8216167: Update include guards to reflect correct directories
Summary: Use script and some manual fixup to fix directores names in include guards.
Reviewed-by: lfoltan, eosterlund, kbarrett
/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_OOPS_METHOD_HPP
#define SHARE_OOPS_METHOD_HPP
#include "classfile/vmSymbols.hpp"
#include "code/compressedStream.hpp"
#include "compiler/compilerDefinitions.hpp"
#include "compiler/oopMap.hpp"
#include "interpreter/invocationCounter.hpp"
#include "oops/annotations.hpp"
#include "oops/constantPool.hpp"
#include "oops/methodCounters.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/oop.hpp"
#include "oops/typeArrayOop.hpp"
#include "utilities/accessFlags.hpp"
#include "utilities/align.hpp"
#include "utilities/growableArray.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_JFR
#include "jfr/support/jfrTraceIdExtension.hpp"
#endif
// A Method represents a Java method.
//
// Note that most applications load thousands of methods, so keeping the size of this
// class small has a big impact on footprint.
//
// Note that native_function and signature_handler have to be at fixed offsets
// (required by the interpreter)
//
// Method embedded field layout (after declared fields):
// [EMBEDDED native_function (present only if native) ]
// [EMBEDDED signature_handler (present only if native) ]
class CheckedExceptionElement;
class LocalVariableTableElement;
class AdapterHandlerEntry;
class MethodData;
class MethodCounters;
class ConstMethod;
class InlineTableSizes;
class KlassSizeStats;
class CompiledMethod;
class InterpreterOopMap;
class Method : public Metadata {
friend class VMStructs;
friend class JVMCIVMStructs;
private:
// If you add a new field that points to any metaspace object, you
// must add this field to Method::metaspace_pointers_do().
ConstMethod* _constMethod; // Method read-only data.
MethodData* _method_data;
MethodCounters* _method_counters;
AccessFlags _access_flags; // Access flags
int _vtable_index; // vtable index of this method (see VtableIndexFlag)
// note: can have vtables with >2**16 elements (because of inheritance)
u2 _intrinsic_id; // vmSymbols::intrinsic_id (0 == _none)
// Flags
enum Flags {
_caller_sensitive = 1 << 0,
_force_inline = 1 << 1,
_dont_inline = 1 << 2,
_hidden = 1 << 3,
_has_injected_profile = 1 << 4,
_running_emcp = 1 << 5,
_intrinsic_candidate = 1 << 6,
_reserved_stack_access = 1 << 7
};
mutable u2 _flags;
JFR_ONLY(DEFINE_TRACE_FLAG;)
#ifndef PRODUCT
int _compiled_invocation_count; // Number of nmethod invocations so far (for perf. debugging)
#endif
// Entry point for calling both from and to the interpreter.
address _i2i_entry; // All-args-on-stack calling convention
// Entry point for calling from compiled code, to compiled code if it exists
// or else the interpreter.
volatile address _from_compiled_entry; // Cache of: _code ? _code->entry_point() : _adapter->c2i_entry()
// The entry point for calling both from and to compiled code is
// "_code->entry_point()". Because of tiered compilation and de-opt, this
// field can come and go. It can transition from NULL to not-null at any
// time (whenever a compile completes). It can transition from not-null to
// NULL only at safepoints (because of a de-opt).
CompiledMethod* volatile _code; // Points to the corresponding piece of native code
volatile address _from_interpreted_entry; // Cache of _code ? _adapter->i2c_entry() : _i2i_entry
#if INCLUDE_AOT && defined(TIERED)
CompiledMethod* _aot_code;
#endif
// Constructor
Method(ConstMethod* xconst, AccessFlags access_flags);
public:
static Method* allocate(ClassLoaderData* loader_data,
int byte_code_size,
AccessFlags access_flags,
InlineTableSizes* sizes,
ConstMethod::MethodType method_type,
TRAPS);
// CDS and vtbl checking can create an empty Method to get vtbl pointer.
Method(){}
bool is_method() const volatile { return true; }
void restore_unshareable_info(TRAPS);
// accessors for instance variables
ConstMethod* constMethod() const { return _constMethod; }
void set_constMethod(ConstMethod* xconst) { _constMethod = xconst; }
static address make_adapters(const methodHandle& mh, TRAPS);
address from_compiled_entry() const;
address from_compiled_entry_no_trampoline() const;
address from_interpreted_entry() const;
// access flag
AccessFlags access_flags() const { return _access_flags; }
void set_access_flags(AccessFlags flags) { _access_flags = flags; }
// name
Symbol* name() const { return constants()->symbol_at(name_index()); }
int name_index() const { return constMethod()->name_index(); }
void set_name_index(int index) { constMethod()->set_name_index(index); }
// signature
Symbol* signature() const { return constants()->symbol_at(signature_index()); }
int signature_index() const { return constMethod()->signature_index(); }
void set_signature_index(int index) { constMethod()->set_signature_index(index); }
// generics support
Symbol* generic_signature() const { int idx = generic_signature_index(); return ((idx != 0) ? constants()->symbol_at(idx) : (Symbol*)NULL); }
int generic_signature_index() const { return constMethod()->generic_signature_index(); }
void set_generic_signature_index(int index) { constMethod()->set_generic_signature_index(index); }
// annotations support
AnnotationArray* annotations() const {
return constMethod()->method_annotations();
}
AnnotationArray* parameter_annotations() const {
return constMethod()->parameter_annotations();
}
AnnotationArray* annotation_default() const {
return constMethod()->default_annotations();
}
AnnotationArray* type_annotations() const {
return constMethod()->type_annotations();
}
// Helper routine: get klass name + "." + method name + signature as
// C string, for the purpose of providing more useful NoSuchMethodErrors
// and fatal error handling. The string is allocated in resource
// area if a buffer is not provided by the caller.
char* name_and_sig_as_C_string() const;
char* name_and_sig_as_C_string(char* buf, int size) const;
// Static routine in the situations we don't have a Method*
static char* name_and_sig_as_C_string(Klass* klass, Symbol* method_name, Symbol* signature);
static char* name_and_sig_as_C_string(Klass* klass, Symbol* method_name, Symbol* signature, char* buf, int size);
Bytecodes::Code java_code_at(int bci) const {
return Bytecodes::java_code_at(this, bcp_from(bci));
}
Bytecodes::Code code_at(int bci) const {
return Bytecodes::code_at(this, bcp_from(bci));
}
// JVMTI breakpoints
#if !INCLUDE_JVMTI
Bytecodes::Code orig_bytecode_at(int bci) const {
ShouldNotReachHere();
return Bytecodes::_shouldnotreachhere;
}
void set_orig_bytecode_at(int bci, Bytecodes::Code code) {
ShouldNotReachHere();
};
u2 number_of_breakpoints() const {return 0;}
#else // !INCLUDE_JVMTI
Bytecodes::Code orig_bytecode_at(int bci) const;
void set_orig_bytecode_at(int bci, Bytecodes::Code code);
void set_breakpoint(int bci);
void clear_breakpoint(int bci);
void clear_all_breakpoints();
// Tracking number of breakpoints, for fullspeed debugging.
// Only mutated by VM thread.
u2 number_of_breakpoints() const {
MethodCounters* mcs = method_counters();
if (mcs == NULL) {
return 0;
} else {
return mcs->number_of_breakpoints();
}
}
void incr_number_of_breakpoints(TRAPS) {
MethodCounters* mcs = get_method_counters(CHECK);
if (mcs != NULL) {
mcs->incr_number_of_breakpoints();
}
}
void decr_number_of_breakpoints(TRAPS) {
MethodCounters* mcs = get_method_counters(CHECK);
if (mcs != NULL) {
mcs->decr_number_of_breakpoints();
}
}
// Initialization only
void clear_number_of_breakpoints() {
MethodCounters* mcs = method_counters();
if (mcs != NULL) {
mcs->clear_number_of_breakpoints();
}
}
#endif // !INCLUDE_JVMTI
// index into InstanceKlass methods() array
// note: also used by jfr
u2 method_idnum() const { return constMethod()->method_idnum(); }
void set_method_idnum(u2 idnum) { constMethod()->set_method_idnum(idnum); }
u2 orig_method_idnum() const { return constMethod()->orig_method_idnum(); }
void set_orig_method_idnum(u2 idnum) { constMethod()->set_orig_method_idnum(idnum); }
// code size
int code_size() const { return constMethod()->code_size(); }
// method size in words
int method_size() const { return sizeof(Method)/wordSize + ( is_native() ? 2 : 0 ); }
// constant pool for Klass* holding this method
ConstantPool* constants() const { return constMethod()->constants(); }
void set_constants(ConstantPool* c) { constMethod()->set_constants(c); }
// max stack
// return original max stack size for method verification
int verifier_max_stack() const { return constMethod()->max_stack(); }
int max_stack() const { return constMethod()->max_stack() + extra_stack_entries(); }
void set_max_stack(int size) { constMethod()->set_max_stack(size); }
// max locals
int max_locals() const { return constMethod()->max_locals(); }
void set_max_locals(int size) { constMethod()->set_max_locals(size); }
int highest_comp_level() const;
void set_highest_comp_level(int level);
int highest_osr_comp_level() const;
void set_highest_osr_comp_level(int level);
#if COMPILER2_OR_JVMCI
// Count of times method was exited via exception while interpreting
void interpreter_throwout_increment(TRAPS) {
MethodCounters* mcs = get_method_counters(CHECK);
if (mcs != NULL) {
mcs->interpreter_throwout_increment();
}
}
#endif
int interpreter_throwout_count() const {
MethodCounters* mcs = method_counters();
if (mcs == NULL) {
return 0;
} else {
return mcs->interpreter_throwout_count();
}
}
// size of parameters
int size_of_parameters() const { return constMethod()->size_of_parameters(); }
void set_size_of_parameters(int size) { constMethod()->set_size_of_parameters(size); }
bool has_stackmap_table() const {
return constMethod()->has_stackmap_table();
}
Array<u1>* stackmap_data() const {
return constMethod()->stackmap_data();
}
void set_stackmap_data(Array<u1>* sd) {
constMethod()->set_stackmap_data(sd);
}
// exception handler table
bool has_exception_handler() const
{ return constMethod()->has_exception_handler(); }
int exception_table_length() const
{ return constMethod()->exception_table_length(); }
ExceptionTableElement* exception_table_start() const
{ return constMethod()->exception_table_start(); }
// Finds the first entry point bci of an exception handler for an
// exception of klass ex_klass thrown at throw_bci. A value of NULL
// for ex_klass indicates that the exception klass is not known; in
// this case it matches any constraint class. Returns -1 if the
// exception cannot be handled in this method. The handler
// constraint classes are loaded if necessary. Note that this may
// throw an exception if loading of the constraint classes causes
// an IllegalAccessError (bugid 4307310) or an OutOfMemoryError.
// If an exception is thrown, returns the bci of the
// exception handler which caused the exception to be thrown, which
// is needed for proper retries. See, for example,
// InterpreterRuntime::exception_handler_for_exception.
static int fast_exception_handler_bci_for(const methodHandle& mh, Klass* ex_klass, int throw_bci, TRAPS);
// method data access
MethodData* method_data() const {
return _method_data;
}
void set_method_data(MethodData* data);
MethodCounters* method_counters() const {
return _method_counters;
}
void clear_method_counters() {
_method_counters = NULL;
}
bool init_method_counters(MethodCounters* counters);
#ifdef TIERED
// We are reusing interpreter_invocation_count as a holder for the previous event count!
// We can do that since interpreter_invocation_count is not used in tiered.
int prev_event_count() const {
if (method_counters() == NULL) {
return 0;
} else {
return method_counters()->interpreter_invocation_count();
}
}
void set_prev_event_count(int count) {
MethodCounters* mcs = method_counters();
if (mcs != NULL) {
mcs->set_interpreter_invocation_count(count);
}
}
jlong prev_time() const {
MethodCounters* mcs = method_counters();
return mcs == NULL ? 0 : mcs->prev_time();
}
void set_prev_time(jlong time) {
MethodCounters* mcs = method_counters();
if (mcs != NULL) {
mcs->set_prev_time(time);
}
}
float rate() const {
MethodCounters* mcs = method_counters();
return mcs == NULL ? 0 : mcs->rate();
}
void set_rate(float rate) {
MethodCounters* mcs = method_counters();
if (mcs != NULL) {
mcs->set_rate(rate);
}
}
#if INCLUDE_AOT
void set_aot_code(CompiledMethod* aot_code) {
_aot_code = aot_code;
}
CompiledMethod* aot_code() const {
return _aot_code;
}
#else
CompiledMethod* aot_code() const { return NULL; }
#endif // INCLUDE_AOT
#endif // TIERED
int nmethod_age() const {
if (method_counters() == NULL) {
return INT_MAX;
} else {
return method_counters()->nmethod_age();
}
}
int invocation_count();
int backedge_count();
bool was_executed_more_than(int n);
bool was_never_executed() { return !was_executed_more_than(0); }
static void build_interpreter_method_data(const methodHandle& method, TRAPS);
static MethodCounters* build_method_counters(Method* m, TRAPS);
int interpreter_invocation_count() {
if (TieredCompilation) {
return invocation_count();
} else {
MethodCounters* mcs = method_counters();
return (mcs == NULL) ? 0 : mcs->interpreter_invocation_count();
}
}
#if COMPILER2_OR_JVMCI
int increment_interpreter_invocation_count(TRAPS) {
if (TieredCompilation) ShouldNotReachHere();
MethodCounters* mcs = get_method_counters(CHECK_0);
return (mcs == NULL) ? 0 : mcs->increment_interpreter_invocation_count();
}
#endif
#ifndef PRODUCT
int compiled_invocation_count() const { return _compiled_invocation_count; }
void set_compiled_invocation_count(int count) { _compiled_invocation_count = count; }
#else
// for PrintMethodData in a product build
int compiled_invocation_count() const { return 0; }
#endif // not PRODUCT
// Clear (non-shared space) pointers which could not be relevant
// if this (shared) method were mapped into another JVM.
void remove_unshareable_info();
// nmethod/verified compiler entry
address verified_code_entry();
bool check_code() const; // Not inline to avoid circular ref
CompiledMethod* volatile code() const;
void clear_code(bool acquire_lock = true); // Clear out any compiled code
static void set_code(const methodHandle& mh, CompiledMethod* code);
void set_adapter_entry(AdapterHandlerEntry* adapter) {
constMethod()->set_adapter_entry(adapter);
}
void update_adapter_trampoline(AdapterHandlerEntry* adapter) {
constMethod()->update_adapter_trampoline(adapter);
}
address get_i2c_entry();
address get_c2i_entry();
address get_c2i_unverified_entry();
AdapterHandlerEntry* adapter() const {
return constMethod()->adapter();
}
// setup entry points
void link_method(const methodHandle& method, TRAPS);
// clear entry points. Used by sharing code during dump time
void unlink_method() NOT_CDS_RETURN;
virtual void metaspace_pointers_do(MetaspaceClosure* iter);
virtual MetaspaceObj::Type type() const { return MethodType; }
// vtable index
enum VtableIndexFlag {
// Valid vtable indexes are non-negative (>= 0).
// These few negative values are used as sentinels.
itable_index_max = -10, // first itable index, growing downward
pending_itable_index = -9, // itable index will be assigned
invalid_vtable_index = -4, // distinct from any valid vtable index
garbage_vtable_index = -3, // not yet linked; no vtable layout yet
nonvirtual_vtable_index = -2 // there is no need for vtable dispatch
// 6330203 Note: Do not use -1, which was overloaded with many meanings.
};
DEBUG_ONLY(bool valid_vtable_index() const { return _vtable_index >= nonvirtual_vtable_index; })
bool has_vtable_index() const { return _vtable_index >= 0; }
int vtable_index() const { return _vtable_index; }
void set_vtable_index(int index);
DEBUG_ONLY(bool valid_itable_index() const { return _vtable_index <= pending_itable_index; })
bool has_itable_index() const { return _vtable_index <= itable_index_max; }
int itable_index() const { assert(valid_itable_index(), "");
return itable_index_max - _vtable_index; }
void set_itable_index(int index);
// interpreter entry
address interpreter_entry() const { return _i2i_entry; }
// Only used when first initialize so we can set _i2i_entry and _from_interpreted_entry
void set_interpreter_entry(address entry) {
assert(!is_shared(), "shared method's interpreter entry should not be changed at run time");
if (_i2i_entry != entry) {
_i2i_entry = entry;
}
if (_from_interpreted_entry != entry) {
_from_interpreted_entry = entry;
}
}
// native function (used for native methods only)
enum {
native_bind_event_is_interesting = true
};
address native_function() const { return *(native_function_addr()); }
address critical_native_function();
// Must specify a real function (not NULL).
// Use clear_native_function() to unregister.
void set_native_function(address function, bool post_event_flag);
bool has_native_function() const;
void clear_native_function();
// signature handler (used for native methods only)
address signature_handler() const { return *(signature_handler_addr()); }
void set_signature_handler(address handler);
// Interpreter oopmap support
void mask_for(int bci, InterpreterOopMap* mask);
// operations on invocation counter
void print_invocation_count();
// byte codes
void set_code(address code) { return constMethod()->set_code(code); }
address code_base() const { return constMethod()->code_base(); }
bool contains(address bcp) const { return constMethod()->contains(bcp); }
// prints byte codes
void print_codes() const { print_codes_on(tty); }
void print_codes_on(outputStream* st) const;
void print_codes_on(int from, int to, outputStream* st) const;
// method parameters
bool has_method_parameters() const
{ return constMethod()->has_method_parameters(); }
int method_parameters_length() const
{ return constMethod()->method_parameters_length(); }
MethodParametersElement* method_parameters_start() const
{ return constMethod()->method_parameters_start(); }
// checked exceptions
int checked_exceptions_length() const
{ return constMethod()->checked_exceptions_length(); }
CheckedExceptionElement* checked_exceptions_start() const
{ return constMethod()->checked_exceptions_start(); }
// localvariable table
bool has_localvariable_table() const
{ return constMethod()->has_localvariable_table(); }
int localvariable_table_length() const
{ return constMethod()->localvariable_table_length(); }
LocalVariableTableElement* localvariable_table_start() const
{ return constMethod()->localvariable_table_start(); }
bool has_linenumber_table() const
{ return constMethod()->has_linenumber_table(); }
u_char* compressed_linenumber_table() const
{ return constMethod()->compressed_linenumber_table(); }
// method holder (the Klass* holding this method)
InstanceKlass* method_holder() const { return constants()->pool_holder(); }
void compute_size_of_parameters(Thread *thread); // word size of parameters (receiver if any + arguments)
Symbol* klass_name() const; // returns the name of the method holder
BasicType result_type() const; // type of the method result
bool is_returning_oop() const { BasicType r = result_type(); return (r == T_OBJECT || r == T_ARRAY); }
bool is_returning_fp() const { BasicType r = result_type(); return (r == T_FLOAT || r == T_DOUBLE); }
// Checked exceptions thrown by this method (resolved to mirrors)
objArrayHandle resolved_checked_exceptions(TRAPS) { return resolved_checked_exceptions_impl(this, THREAD); }
// Access flags
bool is_public() const { return access_flags().is_public(); }
bool is_private() const { return access_flags().is_private(); }
bool is_protected() const { return access_flags().is_protected(); }
bool is_package_private() const { return !is_public() && !is_private() && !is_protected(); }
bool is_static() const { return access_flags().is_static(); }
bool is_final() const { return access_flags().is_final(); }
bool is_synchronized() const { return access_flags().is_synchronized();}
bool is_native() const { return access_flags().is_native(); }
bool is_abstract() const { return access_flags().is_abstract(); }
bool is_strict() const { return access_flags().is_strict(); }
bool is_synthetic() const { return access_flags().is_synthetic(); }
// returns true if contains only return operation
bool is_empty_method() const;
// returns true if this is a vanilla constructor
bool is_vanilla_constructor() const;
// checks method and its method holder
bool is_final_method() const;
bool is_final_method(AccessFlags class_access_flags) const;
// interface method declared with 'default' - excludes private interface methods
bool is_default_method() const;
// true if method needs no dynamic dispatch (final and/or no vtable entry)
bool can_be_statically_bound() const;
bool can_be_statically_bound(AccessFlags class_access_flags) const;
// returns true if the method has any backward branches.
bool has_loops() {
return access_flags().loops_flag_init() ? access_flags().has_loops() : compute_has_loops_flag();
};
bool compute_has_loops_flag();
bool has_jsrs() {
return access_flags().has_jsrs();
};
void set_has_jsrs() {
_access_flags.set_has_jsrs();
}
// returns true if the method has any monitors.
bool has_monitors() const { return is_synchronized() || access_flags().has_monitor_bytecodes(); }
bool has_monitor_bytecodes() const { return access_flags().has_monitor_bytecodes(); }
void set_has_monitor_bytecodes() { _access_flags.set_has_monitor_bytecodes(); }
// monitor matching. This returns a conservative estimate of whether the monitorenter/monitorexit bytecodes
// propererly nest in the method. It might return false, even though they actually nest properly, since the info.
// has not been computed yet.
bool guaranteed_monitor_matching() const { return access_flags().is_monitor_matching(); }
void set_guaranteed_monitor_matching() { _access_flags.set_monitor_matching(); }
// returns true if the method is an accessor function (setter/getter).
bool is_accessor() const;
// returns true if the method is a getter
bool is_getter() const;
// returns true if the method is a setter
bool is_setter() const;
// returns true if the method does nothing but return a constant of primitive type
bool is_constant_getter() const;
// returns true if the method is an initializer (<init> or <clinit>).
bool is_initializer() const;
// returns true if the method is static OR if the classfile version < 51
bool has_valid_initializer_flags() const;
// returns true if the method name is <clinit> and the method has
// valid static initializer flags.
bool is_static_initializer() const;
// returns true if the method name is <init>
bool is_object_initializer() const;
// compiled code support
// NOTE: code() is inherently racy as deopt can be clearing code
// simultaneously. Use with caution.
bool has_compiled_code() const;
#ifdef TIERED
bool has_aot_code() const { return aot_code() != NULL; }
#endif
// sizing
static int header_size() {
return align_up((int)sizeof(Method), wordSize) / wordSize;
}
static int size(bool is_native);
int size() const { return method_size(); }
#if INCLUDE_SERVICES
void collect_statistics(KlassSizeStats *sz) const;
#endif
void log_touched(TRAPS);
static void print_touched_methods(outputStream* out);
// interpreter support
static ByteSize const_offset() { return byte_offset_of(Method, _constMethod ); }
static ByteSize access_flags_offset() { return byte_offset_of(Method, _access_flags ); }
static ByteSize from_compiled_offset() { return byte_offset_of(Method, _from_compiled_entry); }
static ByteSize code_offset() { return byte_offset_of(Method, _code); }
static ByteSize method_data_offset() {
return byte_offset_of(Method, _method_data);
}
static ByteSize method_counters_offset() {
return byte_offset_of(Method, _method_counters);
}
#ifndef PRODUCT
static ByteSize compiled_invocation_counter_offset() { return byte_offset_of(Method, _compiled_invocation_count); }
#endif // not PRODUCT
static ByteSize native_function_offset() { return in_ByteSize(sizeof(Method)); }
static ByteSize from_interpreted_offset() { return byte_offset_of(Method, _from_interpreted_entry ); }
static ByteSize interpreter_entry_offset() { return byte_offset_of(Method, _i2i_entry ); }
static ByteSize signature_handler_offset() { return in_ByteSize(sizeof(Method) + wordSize); }
static ByteSize itable_index_offset() { return byte_offset_of(Method, _vtable_index ); }
// for code generation
static int method_data_offset_in_bytes() { return offset_of(Method, _method_data); }
static int intrinsic_id_offset_in_bytes() { return offset_of(Method, _intrinsic_id); }
static int intrinsic_id_size_in_bytes() { return sizeof(u2); }
// Static methods that are used to implement member methods where an exposed this pointer
// is needed due to possible GCs
static objArrayHandle resolved_checked_exceptions_impl(Method* method, TRAPS);
// Returns the byte code index from the byte code pointer
int bci_from(address bcp) const;
address bcp_from(int bci) const;
address bcp_from(address bcp) const;
int validate_bci_from_bcp(address bcp) const;
int validate_bci(int bci) const;
// Returns the line number for a bci if debugging information for the method is prowided,
// -1 is returned otherwise.
int line_number_from_bci(int bci) const;
// Reflection support
bool is_overridden_in(Klass* k) const;
// Stack walking support
bool is_ignored_by_security_stack_walk() const;
// JSR 292 support
bool is_method_handle_intrinsic() const; // MethodHandles::is_signature_polymorphic_intrinsic(intrinsic_id)
bool is_compiled_lambda_form() const; // intrinsic_id() == vmIntrinsics::_compiledLambdaForm
bool has_member_arg() const; // intrinsic_id() == vmIntrinsics::_linkToSpecial, etc.
static methodHandle make_method_handle_intrinsic(vmIntrinsics::ID iid, // _invokeBasic, _linkToVirtual
Symbol* signature, //anything at all
TRAPS);
static Klass* check_non_bcp_klass(Klass* klass);
enum {
// How many extra stack entries for invokedynamic
extra_stack_entries_for_jsr292 = 1
};
// this operates only on invoke methods:
// presize interpreter frames for extra interpreter stack entries, if needed
// Account for the extra appendix argument for invokehandle/invokedynamic
static int extra_stack_entries() { return extra_stack_entries_for_jsr292; }
static int extra_stack_words(); // = extra_stack_entries() * Interpreter::stackElementSize
// RedefineClasses() support:
bool is_old() const { return access_flags().is_old(); }
void set_is_old() { _access_flags.set_is_old(); }
bool is_obsolete() const { return access_flags().is_obsolete(); }
void set_is_obsolete() { _access_flags.set_is_obsolete(); }
bool is_deleted() const { return access_flags().is_deleted(); }
void set_is_deleted() { _access_flags.set_is_deleted(); }
bool is_running_emcp() const {
// EMCP methods are old but not obsolete or deleted. Equivalent
// Modulo Constant Pool means the method is equivalent except
// the constant pool and instructions that access the constant
// pool might be different.
// If a breakpoint is set in a redefined method, its EMCP methods that are
// still running must have a breakpoint also.
return (_flags & _running_emcp) != 0;
}
void set_running_emcp(bool x) {
_flags = x ? (_flags | _running_emcp) : (_flags & ~_running_emcp);
}
bool on_stack() const { return access_flags().on_stack(); }
void set_on_stack(const bool value);
// see the definition in Method*.cpp for the gory details
bool should_not_be_cached() const;
// JVMTI Native method prefixing support:
bool is_prefixed_native() const { return access_flags().is_prefixed_native(); }
void set_is_prefixed_native() { _access_flags.set_is_prefixed_native(); }
// Rewriting support
static methodHandle clone_with_new_data(const methodHandle& m, u_char* new_code, int new_code_length,
u_char* new_compressed_linenumber_table, int new_compressed_linenumber_size, TRAPS);
// jmethodID handling
// Because the useful life-span of a jmethodID cannot be determined,
// once created they are never reclaimed. The methods to which they refer,
// however, can be GC'ed away if the class is unloaded or if the method is
// made obsolete or deleted -- in these cases, the jmethodID
// refers to NULL (as is the case for any weak reference).
static jmethodID make_jmethod_id(ClassLoaderData* loader_data, Method* mh);
static void destroy_jmethod_id(ClassLoaderData* loader_data, jmethodID mid);
// Ensure there is enough capacity in the internal tracking data
// structures to hold the number of jmethodIDs you plan to generate.
// This saves substantial time doing allocations.
static void ensure_jmethod_ids(ClassLoaderData* loader_data, int capacity);
// Use resolve_jmethod_id() in situations where the caller is expected
// to provide a valid jmethodID; the only sanity checks are in asserts;
// result guaranteed not to be NULL.
inline static Method* resolve_jmethod_id(jmethodID mid) {
assert(mid != NULL, "JNI method id should not be null");
return *((Method**)mid);
}
// Use checked_resolve_jmethod_id() in situations where the caller
// should provide a valid jmethodID, but might not. NULL is returned
// when the jmethodID does not refer to a valid method.
static Method* checked_resolve_jmethod_id(jmethodID mid);
static void change_method_associated_with_jmethod_id(jmethodID old_jmid_ptr, Method* new_method);
static bool is_method_id(jmethodID mid);
// Clear methods
static void clear_jmethod_ids(ClassLoaderData* loader_data);
static void print_jmethod_ids(const ClassLoaderData* loader_data, outputStream* out) PRODUCT_RETURN;
// Get this method's jmethodID -- allocate if it doesn't exist
jmethodID jmethod_id() { return method_holder()->get_jmethod_id(this); }
// Lookup the jmethodID for this method. Return NULL if not found.
// NOTE that this function can be called from a signal handler
// (see AsyncGetCallTrace support for Forte Analyzer) and this
// needs to be async-safe. No allocation should be done and
// so handles are not used to avoid deadlock.
jmethodID find_jmethod_id_or_null() { return method_holder()->jmethod_id_or_null(this); }
// Support for inlining of intrinsic methods
vmIntrinsics::ID intrinsic_id() const { return (vmIntrinsics::ID) _intrinsic_id; }
void set_intrinsic_id(vmIntrinsics::ID id) { _intrinsic_id = (u2) id; }
// Helper routines for intrinsic_id() and vmIntrinsics::method().
void init_intrinsic_id(); // updates from _none if a match
static vmSymbols::SID klass_id_for_intrinsics(const Klass* holder);
bool caller_sensitive() {
return (_flags & _caller_sensitive) != 0;
}
void set_caller_sensitive(bool x) {
_flags = x ? (_flags | _caller_sensitive) : (_flags & ~_caller_sensitive);
}
bool force_inline() {
return (_flags & _force_inline) != 0;
}
void set_force_inline(bool x) {
_flags = x ? (_flags | _force_inline) : (_flags & ~_force_inline);
}
bool dont_inline() {
return (_flags & _dont_inline) != 0;
}
void set_dont_inline(bool x) {
_flags = x ? (_flags | _dont_inline) : (_flags & ~_dont_inline);
}
bool is_hidden() {
return (_flags & _hidden) != 0;
}
void set_hidden(bool x) {
_flags = x ? (_flags | _hidden) : (_flags & ~_hidden);
}
bool intrinsic_candidate() {
return (_flags & _intrinsic_candidate) != 0;
}
void set_intrinsic_candidate(bool x) {
_flags = x ? (_flags | _intrinsic_candidate) : (_flags & ~_intrinsic_candidate);
}
bool has_injected_profile() {
return (_flags & _has_injected_profile) != 0;
}
void set_has_injected_profile(bool x) {
_flags = x ? (_flags | _has_injected_profile) : (_flags & ~_has_injected_profile);
}
bool has_reserved_stack_access() {
return (_flags & _reserved_stack_access) != 0;
}
void set_has_reserved_stack_access(bool x) {
_flags = x ? (_flags | _reserved_stack_access) : (_flags & ~_reserved_stack_access);
}
JFR_ONLY(DEFINE_TRACE_FLAG_ACCESSOR;)
ConstMethod::MethodType method_type() const {
return _constMethod->method_type();
}
bool is_overpass() const { return method_type() == ConstMethod::OVERPASS; }
// On-stack replacement support
bool has_osr_nmethod(int level, bool match_level) {
return method_holder()->lookup_osr_nmethod(this, InvocationEntryBci, level, match_level) != NULL;
}
int mark_osr_nmethods() {
return method_holder()->mark_osr_nmethods(this);
}
nmethod* lookup_osr_nmethod_for(int bci, int level, bool match_level) {
return method_holder()->lookup_osr_nmethod(this, bci, level, match_level);
}
// Find if klass for method is loaded
bool is_klass_loaded_by_klass_index(int klass_index) const;
bool is_klass_loaded(int refinfo_index, bool must_be_resolved = false) const;
// Indicates whether compilation failed earlier for this method, or
// whether it is not compilable for another reason like having a
// breakpoint set in it.
bool is_not_compilable(int comp_level = CompLevel_any) const;
void set_not_compilable(int comp_level = CompLevel_all, bool report = true, const char* reason = NULL);
void set_not_compilable_quietly(int comp_level = CompLevel_all) {
set_not_compilable(comp_level, false);
}
bool is_not_osr_compilable(int comp_level = CompLevel_any) const;
void set_not_osr_compilable(int comp_level = CompLevel_all, bool report = true, const char* reason = NULL);
void set_not_osr_compilable_quietly(int comp_level = CompLevel_all) {
set_not_osr_compilable(comp_level, false);
}
bool is_always_compilable() const;
private:
void print_made_not_compilable(int comp_level, bool is_osr, bool report, const char* reason);
public:
MethodCounters* get_method_counters(TRAPS) {
if (_method_counters == NULL) {
build_method_counters(this, CHECK_AND_CLEAR_NULL);
}
return _method_counters;
}
bool is_not_c1_compilable() const { return access_flags().is_not_c1_compilable(); }
void set_not_c1_compilable() { _access_flags.set_not_c1_compilable(); }
void clear_not_c1_compilable() { _access_flags.clear_not_c1_compilable(); }
bool is_not_c2_compilable() const { return access_flags().is_not_c2_compilable(); }
void set_not_c2_compilable() { _access_flags.set_not_c2_compilable(); }
void clear_not_c2_compilable() { _access_flags.clear_not_c2_compilable(); }
bool is_not_c1_osr_compilable() const { return is_not_c1_compilable(); } // don't waste an accessFlags bit
void set_not_c1_osr_compilable() { set_not_c1_compilable(); } // don't waste an accessFlags bit
void clear_not_c1_osr_compilable() { clear_not_c1_compilable(); } // don't waste an accessFlags bit
bool is_not_c2_osr_compilable() const { return access_flags().is_not_c2_osr_compilable(); }
void set_not_c2_osr_compilable() { _access_flags.set_not_c2_osr_compilable(); }
void clear_not_c2_osr_compilable() { _access_flags.clear_not_c2_osr_compilable(); }
// Background compilation support
bool queued_for_compilation() const { return access_flags().queued_for_compilation(); }
void set_queued_for_compilation() { _access_flags.set_queued_for_compilation(); }
void clear_queued_for_compilation() { _access_flags.clear_queued_for_compilation(); }
// Resolve all classes in signature, return 'true' if successful
static bool load_signature_classes(const methodHandle& m, TRAPS);
// Return if true if not all classes references in signature, including return type, has been loaded
static bool has_unloaded_classes_in_signature(const methodHandle& m, TRAPS);
// Printing
void print_short_name(outputStream* st = tty); // prints as klassname::methodname; Exposed so field engineers can debug VM
#if INCLUDE_JVMTI
void print_name(outputStream* st = tty); // prints as "virtual void foo(int)"; exposed for TraceRedefineClasses
#else
void print_name(outputStream* st = tty) PRODUCT_RETURN; // prints as "virtual void foo(int)"
#endif
// Helper routine used for method sorting
static void sort_methods(Array<Method*>* methods, bool idempotent = false, bool set_idnums = true);
// Deallocation function for redefine classes or if an error occurs
void deallocate_contents(ClassLoaderData* loader_data);
// Printing
#ifndef PRODUCT
void print_on(outputStream* st) const;
#endif
void print_value_on(outputStream* st) const;
void print_linkage_flags(outputStream* st) PRODUCT_RETURN;
const char* internal_name() const { return "{method}"; }
// Check for valid method pointer
static bool has_method_vptr(const void* ptr);
static bool is_valid_method(const Method* m);
// Verify
void verify() { verify_on(tty); }
void verify_on(outputStream* st);
private:
// Inlined elements
address* native_function_addr() const { assert(is_native(), "must be native"); return (address*) (this+1); }
address* signature_handler_addr() const { return native_function_addr() + 1; }
};
// Utility class for compressing line number tables
class CompressedLineNumberWriteStream: public CompressedWriteStream {
private:
int _bci;
int _line;
public:
// Constructor
CompressedLineNumberWriteStream(int initial_size) : CompressedWriteStream(initial_size), _bci(0), _line(0) {}
CompressedLineNumberWriteStream(u_char* buffer, int initial_size) : CompressedWriteStream(buffer, initial_size), _bci(0), _line(0) {}
// Write (bci, line number) pair to stream
void write_pair_regular(int bci_delta, int line_delta);
inline void write_pair_inline(int bci, int line) {
int bci_delta = bci - _bci;
int line_delta = line - _line;
_bci = bci;
_line = line;
// Skip (0,0) deltas - they do not add information and conflict with terminator.
if (bci_delta == 0 && line_delta == 0) return;
// Check if bci is 5-bit and line number 3-bit unsigned.
if (((bci_delta & ~0x1F) == 0) && ((line_delta & ~0x7) == 0)) {
// Compress into single byte.
jubyte value = ((jubyte) bci_delta << 3) | (jubyte) line_delta;
// Check that value doesn't match escape character.
if (value != 0xFF) {
write_byte(value);
return;
}
}
write_pair_regular(bci_delta, line_delta);
}
// Windows AMD64 + Apr 2005 PSDK with /O2 generates bad code for write_pair.
// Disabling optimization doesn't work for methods in header files
// so we force it to call through the non-optimized version in the .cpp.
// It's gross, but it's the only way we can ensure that all callers are
// fixed. _MSC_VER is defined by the windows compiler
#if defined(_M_AMD64) && _MSC_VER >= 1400
void write_pair(int bci, int line);
#else
void write_pair(int bci, int line) { write_pair_inline(bci, line); }
#endif
// Write end-of-stream marker
void write_terminator() { write_byte(0); }
};
// Utility class for decompressing line number tables
class CompressedLineNumberReadStream: public CompressedReadStream {
private:
int _bci;
int _line;
public:
// Constructor
CompressedLineNumberReadStream(u_char* buffer);
// Read (bci, line number) pair from stream. Returns false at end-of-stream.
bool read_pair();
// Accessing bci and line number (after calling read_pair)
int bci() const { return _bci; }
int line() const { return _line; }
};
#if INCLUDE_JVMTI
/// Fast Breakpoints.
// If this structure gets more complicated (because bpts get numerous),
// move it into its own header.
// There is presently no provision for concurrent access
// to breakpoint lists, which is only OK for JVMTI because
// breakpoints are written only at safepoints, and are read
// concurrently only outside of safepoints.
class BreakpointInfo : public CHeapObj<mtClass> {
friend class VMStructs;
private:
Bytecodes::Code _orig_bytecode;
int _bci;
u2 _name_index; // of method
u2 _signature_index; // of method
BreakpointInfo* _next; // simple storage allocation
public:
BreakpointInfo(Method* m, int bci);
// accessors
Bytecodes::Code orig_bytecode() { return _orig_bytecode; }
void set_orig_bytecode(Bytecodes::Code code) { _orig_bytecode = code; }
int bci() { return _bci; }
BreakpointInfo* next() const { return _next; }
void set_next(BreakpointInfo* n) { _next = n; }
// helps for searchers
bool match(const Method* m, int bci) {
return bci == _bci && match(m);
}
bool match(const Method* m) {
return _name_index == m->name_index() &&
_signature_index == m->signature_index();
}
void set(Method* method);
void clear(Method* method);
};
#endif // INCLUDE_JVMTI
// Utility class for access exception handlers
class ExceptionTable : public StackObj {
private:
ExceptionTableElement* _table;
u2 _length;
public:
ExceptionTable(const Method* m) {
if (m->has_exception_handler()) {
_table = m->exception_table_start();
_length = m->exception_table_length();
} else {
_table = NULL;
_length = 0;
}
}
int length() const {
return _length;
}
u2 start_pc(int idx) const {
assert(idx < _length, "out of bounds");
return _table[idx].start_pc;
}
void set_start_pc(int idx, u2 value) {
assert(idx < _length, "out of bounds");
_table[idx].start_pc = value;
}
u2 end_pc(int idx) const {
assert(idx < _length, "out of bounds");
return _table[idx].end_pc;
}
void set_end_pc(int idx, u2 value) {
assert(idx < _length, "out of bounds");
_table[idx].end_pc = value;
}
u2 handler_pc(int idx) const {
assert(idx < _length, "out of bounds");
return _table[idx].handler_pc;
}
void set_handler_pc(int idx, u2 value) {
assert(idx < _length, "out of bounds");
_table[idx].handler_pc = value;
}
u2 catch_type_index(int idx) const {
assert(idx < _length, "out of bounds");
return _table[idx].catch_type_index;
}
void set_catch_type_index(int idx, u2 value) {
assert(idx < _length, "out of bounds");
_table[idx].catch_type_index = value;
}
};
#endif // SHARE_OOPS_METHOD_HPP