8198515: Extract SoftReferencePolicy code out of CollectorPolicy
Reviewed-by: pliden, sjohanss
/*
* Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP
#define SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP
#include "gc/shared/taskqueue.hpp"
#include "memory/allocation.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomic.hpp"
#include "runtime/orderAccess.inline.hpp"
#include "utilities/debug.hpp"
#include "utilities/stack.inline.hpp"
template <class T, MEMFLAGS F>
inline GenericTaskQueueSet<T, F>::GenericTaskQueueSet(int n) : _n(n) {
typedef T* GenericTaskQueuePtr;
_queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
for (int i = 0; i < n; i++) {
_queues[i] = NULL;
}
}
template <class T, MEMFLAGS F>
inline GenericTaskQueueSet<T, F>::~GenericTaskQueueSet() {
FREE_C_HEAP_ARRAY(T*, _queues);
}
template<class E, MEMFLAGS F, unsigned int N>
inline void GenericTaskQueue<E, F, N>::initialize() {
_elems = ArrayAllocator<E>::allocate(N, F);
}
template<class E, MEMFLAGS F, unsigned int N>
inline GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
ArrayAllocator<E>::free(const_cast<E*>(_elems), N);
}
template<class E, MEMFLAGS F, unsigned int N>
bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
if (dirty_n_elems == N - 1) {
// Actually means 0, so do the push.
uint localBot = _bottom;
// g++ complains if the volatile result of the assignment is
// unused, so we cast the volatile away. We cannot cast directly
// to void, because gcc treats that as not using the result of the
// assignment. However, casting to E& means that we trigger an
// unused-value warning. So, we cast the E& to void.
(void)const_cast<E&>(_elems[localBot] = t);
OrderAccess::release_store(&_bottom, increment_index(localBot));
TASKQUEUE_STATS_ONLY(stats.record_push());
return true;
}
return false;
}
template<class E, MEMFLAGS F, unsigned int N> inline bool
GenericTaskQueue<E, F, N>::push(E t) {
uint localBot = _bottom;
assert(localBot < N, "_bottom out of range.");
idx_t top = _age.top();
uint dirty_n_elems = dirty_size(localBot, top);
assert(dirty_n_elems < N, "n_elems out of range.");
if (dirty_n_elems < max_elems()) {
// g++ complains if the volatile result of the assignment is
// unused, so we cast the volatile away. We cannot cast directly
// to void, because gcc treats that as not using the result of the
// assignment. However, casting to E& means that we trigger an
// unused-value warning. So, we cast the E& to void.
(void) const_cast<E&>(_elems[localBot] = t);
OrderAccess::release_store(&_bottom, increment_index(localBot));
TASKQUEUE_STATS_ONLY(stats.record_push());
return true;
} else {
return push_slow(t, dirty_n_elems);
}
}
template <class E, MEMFLAGS F, unsigned int N>
inline bool OverflowTaskQueue<E, F, N>::push(E t)
{
if (!taskqueue_t::push(t)) {
overflow_stack()->push(t);
TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
}
return true;
}
template <class E, MEMFLAGS F, unsigned int N>
inline bool OverflowTaskQueue<E, F, N>::try_push_to_taskqueue(E t) {
return taskqueue_t::push(t);
}
// pop_local_slow() is done by the owning thread and is trying to
// get the last task in the queue. It will compete with pop_global()
// that will be used by other threads. The tag age is incremented
// whenever the queue goes empty which it will do here if this thread
// gets the last task or in pop_global() if the queue wraps (top == 0
// and pop_global() succeeds, see pop_global()).
template<class E, MEMFLAGS F, unsigned int N>
bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
// This queue was observed to contain exactly one element; either this
// thread will claim it, or a competing "pop_global". In either case,
// the queue will be logically empty afterwards. Create a new Age value
// that represents the empty queue for the given value of "_bottom". (We
// must also increment "tag" because of the case where "bottom == 1",
// "top == 0". A pop_global could read the queue element in that case,
// then have the owner thread do a pop followed by another push. Without
// the incrementing of "tag", the pop_global's CAS could succeed,
// allowing it to believe it has claimed the stale element.)
Age newAge((idx_t)localBot, oldAge.tag() + 1);
// Perhaps a competing pop_global has already incremented "top", in which
// case it wins the element.
if (localBot == oldAge.top()) {
// No competing pop_global has yet incremented "top"; we'll try to
// install new_age, thus claiming the element.
Age tempAge = _age.cmpxchg(newAge, oldAge);
if (tempAge == oldAge) {
// We win.
assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
return true;
}
}
// We lose; a completing pop_global gets the element. But the queue is empty
// and top is greater than bottom. Fix this representation of the empty queue
// to become the canonical one.
_age.set(newAge);
assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
return false;
}
template<class E, MEMFLAGS F, unsigned int N> inline bool
GenericTaskQueue<E, F, N>::pop_local(volatile E& t) {
uint localBot = _bottom;
// This value cannot be N-1. That can only occur as a result of
// the assignment to bottom in this method. If it does, this method
// resets the size to 0 before the next call (which is sequential,
// since this is pop_local.)
uint dirty_n_elems = dirty_size(localBot, _age.top());
assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
if (dirty_n_elems == 0) return false;
localBot = decrement_index(localBot);
_bottom = localBot;
// This is necessary to prevent any read below from being reordered
// before the store just above.
OrderAccess::fence();
// g++ complains if the volatile result of the assignment is
// unused, so we cast the volatile away. We cannot cast directly
// to void, because gcc treats that as not using the result of the
// assignment. However, casting to E& means that we trigger an
// unused-value warning. So, we cast the E& to void.
(void) const_cast<E&>(t = _elems[localBot]);
// This is a second read of "age"; the "size()" above is the first.
// If there's still at least one element in the queue, based on the
// "_bottom" and "age" we've read, then there can be no interference with
// a "pop_global" operation, and we're done.
idx_t tp = _age.top(); // XXX
if (size(localBot, tp) > 0) {
assert(dirty_size(localBot, tp) != N - 1, "sanity");
TASKQUEUE_STATS_ONLY(stats.record_pop());
return true;
} else {
// Otherwise, the queue contained exactly one element; we take the slow
// path.
return pop_local_slow(localBot, _age.get());
}
}
template <class E, MEMFLAGS F, unsigned int N>
bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
{
if (overflow_empty()) return false;
t = overflow_stack()->pop();
return true;
}
template<class E, MEMFLAGS F, unsigned int N>
bool GenericTaskQueue<E, F, N>::pop_global(volatile E& t) {
Age oldAge = _age.get();
// Architectures with weak memory model require a barrier here
// to guarantee that bottom is not older than age,
// which is crucial for the correctness of the algorithm.
#if !(defined SPARC || defined IA32 || defined AMD64)
OrderAccess::fence();
#endif
uint localBot = OrderAccess::load_acquire(&_bottom);
uint n_elems = size(localBot, oldAge.top());
if (n_elems == 0) {
return false;
}
// g++ complains if the volatile result of the assignment is
// unused, so we cast the volatile away. We cannot cast directly
// to void, because gcc treats that as not using the result of the
// assignment. However, casting to E& means that we trigger an
// unused-value warning. So, we cast the E& to void.
(void) const_cast<E&>(t = _elems[oldAge.top()]);
Age newAge(oldAge);
newAge.increment();
Age resAge = _age.cmpxchg(newAge, oldAge);
// Note that using "_bottom" here might fail, since a pop_local might
// have decremented it.
assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
return resAge == oldAge;
}
template<class T, MEMFLAGS F> bool
GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
if (_n > 2) {
uint k1 = queue_num;
while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
uint k2 = queue_num;
while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
// Sample both and try the larger.
uint sz1 = _queues[k1]->size();
uint sz2 = _queues[k2]->size();
if (sz2 > sz1) return _queues[k2]->pop_global(t);
else return _queues[k1]->pop_global(t);
} else if (_n == 2) {
// Just try the other one.
uint k = (queue_num + 1) % 2;
return _queues[k]->pop_global(t);
} else {
assert(_n == 1, "can't be zero.");
return false;
}
}
template<class T, MEMFLAGS F> bool
GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
for (uint i = 0; i < 2 * _n; i++) {
if (steal_best_of_2(queue_num, seed, t)) {
TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
return true;
}
}
TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
return false;
}
template <unsigned int N, MEMFLAGS F>
inline typename TaskQueueSuper<N, F>::Age TaskQueueSuper<N, F>::Age::cmpxchg(const Age new_age, const Age old_age) volatile {
return Atomic::cmpxchg(new_age._data, &_data, old_age._data);
}
template<class E, MEMFLAGS F, unsigned int N>
template<class Fn>
inline void GenericTaskQueue<E, F, N>::iterate(Fn fn) {
uint iters = size();
uint index = _bottom;
for (uint i = 0; i < iters; ++i) {
index = decrement_index(index);
fn(const_cast<E&>(_elems[index])); // cast away volatility
}
}
#endif // SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP