 10000;
Element* elements = NEW_C_HEAP_ARRAY(Element, nelements, mtOther);
for (size_t id = 0; id < nelements; ++id) {
::new (&elements[id]) Element(id);
initial_stack.push(elements[id]);
}
ASSERT_EQ(nelements, initial_stack.length());
// - stage1 threads pop from start_stack and push to middle_stack.
// - stage2 threads pop from middle_stack and push to final_stack.
// - all threads in a stage count the number of elements processed in
// their corresponding stageN_processed counter.
const uint stage1_threads = 2;
const uint stage2_threads = 2;
const uint nthreads = stage1_threads + stage2_threads;
LockFreeStackTestThread* threads[nthreads] = {};
for (uint i = 0; i < ARRAY_SIZE(threads); ++i) {
TestStack* from = &start_stack;
TestStack* to = &middle_stack;
volatile size_t* processed = &stage1_processed;
if (i >= stage1_threads) {
from = &middle_stack;
to = &final_stack;
processed = &stage2_processed;
}
threads[i] =
new LockFreeStackTestThread(&post, i, from, to, processed, nelements);
threads[i]->doit();
while (!threads[i]->ready()) {} // Wait until ready to start test.
}
// Transfer elements to start_stack to start test.
start_stack.prepend(*initial_stack.pop_all());
// Wait for all threads to complete.
for (uint i = 0; i < nthreads; ++i) {
post.wait();
}
// Verify expected state.
ASSERT_EQ(nelements, stage1_processed);
ASSERT_EQ(nelements, stage2_processed);
ASSERT_EQ(0u, initial_stack.length());
ASSERT_EQ(0u, start_stack.length());
ASSERT_EQ(0u, middle_stack.length());
ASSERT_EQ(nelements, final_stack.length());
while (final_stack.pop() != NULL) {}
FREE_C_HEAP_ARRAY(Element, elements);
}