6939207: refactor constant pool index processing
Summary: Factored cleanup of instruction decode which prepares for enhanced ldc semantics.
Reviewed-by: twisti
/*
* Copyright 2005 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_c1_FpuStackSim_x86.cpp.incl"
//--------------------------------------------------------
// FpuStackSim
//--------------------------------------------------------
// This class maps the FPU registers to their stack locations; it computes
// the offsets between individual registers and simulates the FPU stack.
const int EMPTY = -1;
int FpuStackSim::regs_at(int i) const {
assert(i >= 0 && i < FrameMap::nof_fpu_regs, "out of bounds");
return _regs[i];
}
void FpuStackSim::set_regs_at(int i, int val) {
assert(i >= 0 && i < FrameMap::nof_fpu_regs, "out of bounds");
_regs[i] = val;
}
void FpuStackSim::dec_stack_size() {
_stack_size--;
assert(_stack_size >= 0, "FPU stack underflow");
}
void FpuStackSim::inc_stack_size() {
_stack_size++;
assert(_stack_size <= FrameMap::nof_fpu_regs, "FPU stack overflow");
}
FpuStackSim::FpuStackSim(Compilation* compilation)
: _compilation(compilation)
{
_stack_size = 0;
for (int i = 0; i < FrameMap::nof_fpu_regs; i++) {
set_regs_at(i, EMPTY);
}
}
void FpuStackSim::pop() {
if (TraceFPUStack) { tty->print("FPU-pop "); print(); tty->cr(); }
set_regs_at(tos_index(), EMPTY);
dec_stack_size();
}
void FpuStackSim::pop(int rnr) {
if (TraceFPUStack) { tty->print("FPU-pop %d", rnr); print(); tty->cr(); }
assert(regs_at(tos_index()) == rnr, "rnr is not on TOS");
set_regs_at(tos_index(), EMPTY);
dec_stack_size();
}
void FpuStackSim::push(int rnr) {
if (TraceFPUStack) { tty->print("FPU-push %d", rnr); print(); tty->cr(); }
assert(regs_at(stack_size()) == EMPTY, "should be empty");
set_regs_at(stack_size(), rnr);
inc_stack_size();
}
void FpuStackSim::swap(int offset) {
if (TraceFPUStack) { tty->print("FPU-swap %d", offset); print(); tty->cr(); }
int t = regs_at(tos_index() - offset);
set_regs_at(tos_index() - offset, regs_at(tos_index()));
set_regs_at(tos_index(), t);
}
int FpuStackSim::offset_from_tos(int rnr) const {
for (int i = tos_index(); i >= 0; i--) {
if (regs_at(i) == rnr) {
return tos_index() - i;
}
}
assert(false, "FpuStackSim: register not found");
BAILOUT_("FpuStackSim: register not found", 0);
}
int FpuStackSim::get_slot(int tos_offset) const {
return regs_at(tos_index() - tos_offset);
}
void FpuStackSim::set_slot(int tos_offset, int rnr) {
set_regs_at(tos_index() - tos_offset, rnr);
}
void FpuStackSim::rename(int old_rnr, int new_rnr) {
if (TraceFPUStack) { tty->print("FPU-rename %d %d", old_rnr, new_rnr); print(); tty->cr(); }
if (old_rnr == new_rnr)
return;
bool found = false;
for (int i = 0; i < stack_size(); i++) {
assert(regs_at(i) != new_rnr, "should not see old occurrences of new_rnr on the stack");
if (regs_at(i) == old_rnr) {
set_regs_at(i, new_rnr);
found = true;
}
}
assert(found, "should have found at least one instance of old_rnr");
}
bool FpuStackSim::contains(int rnr) {
for (int i = 0; i < stack_size(); i++) {
if (regs_at(i) == rnr) {
return true;
}
}
return false;
}
bool FpuStackSim::is_empty() {
#ifdef ASSERT
if (stack_size() == 0) {
for (int i = 0; i < FrameMap::nof_fpu_regs; i++) {
assert(regs_at(i) == EMPTY, "must be empty");
}
}
#endif
return stack_size() == 0;
}
bool FpuStackSim::slot_is_empty(int tos_offset) {
return (regs_at(tos_index() - tos_offset) == EMPTY);
}
void FpuStackSim::clear() {
if (TraceFPUStack) { tty->print("FPU-clear"); print(); tty->cr(); }
for (int i = tos_index(); i >= 0; i--) {
set_regs_at(i, EMPTY);
}
_stack_size = 0;
}
intArray* FpuStackSim::write_state() {
intArray* res = new intArray(1 + FrameMap::nof_fpu_regs);
(*res)[0] = stack_size();
for (int i = 0; i < FrameMap::nof_fpu_regs; i++) {
(*res)[1 + i] = regs_at(i);
}
return res;
}
void FpuStackSim::read_state(intArray* fpu_stack_state) {
_stack_size = (*fpu_stack_state)[0];
for (int i = 0; i < FrameMap::nof_fpu_regs; i++) {
set_regs_at(i, (*fpu_stack_state)[1 + i]);
}
}
#ifndef PRODUCT
void FpuStackSim::print() {
tty->print(" N=%d[", stack_size());\
for (int i = 0; i < stack_size(); i++) {
int reg = regs_at(i);
if (reg != EMPTY) {
tty->print("%d", reg);
} else {
tty->print("_");
}
};
tty->print(" ]");
}
#endif