/*
* Copyright (c) 2015, 2019, Red Hat, Inc. All rights reserved.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP
#define SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP
#include "classfile/javaClasses.inline.hpp"
#include "gc/shared/markBitMap.inline.hpp"
#include "gc/shared/threadLocalAllocBuffer.inline.hpp"
#include "gc/shared/suspendibleThreadSet.hpp"
#include "gc/shenandoah/shenandoahAsserts.hpp"
#include "gc/shenandoah/shenandoahBarrierSet.inline.hpp"
#include "gc/shenandoah/shenandoahCollectionSet.inline.hpp"
#include "gc/shenandoah/shenandoahForwarding.inline.hpp"
#include "gc/shenandoah/shenandoahWorkGroup.hpp"
#include "gc/shenandoah/shenandoahHeap.hpp"
#include "gc/shenandoah/shenandoahHeapRegionSet.inline.hpp"
#include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
#include "gc/shenandoah/shenandoahControlThread.hpp"
#include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
#include "gc/shenandoah/shenandoahThreadLocalData.hpp"
#include "oops/compressedOops.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomic.hpp"
#include "runtime/prefetch.inline.hpp"
#include "runtime/thread.hpp"
#include "utilities/copy.hpp"
#include "utilities/globalDefinitions.hpp"
inline ShenandoahHeapRegion* ShenandoahRegionIterator::next() {
size_t new_index = Atomic::add(&_index, (size_t) 1);
// get_region() provides the bounds-check and returns NULL on OOB.
return _heap->get_region(new_index - 1);
}
inline bool ShenandoahHeap::has_forwarded_objects() const {
return _gc_state.is_set(HAS_FORWARDED);
}
inline WorkGang* ShenandoahHeap::workers() const {
return _workers;
}
inline WorkGang* ShenandoahHeap::get_safepoint_workers() {
return _safepoint_workers;
}
inline size_t ShenandoahHeap::heap_region_index_containing(const void* addr) const {
uintptr_t region_start = ((uintptr_t) addr);
uintptr_t index = (region_start - (uintptr_t) base()) >> ShenandoahHeapRegion::region_size_bytes_shift();
assert(index < num_regions(), "Region index is in bounds: " PTR_FORMAT, p2i(addr));
return index;
}
inline ShenandoahHeapRegion* const ShenandoahHeap::heap_region_containing(const void* addr) const {
size_t index = heap_region_index_containing(addr);
ShenandoahHeapRegion* const result = get_region(index);
assert(addr >= result->bottom() && addr < result->end(), "Heap region contains the address: " PTR_FORMAT, p2i(addr));
return result;
}
template <class T>
inline oop ShenandoahHeap::update_with_forwarded_not_null(T* p, oop obj) {
if (in_collection_set(obj)) {
shenandoah_assert_forwarded_except(p, obj, is_full_gc_in_progress() || cancelled_gc() || is_degenerated_gc_in_progress());
obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
RawAccess<IS_NOT_NULL>::oop_store(p, obj);
}
#ifdef ASSERT
else {
shenandoah_assert_not_forwarded(p, obj);
}
#endif
return obj;
}
template <class T>
inline oop ShenandoahHeap::maybe_update_with_forwarded(T* p) {
T o = RawAccess<>::oop_load(p);
if (!CompressedOops::is_null(o)) {
oop obj = CompressedOops::decode_not_null(o);
return maybe_update_with_forwarded_not_null(p, obj);
} else {
return NULL;
}
}
template <class T>
inline oop ShenandoahHeap::evac_update_with_forwarded(T* p) {
T o = RawAccess<>::oop_load(p);
if (!CompressedOops::is_null(o)) {
oop heap_oop = CompressedOops::decode_not_null(o);
if (in_collection_set(heap_oop)) {
oop forwarded_oop = ShenandoahBarrierSet::resolve_forwarded_not_null(heap_oop);
if (forwarded_oop == heap_oop) {
forwarded_oop = evacuate_object(heap_oop, Thread::current());
}
oop prev = cas_oop(forwarded_oop, p, heap_oop);
if (prev == heap_oop) {
return forwarded_oop;
} else {
return NULL;
}
}
return heap_oop;
} else {
return NULL;
}
}
inline oop ShenandoahHeap::cas_oop(oop n, oop* addr, oop c) {
assert(is_aligned(addr, HeapWordSize), "Address should be aligned: " PTR_FORMAT, p2i(addr));
return (oop) Atomic::cmpxchg(addr, c, n);
}
inline oop ShenandoahHeap::cas_oop(oop n, narrowOop* addr, narrowOop c) {
assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr));
narrowOop val = CompressedOops::encode(n);
return CompressedOops::decode((narrowOop) Atomic::cmpxchg(addr, c, val));
}
inline oop ShenandoahHeap::cas_oop(oop n, narrowOop* addr, oop c) {
assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr));
narrowOop cmp = CompressedOops::encode(c);
narrowOop val = CompressedOops::encode(n);
return CompressedOops::decode((narrowOop) Atomic::cmpxchg(addr, cmp, val));
}
template <class T>
inline oop ShenandoahHeap::maybe_update_with_forwarded_not_null(T* p, oop heap_oop) {
shenandoah_assert_not_in_cset_loc_except(p, !is_in(p) || is_full_gc_in_progress() || is_degenerated_gc_in_progress());
shenandoah_assert_correct(p, heap_oop);
if (in_collection_set(heap_oop)) {
oop forwarded_oop = ShenandoahBarrierSet::resolve_forwarded_not_null(heap_oop);
if (forwarded_oop == heap_oop) {
// E.g. during evacuation.
return forwarded_oop;
}
shenandoah_assert_forwarded_except(p, heap_oop, is_full_gc_in_progress() || is_degenerated_gc_in_progress());
shenandoah_assert_not_forwarded(p, forwarded_oop);
shenandoah_assert_not_in_cset_except(p, forwarded_oop, cancelled_gc());
// If this fails, another thread wrote to p before us, it will be logged in SATB and the
// reference be updated later.
oop witness = cas_oop(forwarded_oop, p, heap_oop);
if (witness != heap_oop) {
// CAS failed, someone had beat us to it. Normally, we would return the failure witness,
// because that would be the proper write of to-space object, enforced by strong barriers.
// However, there is a corner case with arraycopy. It can happen that a Java thread
// beats us with an arraycopy, which first copies the array, which potentially contains
// from-space refs, and only afterwards updates all from-space refs to to-space refs,
// which leaves a short window where the new array elements can be from-space.
// In this case, we can just resolve the result again. As we resolve, we need to consider
// the contended write might have been NULL.
oop result = ShenandoahBarrierSet::resolve_forwarded(witness);
shenandoah_assert_not_forwarded_except(p, result, (result == NULL));
shenandoah_assert_not_in_cset_except(p, result, (result == NULL) || cancelled_gc());
return result;
} else {
// Success! We have updated with known to-space copy. We have already asserted it is sane.
return forwarded_oop;
}
} else {
shenandoah_assert_not_forwarded(p, heap_oop);
return heap_oop;
}
}
inline bool ShenandoahHeap::cancelled_gc() const {
return _cancelled_gc.get() == CANCELLED;
}
inline bool ShenandoahHeap::check_cancelled_gc_and_yield(bool sts_active) {
if (! (sts_active && ShenandoahSuspendibleWorkers)) {
return cancelled_gc();
}
jbyte prev = _cancelled_gc.cmpxchg(NOT_CANCELLED, CANCELLABLE);
if (prev == CANCELLABLE || prev == NOT_CANCELLED) {
if (SuspendibleThreadSet::should_yield()) {
SuspendibleThreadSet::yield();
}
// Back to CANCELLABLE. The thread that poked NOT_CANCELLED first gets
// to restore to CANCELLABLE.
if (prev == CANCELLABLE) {
_cancelled_gc.set(CANCELLABLE);
}
return false;
} else {
return true;
}
}
inline void ShenandoahHeap::clear_cancelled_gc() {
_cancelled_gc.set(CANCELLABLE);
_oom_evac_handler.clear();
}
inline HeapWord* ShenandoahHeap::allocate_from_gclab(Thread* thread, size_t size) {
assert(UseTLAB, "TLABs should be enabled");
PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
if (gclab == NULL) {
assert(!thread->is_Java_thread() && !thread->is_Worker_thread(),
"Performance: thread should have GCLAB: %s", thread->name());
// No GCLABs in this thread, fallback to shared allocation
return NULL;
}
HeapWord* obj = gclab->allocate(size);
if (obj != NULL) {
return obj;
}
// Otherwise...
return allocate_from_gclab_slow(thread, size);
}
inline oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) {
if (ShenandoahThreadLocalData::is_oom_during_evac(Thread::current())) {
// This thread went through the OOM during evac protocol and it is safe to return
// the forward pointer. It must not attempt to evacuate any more.
return ShenandoahBarrierSet::resolve_forwarded(p);
}
assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope");
size_t size = p->size();
assert(!heap_region_containing(p)->is_humongous(), "never evacuate humongous objects");
bool alloc_from_gclab = true;
HeapWord* copy = NULL;
#ifdef ASSERT
if (ShenandoahOOMDuringEvacALot &&
(os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
copy = NULL;
} else {
#endif
if (UseTLAB) {
copy = allocate_from_gclab(thread, size);
}
if (copy == NULL) {
ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size);
copy = allocate_memory(req);
alloc_from_gclab = false;
}
#ifdef ASSERT
}
#endif
if (copy == NULL) {
control_thread()->handle_alloc_failure_evac(size);
_oom_evac_handler.handle_out_of_memory_during_evacuation();
return ShenandoahBarrierSet::resolve_forwarded(p);
}
// Copy the object:
Copy::aligned_disjoint_words((HeapWord*) p, copy, size);
// Try to install the new forwarding pointer.
oop copy_val = oop(copy);
oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);
if (result == copy_val) {
// Successfully evacuated. Our copy is now the public one!
shenandoah_assert_correct(NULL, copy_val);
return copy_val;
} else {
// Failed to evacuate. We need to deal with the object that is left behind. Since this
// new allocation is certainly after TAMS, it will be considered live in the next cycle.
// But if it happens to contain references to evacuated regions, those references would
// not get updated for this stale copy during this cycle, and we will crash while scanning
// it the next cycle.
//
// For GCLAB allocations, it is enough to rollback the allocation ptr. Either the next
// object will overwrite this stale copy, or the filler object on LAB retirement will
// do this. For non-GCLAB allocations, we have no way to retract the allocation, and
// have to explicitly overwrite the copy with the filler object. With that overwrite,
// we have to keep the fwdptr initialized and pointing to our (stale) copy.
if (alloc_from_gclab) {
ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size);
} else {
fill_with_object(copy, size);
shenandoah_assert_correct(NULL, copy_val);
}
shenandoah_assert_correct(NULL, result);
return result;
}
}
template<bool RESOLVE>
inline bool ShenandoahHeap::requires_marking(const void* entry) const {
oop obj = oop(entry);
if (RESOLVE) {
obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
}
return !_marking_context->is_marked(obj);
}
template <class T>
inline bool ShenandoahHeap::in_collection_set(T p) const {
HeapWord* obj = (HeapWord*) p;
assert(collection_set() != NULL, "Sanity");
assert(is_in(obj), "should be in heap");
return collection_set()->is_in(obj);
}
inline bool ShenandoahHeap::is_stable() const {
return _gc_state.is_clear();
}
inline bool ShenandoahHeap::is_idle() const {
return _gc_state.is_unset(MARKING | EVACUATION | UPDATEREFS | TRAVERSAL);
}
inline bool ShenandoahHeap::is_concurrent_mark_in_progress() const {
return _gc_state.is_set(MARKING);
}
inline bool ShenandoahHeap::is_concurrent_traversal_in_progress() const {
return _gc_state.is_set(TRAVERSAL);
}
inline bool ShenandoahHeap::is_evacuation_in_progress() const {
return _gc_state.is_set(EVACUATION);
}
inline bool ShenandoahHeap::is_gc_in_progress_mask(uint mask) const {
return _gc_state.is_set(mask);
}
inline bool ShenandoahHeap::is_degenerated_gc_in_progress() const {
return _degenerated_gc_in_progress.is_set();
}
inline bool ShenandoahHeap::is_full_gc_in_progress() const {
return _full_gc_in_progress.is_set();
}
inline bool ShenandoahHeap::is_full_gc_move_in_progress() const {
return _full_gc_move_in_progress.is_set();
}
inline bool ShenandoahHeap::is_update_refs_in_progress() const {
return _gc_state.is_set(UPDATEREFS);
}
template<class T>
inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl) {
marked_object_iterate(region, cl, region->top());
}
template<class T>
inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* limit) {
assert(! region->is_humongous_continuation(), "no humongous continuation regions here");
ShenandoahMarkingContext* const ctx = complete_marking_context();
assert(ctx->is_complete(), "sanity");
MarkBitMap* mark_bit_map = ctx->mark_bit_map();
HeapWord* tams = ctx->top_at_mark_start(region);
size_t skip_bitmap_delta = 1;
HeapWord* start = region->bottom();
HeapWord* end = MIN2(tams, region->end());
// Step 1. Scan below the TAMS based on bitmap data.
HeapWord* limit_bitmap = MIN2(limit, tams);
// Try to scan the initial candidate. If the candidate is above the TAMS, it would
// fail the subsequent "< limit_bitmap" checks, and fall through to Step 2.
HeapWord* cb = mark_bit_map->get_next_marked_addr(start, end);
intx dist = ShenandoahMarkScanPrefetch;
if (dist > 0) {
// Batched scan that prefetches the oop data, anticipating the access to
// either header, oop field, or forwarding pointer. Not that we cannot
// touch anything in oop, while it still being prefetched to get enough
// time for prefetch to work. This is why we try to scan the bitmap linearly,
// disregarding the object size. However, since we know forwarding pointer
// preceeds the object, we can skip over it. Once we cannot trust the bitmap,
// there is no point for prefetching the oop contents, as oop->size() will
// touch it prematurely.
// No variable-length arrays in standard C++, have enough slots to fit
// the prefetch distance.
static const int SLOT_COUNT = 256;
guarantee(dist <= SLOT_COUNT, "adjust slot count");
HeapWord* slots[SLOT_COUNT];
int avail;
do {
avail = 0;
for (int c = 0; (c < dist) && (cb < limit_bitmap); c++) {
Prefetch::read(cb, oopDesc::mark_offset_in_bytes());
slots[avail++] = cb;
cb += skip_bitmap_delta;
if (cb < limit_bitmap) {
cb = mark_bit_map->get_next_marked_addr(cb, limit_bitmap);
}
}
for (int c = 0; c < avail; c++) {
assert (slots[c] < tams, "only objects below TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(tams));
assert (slots[c] < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(limit));
oop obj = oop(slots[c]);
assert(oopDesc::is_oop(obj), "sanity");
assert(ctx->is_marked(obj), "object expected to be marked");
cl->do_object(obj);
}
} while (avail > 0);
} else {
while (cb < limit_bitmap) {
assert (cb < tams, "only objects below TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(tams));
assert (cb < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(limit));
oop obj = oop(cb);
assert(oopDesc::is_oop(obj), "sanity");
assert(ctx->is_marked(obj), "object expected to be marked");
cl->do_object(obj);
cb += skip_bitmap_delta;
if (cb < limit_bitmap) {
cb = mark_bit_map->get_next_marked_addr(cb, limit_bitmap);
}
}
}
// Step 2. Accurate size-based traversal, happens past the TAMS.
// This restarts the scan at TAMS, which makes sure we traverse all objects,
// regardless of what happened at Step 1.
HeapWord* cs = tams;
while (cs < limit) {
assert (cs >= tams, "only objects past TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(tams));
assert (cs < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(limit));
oop obj = oop(cs);
assert(oopDesc::is_oop(obj), "sanity");
assert(ctx->is_marked(obj), "object expected to be marked");
int size = obj->size();
cl->do_object(obj);
cs += size;
}
}
template <class T>
class ShenandoahObjectToOopClosure : public ObjectClosure {
T* _cl;
public:
ShenandoahObjectToOopClosure(T* cl) : _cl(cl) {}
void do_object(oop obj) {
obj->oop_iterate(_cl);
}
};
template <class T>
class ShenandoahObjectToOopBoundedClosure : public ObjectClosure {
T* _cl;
MemRegion _bounds;
public:
ShenandoahObjectToOopBoundedClosure(T* cl, HeapWord* bottom, HeapWord* top) :
_cl(cl), _bounds(bottom, top) {}
void do_object(oop obj) {
obj->oop_iterate(_cl, _bounds);
}
};
template<class T>
inline void ShenandoahHeap::marked_object_oop_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* top) {
if (region->is_humongous()) {
HeapWord* bottom = region->bottom();
if (top > bottom) {
region = region->humongous_start_region();
ShenandoahObjectToOopBoundedClosure<T> objs(cl, bottom, top);
marked_object_iterate(region, &objs);
}
} else {
ShenandoahObjectToOopClosure<T> objs(cl);
marked_object_iterate(region, &objs, top);
}
}
inline ShenandoahHeapRegion* const ShenandoahHeap::get_region(size_t region_idx) const {
if (region_idx < _num_regions) {
return _regions[region_idx];
} else {
return NULL;
}
}
inline void ShenandoahHeap::mark_complete_marking_context() {
_marking_context->mark_complete();
}
inline void ShenandoahHeap::mark_incomplete_marking_context() {
_marking_context->mark_incomplete();
}
inline ShenandoahMarkingContext* ShenandoahHeap::complete_marking_context() const {
assert (_marking_context->is_complete()," sanity");
return _marking_context;
}
inline ShenandoahMarkingContext* ShenandoahHeap::marking_context() const {
return _marking_context;
}
#endif // SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP