/*
* Copyright (c) 2013, 2019, Red Hat, Inc. All rights reserved.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shenandoah/shenandoahAsserts.hpp"
#include "gc/shenandoah/shenandoahBarrierSet.hpp"
#include "gc/shenandoah/shenandoahBarrierSetClone.inline.hpp"
#include "gc/shenandoah/shenandoahBarrierSetAssembler.hpp"
#include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
#include "gc/shenandoah/shenandoahConcurrentRoots.hpp"
#include "gc/shenandoah/shenandoahHeap.inline.hpp"
#include "gc/shenandoah/shenandoahHeuristics.hpp"
#include "gc/shenandoah/shenandoahTraversalGC.hpp"
#include "memory/iterator.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#ifdef COMPILER1
#include "gc/shenandoah/c1/shenandoahBarrierSetC1.hpp"
#endif
#ifdef COMPILER2
#include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
#endif
class ShenandoahBarrierSetC1;
class ShenandoahBarrierSetC2;
ShenandoahBarrierSet::ShenandoahBarrierSet(ShenandoahHeap* heap) :
BarrierSet(make_barrier_set_assembler<ShenandoahBarrierSetAssembler>(),
make_barrier_set_c1<ShenandoahBarrierSetC1>(),
make_barrier_set_c2<ShenandoahBarrierSetC2>(),
NULL /* barrier_set_nmethod */,
BarrierSet::FakeRtti(BarrierSet::ShenandoahBarrierSet)),
_heap(heap),
_satb_mark_queue_buffer_allocator("SATB Buffer Allocator", ShenandoahSATBBufferSize),
_satb_mark_queue_set(&_satb_mark_queue_buffer_allocator)
{
}
ShenandoahBarrierSetAssembler* ShenandoahBarrierSet::assembler() {
BarrierSetAssembler* const bsa = BarrierSet::barrier_set()->barrier_set_assembler();
return reinterpret_cast<ShenandoahBarrierSetAssembler*>(bsa);
}
void ShenandoahBarrierSet::print_on(outputStream* st) const {
st->print("ShenandoahBarrierSet");
}
bool ShenandoahBarrierSet::is_a(BarrierSet::Name bsn) {
return bsn == BarrierSet::ShenandoahBarrierSet;
}
bool ShenandoahBarrierSet::is_aligned(HeapWord* hw) {
return true;
}
bool ShenandoahBarrierSet::need_load_reference_barrier(DecoratorSet decorators, BasicType type) {
if (!ShenandoahLoadRefBarrier) return false;
// Only needed for references
return is_reference_type(type);
}
bool ShenandoahBarrierSet::use_load_reference_barrier_native(DecoratorSet decorators, BasicType type) {
assert(need_load_reference_barrier(decorators, type), "Should be subset of LRB");
assert(is_reference_type(type), "Why we here?");
// Native load reference barrier is only needed for concurrent root processing
if (!ShenandoahConcurrentRoots::can_do_concurrent_roots()) {
return false;
}
return (decorators & IN_NATIVE) != 0;
}
bool ShenandoahBarrierSet::need_keep_alive_barrier(DecoratorSet decorators,BasicType type) {
if (!ShenandoahKeepAliveBarrier) return false;
// Only needed for references
if (!is_reference_type(type)) return false;
bool keep_alive = (decorators & AS_NO_KEEPALIVE) == 0;
bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0;
bool is_traversal_mode = ShenandoahHeap::heap()->is_traversal_mode();
bool on_weak_ref = (decorators & (ON_WEAK_OOP_REF | ON_PHANTOM_OOP_REF)) != 0;
return (on_weak_ref || unknown) && (keep_alive || is_traversal_mode);
}
oop ShenandoahBarrierSet::load_reference_barrier_not_null(oop obj) {
if (ShenandoahLoadRefBarrier && _heap->has_forwarded_objects()) {
return load_reference_barrier_impl(obj);
} else {
return obj;
}
}
oop ShenandoahBarrierSet::load_reference_barrier(oop obj) {
if (obj != NULL) {
return load_reference_barrier_not_null(obj);
} else {
return obj;
}
}
oop ShenandoahBarrierSet::load_reference_barrier_mutator(oop obj, oop* load_addr) {
return load_reference_barrier_mutator_work(obj, load_addr);
}
oop ShenandoahBarrierSet::load_reference_barrier_mutator(oop obj, narrowOop* load_addr) {
return load_reference_barrier_mutator_work(obj, load_addr);
}
template <class T>
oop ShenandoahBarrierSet::load_reference_barrier_mutator_work(oop obj, T* load_addr) {
assert(ShenandoahLoadRefBarrier, "should be enabled");
shenandoah_assert_in_cset(load_addr, obj);
oop fwd = resolve_forwarded_not_null(obj);
if (obj == fwd) {
assert(_heap->is_gc_in_progress_mask(ShenandoahHeap::EVACUATION | ShenandoahHeap::TRAVERSAL),
"evac should be in progress");
ShenandoahEvacOOMScope oom_evac_scope;
Thread* thread = Thread::current();
oop res_oop = _heap->evacuate_object(obj, thread);
// Since we are already here and paid the price of getting through runtime call adapters
// and acquiring oom-scope, it makes sense to try and evacuate more adjacent objects,
// thus amortizing the overhead. For sparsely live heaps, scan costs easily dominate
// total assist costs, and can introduce a lot of evacuation latency. This is why we
// only scan for _nearest_ N objects, regardless if they are eligible for evac or not.
// The scan itself should also avoid touching the non-marked objects below TAMS, because
// their metadata (notably, klasses) may be incorrect already.
size_t max = ShenandoahEvacAssist;
if (max > 0) {
// Traversal is special: it uses incomplete marking context, because it coalesces evac with mark.
// Other code uses complete marking context, because evac happens after the mark.
ShenandoahMarkingContext* ctx = _heap->is_concurrent_traversal_in_progress() ?
_heap->marking_context() : _heap->complete_marking_context();
ShenandoahHeapRegion* r = _heap->heap_region_containing(obj);
assert(r->is_cset(), "sanity");
HeapWord* cur = (HeapWord*)obj + obj->size();
size_t count = 0;
while ((cur < r->top()) && ctx->is_marked(oop(cur)) && (count++ < max)) {
oop cur_oop = oop(cur);
if (cur_oop == resolve_forwarded_not_null(cur_oop)) {
_heap->evacuate_object(cur_oop, thread);
}
cur = cur + cur_oop->size();
}
}
fwd = res_oop;
}
if (load_addr != NULL && fwd != obj) {
// Since we are here and we know the load address, update the reference.
ShenandoahHeap::cas_oop(fwd, load_addr, obj);
}
return fwd;
}
oop ShenandoahBarrierSet::load_reference_barrier_impl(oop obj) {
assert(ShenandoahLoadRefBarrier, "should be enabled");
if (!CompressedOops::is_null(obj)) {
bool evac_in_progress = _heap->is_gc_in_progress_mask(ShenandoahHeap::EVACUATION | ShenandoahHeap::TRAVERSAL);
oop fwd = resolve_forwarded_not_null(obj);
if (evac_in_progress &&
_heap->in_collection_set(obj) &&
obj == fwd) {
Thread *t = Thread::current();
if (t->is_GC_task_thread()) {
return _heap->evacuate_object(obj, t);
} else {
ShenandoahEvacOOMScope oom_evac_scope;
return _heap->evacuate_object(obj, t);
}
} else {
return fwd;
}
} else {
return obj;
}
}
void ShenandoahBarrierSet::on_thread_create(Thread* thread) {
// Create thread local data
ShenandoahThreadLocalData::create(thread);
}
void ShenandoahBarrierSet::on_thread_destroy(Thread* thread) {
// Destroy thread local data
ShenandoahThreadLocalData::destroy(thread);
}
void ShenandoahBarrierSet::on_thread_attach(Thread *thread) {
assert(!thread->is_Java_thread() || !SafepointSynchronize::is_at_safepoint(),
"We should not be at a safepoint");
SATBMarkQueue& queue = ShenandoahThreadLocalData::satb_mark_queue(thread);
assert(!queue.is_active(), "SATB queue should not be active");
assert( queue.is_empty(), "SATB queue should be empty");
queue.set_active(_satb_mark_queue_set.is_active());
if (thread->is_Java_thread()) {
ShenandoahThreadLocalData::set_gc_state(thread, _heap->gc_state());
ShenandoahThreadLocalData::initialize_gclab(thread);
}
}
void ShenandoahBarrierSet::on_thread_detach(Thread *thread) {
SATBMarkQueue& queue = ShenandoahThreadLocalData::satb_mark_queue(thread);
queue.flush();
if (thread->is_Java_thread()) {
PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
if (gclab != NULL) {
gclab->retire();
}
}
}
oop ShenandoahBarrierSet::load_reference_barrier_native(oop obj, oop* load_addr) {
return load_reference_barrier_native_impl(obj, load_addr);
}
oop ShenandoahBarrierSet::load_reference_barrier_native(oop obj, narrowOop* load_addr) {
// Assumption: narrow oop version should not be used anywhere.
ShouldNotReachHere();
return NULL;
}
template <class T>
oop ShenandoahBarrierSet::load_reference_barrier_native_impl(oop obj, T* load_addr) {
if (CompressedOops::is_null(obj)) {
return NULL;
}
ShenandoahMarkingContext* const marking_context = _heap->marking_context();
if (_heap->is_evacuation_in_progress() && !marking_context->is_marked(obj)) {
Thread* thr = Thread::current();
if (thr->is_Java_thread()) {
return NULL;
} else {
return obj;
}
}
oop fwd = load_reference_barrier_not_null(obj);
if (load_addr != NULL && fwd != obj) {
// Since we are here and we know the load address, update the reference.
ShenandoahHeap::cas_oop(fwd, load_addr, obj);
}
return fwd;
}
void ShenandoahBarrierSet::clone_barrier_runtime(oop src) {
if (_heap->has_forwarded_objects()) {
clone_barrier(src);
}
}