/*
* Copyright (c) 2013, 2019, Red Hat, Inc. All rights reserved.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shenandoah/shenandoahMetrics.hpp"
#include "gc/shenandoah/shenandoahHeap.inline.hpp"
#include "gc/shenandoah/shenandoahHeapRegion.hpp"
#include "gc/shenandoah/shenandoahFreeSet.hpp"
/*
* Internal fragmentation metric: describes how fragmented the heap regions are.
*
* It is derived as:
*
* sum(used[i]^2, i=0..k)
* IF = 1 - ------------------------------
* C * sum(used[i], i=0..k)
*
* ...where k is the number of regions in computation, C is the region capacity, and
* used[i] is the used space in the region.
*
* The non-linearity causes IF to be lower for the cases where the same total heap
* used is densely packed. For example:
* a) Heap is completely full => IF = 0
* b) Heap is half full, first 50% regions are completely full => IF = 0
* c) Heap is half full, each region is 50% full => IF = 1/2
* d) Heap is quarter full, first 50% regions are completely full => IF = 0
* e) Heap is quarter full, each region is 25% full => IF = 3/4
* f) Heap has the small object per each region => IF =~ 1
*/
double ShenandoahMetrics::internal_fragmentation() {
ShenandoahHeap* heap = ShenandoahHeap::heap();
double squared = 0;
double linear = 0;
int count = 0;
for (size_t c = 0; c < heap->num_regions(); c++) {
ShenandoahHeapRegion* r = heap->get_region(c);
size_t used = r->used();
squared += used * used;
linear += used;
count++;
}
if (count > 0) {
double s = squared / (ShenandoahHeapRegion::region_size_bytes() * linear);
return 1 - s;
} else {
return 0;
}
}
/*
* External fragmentation metric: describes how fragmented the heap is.
*
* It is derived as:
*
* EF = 1 - largest_contiguous_free / total_free
*
* For example:
* a) Heap is completely empty => EF = 0
* b) Heap is completely full => EF = 1
* c) Heap is first-half full => EF = 1/2
* d) Heap is half full, full and empty regions interleave => EF =~ 1
*/
double ShenandoahMetrics::external_fragmentation() {
ShenandoahHeap* heap = ShenandoahHeap::heap();
size_t last_idx = 0;
size_t max_contig = 0;
size_t empty_contig = 0;
size_t free = 0;
for (size_t c = 0; c < heap->num_regions(); c++) {
ShenandoahHeapRegion* r = heap->get_region(c);
if (r->is_empty() && (last_idx + 1 == c)) {
empty_contig++;
} else {
empty_contig = 0;
}
free += r->free();
max_contig = MAX2(max_contig, empty_contig);
last_idx = c;
}
if (free > 0) {
return 1 - (1.0 * max_contig * ShenandoahHeapRegion::region_size_bytes() / free);
} else {
return 1;
}
}
ShenandoahMetricsSnapshot::ShenandoahMetricsSnapshot() {
_heap = ShenandoahHeap::heap();
}
void ShenandoahMetricsSnapshot::snap_before() {
_used_before = _heap->used();
_if_before = ShenandoahMetrics::internal_fragmentation();
_ef_before = ShenandoahMetrics::external_fragmentation();
}
void ShenandoahMetricsSnapshot::snap_after() {
_used_after = _heap->used();
_if_after = ShenandoahMetrics::internal_fragmentation();
_ef_after = ShenandoahMetrics::external_fragmentation();
}
bool ShenandoahMetricsSnapshot::is_good_progress() {
// Under the critical threshold?
size_t free_actual = _heap->free_set()->available();
size_t free_expected = _heap->max_capacity() / 100 * ShenandoahCriticalFreeThreshold;
bool prog_free = free_actual >= free_expected;
log_info(gc, ergo)("%s progress for free space: " SIZE_FORMAT "%s, need " SIZE_FORMAT "%s",
prog_free ? "Good" : "Bad",
byte_size_in_proper_unit(free_actual), proper_unit_for_byte_size(free_actual),
byte_size_in_proper_unit(free_expected), proper_unit_for_byte_size(free_expected));
if (!prog_free) {
return false;
}
// Freed up enough?
size_t progress_actual = (_used_before > _used_after) ? _used_before - _used_after : 0;
size_t progress_expected = ShenandoahHeapRegion::region_size_bytes();
bool prog_used = progress_actual >= progress_expected;
log_info(gc, ergo)("%s progress for used space: " SIZE_FORMAT "%s, need " SIZE_FORMAT "%s",
prog_used ? "Good" : "Bad",
byte_size_in_proper_unit(progress_actual), proper_unit_for_byte_size(progress_actual),
byte_size_in_proper_unit(progress_expected), proper_unit_for_byte_size(progress_expected));
if (prog_used) {
return true;
}
// Internal fragmentation is down?
double if_actual = _if_before - _if_after;
double if_expected = 0.01; // 1% should be enough
bool prog_if = if_actual >= if_expected;
log_info(gc, ergo)("%s progress for internal fragmentation: %.1f%%, need %.1f%%",
prog_if ? "Good" : "Bad",
if_actual * 100, if_expected * 100);
if (prog_if) {
return true;
}
// External fragmentation is down?
double ef_actual = _ef_before - _ef_after;
double ef_expected = 0.01; // 1% should be enough
bool prog_ef = ef_actual >= ef_expected;
log_info(gc, ergo)("%s progress for external fragmentation: %.1f%%, need %.1f%%",
prog_ef ? "Good" : "Bad",
ef_actual * 100, ef_expected * 100);
if (prog_ef) {
return true;
}
// Nothing good had happened.
return false;
}