8198515: Extract SoftReferencePolicy code out of CollectorPolicy
Reviewed-by: pliden, sjohanss
/*
* Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_SHARED_SPACE_INLINE_HPP
#define SHARE_VM_GC_SHARED_SPACE_INLINE_HPP
#include "gc/serial/markSweep.inline.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/generation.hpp"
#include "gc/shared/space.hpp"
#include "gc/shared/spaceDecorator.hpp"
#include "memory/universe.hpp"
#include "oops/oopsHierarchy.hpp"
#include "runtime/prefetch.inline.hpp"
#include "runtime/safepoint.hpp"
inline HeapWord* Space::block_start(const void* p) {
return block_start_const(p);
}
inline HeapWord* OffsetTableContigSpace::allocate(size_t size) {
HeapWord* res = ContiguousSpace::allocate(size);
if (res != NULL) {
_offsets.alloc_block(res, size);
}
return res;
}
// Because of the requirement of keeping "_offsets" up to date with the
// allocations, we sequentialize these with a lock. Therefore, best if
// this is used for larger LAB allocations only.
inline HeapWord* OffsetTableContigSpace::par_allocate(size_t size) {
MutexLocker x(&_par_alloc_lock);
// This ought to be just "allocate", because of the lock above, but that
// ContiguousSpace::allocate asserts that either the allocating thread
// holds the heap lock or it is the VM thread and we're at a safepoint.
// The best I (dld) could figure was to put a field in ContiguousSpace
// meaning "locking at safepoint taken care of", and set/reset that
// here. But this will do for now, especially in light of the comment
// above. Perhaps in the future some lock-free manner of keeping the
// coordination.
HeapWord* res = ContiguousSpace::par_allocate(size);
if (res != NULL) {
_offsets.alloc_block(res, size);
}
return res;
}
inline HeapWord*
OffsetTableContigSpace::block_start_const(const void* p) const {
return _offsets.block_start(p);
}
size_t CompactibleSpace::obj_size(const HeapWord* addr) const {
return oop(addr)->size();
}
class DeadSpacer : StackObj {
size_t _allowed_deadspace_words;
bool _active;
CompactibleSpace* _space;
public:
DeadSpacer(CompactibleSpace* space) : _space(space), _allowed_deadspace_words(0) {
size_t ratio = _space->allowed_dead_ratio();
_active = ratio > 0;
if (_active) {
assert(!UseG1GC, "G1 should not be using dead space");
// We allow some amount of garbage towards the bottom of the space, so
// we don't start compacting before there is a significant gain to be made.
// Occasionally, we want to ensure a full compaction, which is determined
// by the MarkSweepAlwaysCompactCount parameter.
if ((MarkSweep::total_invocations() % MarkSweepAlwaysCompactCount) != 0) {
_allowed_deadspace_words = (space->capacity() * ratio / 100) / HeapWordSize;
} else {
_active = false;
}
}
}
bool insert_deadspace(HeapWord* dead_start, HeapWord* dead_end) {
if (!_active) {
return false;
}
size_t dead_length = pointer_delta(dead_end, dead_start);
if (_allowed_deadspace_words >= dead_length) {
_allowed_deadspace_words -= dead_length;
CollectedHeap::fill_with_object(dead_start, dead_length);
oop obj = oop(dead_start);
obj->set_mark(obj->mark()->set_marked());
assert(dead_length == (size_t)obj->size(), "bad filler object size");
log_develop_trace(gc, compaction)("Inserting object to dead space: " PTR_FORMAT ", " PTR_FORMAT ", " SIZE_FORMAT "b",
p2i(dead_start), p2i(dead_end), dead_length * HeapWordSize);
return true;
} else {
_active = false;
return false;
}
}
};
template <class SpaceType>
inline void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp) {
// Compute the new addresses for the live objects and store it in the mark
// Used by universe::mark_sweep_phase2()
// We're sure to be here before any objects are compacted into this
// space, so this is a good time to initialize this:
space->set_compaction_top(space->bottom());
if (cp->space == NULL) {
assert(cp->gen != NULL, "need a generation");
assert(cp->threshold == NULL, "just checking");
assert(cp->gen->first_compaction_space() == space, "just checking");
cp->space = cp->gen->first_compaction_space();
cp->threshold = cp->space->initialize_threshold();
cp->space->set_compaction_top(cp->space->bottom());
}
HeapWord* compact_top = cp->space->compaction_top(); // This is where we are currently compacting to.
DeadSpacer dead_spacer(space);
HeapWord* end_of_live = space->bottom(); // One byte beyond the last byte of the last live object.
HeapWord* first_dead = NULL; // The first dead object.
const intx interval = PrefetchScanIntervalInBytes;
HeapWord* cur_obj = space->bottom();
HeapWord* scan_limit = space->scan_limit();
while (cur_obj < scan_limit) {
assert(!space->scanned_block_is_obj(cur_obj) ||
oop(cur_obj)->mark()->is_marked() || oop(cur_obj)->mark()->is_unlocked() ||
oop(cur_obj)->mark()->has_bias_pattern(),
"these are the only valid states during a mark sweep");
if (space->scanned_block_is_obj(cur_obj) && oop(cur_obj)->is_gc_marked()) {
// prefetch beyond cur_obj
Prefetch::write(cur_obj, interval);
size_t size = space->scanned_block_size(cur_obj);
compact_top = cp->space->forward(oop(cur_obj), size, cp, compact_top);
cur_obj += size;
end_of_live = cur_obj;
} else {
// run over all the contiguous dead objects
HeapWord* end = cur_obj;
do {
// prefetch beyond end
Prefetch::write(end, interval);
end += space->scanned_block_size(end);
} while (end < scan_limit && (!space->scanned_block_is_obj(end) || !oop(end)->is_gc_marked()));
// see if we might want to pretend this object is alive so that
// we don't have to compact quite as often.
if (cur_obj == compact_top && dead_spacer.insert_deadspace(cur_obj, end)) {
oop obj = oop(cur_obj);
compact_top = cp->space->forward(obj, obj->size(), cp, compact_top);
end_of_live = end;
} else {
// otherwise, it really is a free region.
// cur_obj is a pointer to a dead object. Use this dead memory to store a pointer to the next live object.
*(HeapWord**)cur_obj = end;
// see if this is the first dead region.
if (first_dead == NULL) {
first_dead = cur_obj;
}
}
// move on to the next object
cur_obj = end;
}
}
assert(cur_obj == scan_limit, "just checking");
space->_end_of_live = end_of_live;
if (first_dead != NULL) {
space->_first_dead = first_dead;
} else {
space->_first_dead = end_of_live;
}
// save the compaction_top of the compaction space.
cp->space->set_compaction_top(compact_top);
}
template <class SpaceType>
inline void CompactibleSpace::scan_and_adjust_pointers(SpaceType* space) {
// adjust all the interior pointers to point at the new locations of objects
// Used by MarkSweep::mark_sweep_phase3()
HeapWord* cur_obj = space->bottom();
HeapWord* const end_of_live = space->_end_of_live; // Established by "scan_and_forward".
HeapWord* const first_dead = space->_first_dead; // Established by "scan_and_forward".
assert(first_dead <= end_of_live, "Stands to reason, no?");
const intx interval = PrefetchScanIntervalInBytes;
debug_only(HeapWord* prev_obj = NULL);
while (cur_obj < end_of_live) {
Prefetch::write(cur_obj, interval);
if (cur_obj < first_dead || oop(cur_obj)->is_gc_marked()) {
// cur_obj is alive
// point all the oops to the new location
size_t size = MarkSweep::adjust_pointers(oop(cur_obj));
size = space->adjust_obj_size(size);
debug_only(prev_obj = cur_obj);
cur_obj += size;
} else {
debug_only(prev_obj = cur_obj);
// cur_obj is not a live object, instead it points at the next live object
cur_obj = *(HeapWord**)cur_obj;
assert(cur_obj > prev_obj, "we should be moving forward through memory, cur_obj: " PTR_FORMAT ", prev_obj: " PTR_FORMAT, p2i(cur_obj), p2i(prev_obj));
}
}
assert(cur_obj == end_of_live, "just checking");
}
#ifdef ASSERT
template <class SpaceType>
inline void CompactibleSpace::verify_up_to_first_dead(SpaceType* space) {
HeapWord* cur_obj = space->bottom();
if (cur_obj < space->_end_of_live && space->_first_dead > cur_obj && !oop(cur_obj)->is_gc_marked()) {
// we have a chunk of the space which hasn't moved and we've reinitialized
// the mark word during the previous pass, so we can't use is_gc_marked for
// the traversal.
HeapWord* prev_obj = NULL;
while (cur_obj < space->_first_dead) {
size_t size = space->obj_size(cur_obj);
assert(!oop(cur_obj)->is_gc_marked(), "should be unmarked (special dense prefix handling)");
prev_obj = cur_obj;
cur_obj += size;
}
}
}
#endif
template <class SpaceType>
inline void CompactibleSpace::clear_empty_region(SpaceType* space) {
// Let's remember if we were empty before we did the compaction.
bool was_empty = space->used_region().is_empty();
// Reset space after compaction is complete
space->reset_after_compaction();
// We do this clear, below, since it has overloaded meanings for some
// space subtypes. For example, OffsetTableContigSpace's that were
// compacted into will have had their offset table thresholds updated
// continuously, but those that weren't need to have their thresholds
// re-initialized. Also mangles unused area for debugging.
if (space->used_region().is_empty()) {
if (!was_empty) space->clear(SpaceDecorator::Mangle);
} else {
if (ZapUnusedHeapArea) space->mangle_unused_area();
}
}
template <class SpaceType>
inline void CompactibleSpace::scan_and_compact(SpaceType* space) {
// Copy all live objects to their new location
// Used by MarkSweep::mark_sweep_phase4()
verify_up_to_first_dead(space);
HeapWord* const bottom = space->bottom();
HeapWord* const end_of_live = space->_end_of_live;
assert(space->_first_dead <= end_of_live, "Invariant. _first_dead: " PTR_FORMAT " <= end_of_live: " PTR_FORMAT, p2i(space->_first_dead), p2i(end_of_live));
if (space->_first_dead == end_of_live && (bottom == end_of_live || !oop(bottom)->is_gc_marked())) {
// Nothing to compact. The space is either empty or all live object should be left in place.
clear_empty_region(space);
return;
}
const intx scan_interval = PrefetchScanIntervalInBytes;
const intx copy_interval = PrefetchCopyIntervalInBytes;
assert(bottom < end_of_live, "bottom: " PTR_FORMAT " should be < end_of_live: " PTR_FORMAT, p2i(bottom), p2i(end_of_live));
HeapWord* cur_obj = bottom;
if (space->_first_dead > cur_obj && !oop(cur_obj)->is_gc_marked()) {
// All object before _first_dead can be skipped. They should not be moved.
// A pointer to the first live object is stored at the memory location for _first_dead.
cur_obj = *(HeapWord**)(space->_first_dead);
}
debug_only(HeapWord* prev_obj = NULL);
while (cur_obj < end_of_live) {
if (!oop(cur_obj)->is_gc_marked()) {
debug_only(prev_obj = cur_obj);
// The first word of the dead object contains a pointer to the next live object or end of space.
cur_obj = *(HeapWord**)cur_obj;
assert(cur_obj > prev_obj, "we should be moving forward through memory");
} else {
// prefetch beyond q
Prefetch::read(cur_obj, scan_interval);
// size and destination
size_t size = space->obj_size(cur_obj);
HeapWord* compaction_top = (HeapWord*)oop(cur_obj)->forwardee();
// prefetch beyond compaction_top
Prefetch::write(compaction_top, copy_interval);
// copy object and reinit its mark
assert(cur_obj != compaction_top, "everything in this pass should be moving");
Copy::aligned_conjoint_words(cur_obj, compaction_top, size);
oop(compaction_top)->init_mark();
assert(oop(compaction_top)->klass() != NULL, "should have a class");
debug_only(prev_obj = cur_obj);
cur_obj += size;
}
}
clear_empty_region(space);
}
size_t ContiguousSpace::scanned_block_size(const HeapWord* addr) const {
return oop(addr)->size();
}
#endif // SHARE_VM_GC_SHARED_SPACE_INLINE_HPP