8008085: Integrate Dynalink source code into Nashorn codebase
Reviewed-by: jlaskey, lagergren, sundar
/*
* Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file, and Oracle licenses the original version of this file under the BSD
* license:
*/
/*
Copyright 2009-2013 Attila Szegedi
Licensed under both the Apache License, Version 2.0 (the "Apache License")
and the BSD License (the "BSD License"), with licensee being free to
choose either of the two at their discretion.
You may not use this file except in compliance with either the Apache
License or the BSD License.
If you choose to use this file in compliance with the Apache License, the
following notice applies to you:
You may obtain a copy of the Apache License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing
permissions and limitations under the License.
If you choose to use this file in compliance with the BSD License, the
following notice applies to you:
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package jdk.internal.dynalink.beans;
import java.lang.invoke.MethodHandle;
import java.lang.invoke.MethodType;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import jdk.internal.dynalink.beans.ApplicableOverloadedMethods.ApplicabilityTest;
import jdk.internal.dynalink.linker.LinkerServices;
import jdk.internal.dynalink.support.TypeUtilities;
/**
* Represents an overloaded method.
*
* @author Attila Szegedi
*/
class OverloadedDynamicMethod extends DynamicMethod {
/**
* Holds a list of all methods.
*/
private final LinkedList<MethodHandle> methods;
private final ClassLoader classLoader;
/**
* Creates a new overloaded dynamic method.
*
* @param clazz the class this method belongs to
* @param name the name of the method
*/
OverloadedDynamicMethod(Class<?> clazz, String name) {
this(new LinkedList<MethodHandle>(), clazz.getClassLoader(), getClassAndMethodName(clazz, name));
}
private OverloadedDynamicMethod(LinkedList<MethodHandle> methods, ClassLoader classLoader, String name) {
super(name);
this.methods = methods;
this.classLoader = classLoader;
}
@Override
SimpleDynamicMethod getMethodForExactParamTypes(String paramTypes) {
final LinkedList<MethodHandle> matchingMethods = new LinkedList<>();
for(MethodHandle method: methods) {
if(typeMatchesDescription(paramTypes, method.type())) {
matchingMethods.add(method);
}
}
switch(matchingMethods.size()) {
case 0: {
return null;
}
case 1: {
final MethodHandle target = matchingMethods.get(0);
return new SimpleDynamicMethod(target, SimpleDynamicMethod.getMethodNameWithSignature(target, getName()));
}
default: {
throw new BootstrapMethodError("Can't choose among " + matchingMethods + " for argument types "
+ paramTypes + " for method " + getName());
}
}
}
@Override
public MethodHandle getInvocation(final MethodType callSiteType, final LinkerServices linkerServices) {
// First, find all methods applicable to the call site by subtyping (JLS 15.12.2.2)
final ApplicableOverloadedMethods subtypingApplicables = getApplicables(callSiteType,
ApplicableOverloadedMethods.APPLICABLE_BY_SUBTYPING);
// Next, find all methods applicable by method invocation conversion to the call site (JLS 15.12.2.3).
final ApplicableOverloadedMethods methodInvocationApplicables = getApplicables(callSiteType,
ApplicableOverloadedMethods.APPLICABLE_BY_METHOD_INVOCATION_CONVERSION);
// Finally, find all methods applicable by variable arity invocation. (JLS 15.12.2.4).
final ApplicableOverloadedMethods variableArityApplicables = getApplicables(callSiteType,
ApplicableOverloadedMethods.APPLICABLE_BY_VARIABLE_ARITY);
// Find the methods that are maximally specific based on the call site signature
List<MethodHandle> maximallySpecifics = subtypingApplicables.findMaximallySpecificMethods();
if(maximallySpecifics.isEmpty()) {
maximallySpecifics = methodInvocationApplicables.findMaximallySpecificMethods();
if(maximallySpecifics.isEmpty()) {
maximallySpecifics = variableArityApplicables.findMaximallySpecificMethods();
}
}
// Now, get a list of the rest of the methods; those that are *not* applicable to the call site signature based
// on JLS rules. As paradoxical as that might sound, we have to consider these for dynamic invocation, as they
// might match more concrete types passed in invocations. That's why we provisionally call them "invokables".
// This is typical for very generic signatures at call sites. Typical example: call site specifies
// (Object, Object), and we have a method whose parameter types are (String, int). None of the JLS applicability
// rules will trigger, but we must consider the method, as it can be the right match for a concrete invocation.
@SuppressWarnings({ "unchecked", "rawtypes" })
final List<MethodHandle> invokables = (List)methods.clone();
invokables.removeAll(subtypingApplicables.getMethods());
invokables.removeAll(methodInvocationApplicables.getMethods());
invokables.removeAll(variableArityApplicables.getMethods());
for(final Iterator<MethodHandle> it = invokables.iterator(); it.hasNext();) {
final MethodHandle m = it.next();
if(!isApplicableDynamically(linkerServices, callSiteType, m)) {
it.remove();
}
}
// If no additional methods can apply at invocation time, and there's more than one maximally specific method
// based on call site signature, that is a link-time ambiguity. In a static scenario, javac would report an
// ambiguity error.
if(invokables.isEmpty() && maximallySpecifics.size() > 1) {
throw new BootstrapMethodError("Can't choose among " + maximallySpecifics + " for argument types "
+ callSiteType);
}
// Merge them all.
invokables.addAll(maximallySpecifics);
switch(invokables.size()) {
case 0: {
// No overloads can ever match the call site type
return null;
}
case 1: {
// Very lucky, we ended up with a single candidate method handle based on the call site signature; we
// can link it very simply by delegating to a SimpleDynamicMethod.
final MethodHandle mh = invokables.iterator().next();
return new SimpleDynamicMethod(mh).getInvocation(callSiteType, linkerServices);
}
}
// We have more than one candidate. We have no choice but to link to a method that resolves overloads on every
// invocation (alternatively, we could opportunistically link the one method that resolves for the current
// arguments, but we'd need to install a fairly complex guard for that and when it'd fail, we'd go back all the
// way to candidate selection.
// TODO: cache per call site type
return new OverloadedMethod(invokables, this, callSiteType, linkerServices).getInvoker();
}
@Override
public boolean contains(MethodHandle mh) {
final MethodType type = mh.type();
for(MethodHandle method: methods) {
if(typesEqualNoReceiver(type, method.type())) {
return true;
}
}
return false;
}
private static boolean typesEqualNoReceiver(MethodType type1, MethodType type2) {
final int pc = type1.parameterCount();
if(pc != type2.parameterCount()) {
return false;
}
for(int i = 1; i < pc; ++i) { // i = 1: ignore receiver
if(type1.parameterType(i) != type2.parameterType(i)) {
return false;
}
}
return true;
}
ClassLoader getClassLoader() {
return classLoader;
}
private static boolean isApplicableDynamically(LinkerServices linkerServices, MethodType callSiteType,
MethodHandle m) {
final MethodType methodType = m.type();
final boolean varArgs = m.isVarargsCollector();
final int fixedArgLen = methodType.parameterCount() - (varArgs ? 1 : 0);
final int callSiteArgLen = callSiteType.parameterCount();
if(varArgs) {
if(callSiteArgLen < fixedArgLen) {
return false;
}
} else if(callSiteArgLen != fixedArgLen) {
return false;
}
// Starting from 1, as receiver type doesn't participate
for(int i = 1; i < fixedArgLen; ++i) {
if(!isApplicableDynamically(linkerServices, callSiteType.parameterType(i), methodType.parameterType(i))) {
return false;
}
}
if(varArgs) {
final Class<?> varArgArrayType = methodType.parameterType(fixedArgLen);
final Class<?> varArgType = varArgArrayType.getComponentType();
if(fixedArgLen == callSiteArgLen - 1) {
final Class<?> callSiteArgType = callSiteType.parameterType(fixedArgLen);
// Exactly one vararg; check both exact matching and component
// matching.
return isApplicableDynamically(linkerServices, callSiteArgType, varArgArrayType)
|| isApplicableDynamically(linkerServices, callSiteArgType, varArgType);
} else {
for(int i = fixedArgLen; i < callSiteArgLen; ++i) {
if(!isApplicableDynamically(linkerServices, callSiteType.parameterType(i), varArgType)) {
return false;
}
}
return true;
}
} else {
return true;
}
}
private static boolean isApplicableDynamically(LinkerServices linkerServices, Class<?> callSiteType,
Class<?> methodType) {
return TypeUtilities.isPotentiallyConvertible(callSiteType, methodType)
|| linkerServices.canConvert(callSiteType, methodType);
}
private ApplicableOverloadedMethods getApplicables(MethodType callSiteType, ApplicabilityTest test) {
return new ApplicableOverloadedMethods(methods, callSiteType, test);
}
/**
* Add a method identified by a {@link SimpleDynamicMethod} to this overloaded method's set.
*
* @param method the method to add.
*/
public void addMethod(SimpleDynamicMethod method) {
addMethod(method.getTarget());
}
/**
* Add a method to this overloaded method's set.
*
* @param method a method to add
*/
public void addMethod(MethodHandle method) {
methods.add(method);
}
}