/*
* Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
/////////////// Unit tests ///////////////
#ifndef PRODUCT
#include "runtime/os.hpp"
#include "utilities/quickSort.hpp"
#include "memory/allocation.hpp"
#include "memory/allocation.inline.hpp"
#include <stdlib.h>
#ifdef ASSERT
static int test_comparator(int a, int b) {
if (a == b) {
return 0;
}
if (a < b) {
return -1;
}
return 1;
}
static void print_array(const char* prefix, int* array, int length) {
tty->print("%s:", prefix);
for (int i = 0; i < length; i++) {
tty->print(" %d", array[i]);
}
tty->cr();
}
static bool compare_arrays(int* actual, int* expected, int length) {
for (int i = 0; i < length; i++) {
if (actual[i] != expected[i]) {
print_array("Sorted array ", actual, length);
print_array("Expected array", expected, length);
return false;
}
}
return true;
}
template <class C>
static bool sort_and_compare(int* arrayToSort, int* expectedResult, int length, C comparator, bool idempotent = false) {
QuickSort::sort<int, C>(arrayToSort, length, comparator, idempotent);
return compare_arrays(arrayToSort, expectedResult, length);
}
#endif // ASSERT
static int test_even_odd_comparator(int a, int b) {
bool a_is_odd = (a % 2) == 1;
bool b_is_odd = (b % 2) == 1;
if (a_is_odd == b_is_odd) {
return 0;
}
if (a_is_odd) {
return -1;
}
return 1;
}
extern "C" {
static int test_stdlib_comparator(const void* a, const void* b) {
int ai = *(int*)a;
int bi = *(int*)b;
if (ai == bi) {
return 0;
}
if (ai < bi) {
return -1;
}
return 1;
}
}
void QuickSort_test() {
{
int* test_array = NULL;
int* expected_array = NULL;
assert(sort_and_compare(test_array, expected_array, 0, test_comparator), "Empty array not handled");
}
{
int test_array[] = {3};
int expected_array[] = {3};
assert(sort_and_compare(test_array, expected_array, 1, test_comparator), "Single value array not handled");
}
{
int test_array[] = {3,2};
int expected_array[] = {2,3};
assert(sort_and_compare(test_array, expected_array, 2, test_comparator), "Array with 2 values not correctly sorted");
}
{
int test_array[] = {3,2,1};
int expected_array[] = {1,2,3};
assert(sort_and_compare(test_array, expected_array, 3, test_comparator), "Array with 3 values not correctly sorted");
}
{
int test_array[] = {4,3,2,1};
int expected_array[] = {1,2,3,4};
assert(sort_and_compare(test_array, expected_array, 4, test_comparator), "Array with 4 values not correctly sorted");
}
{
int test_array[] = {7,1,5,3,6,9,8,2,4,0};
int expected_array[] = {0,1,2,3,4,5,6,7,8,9};
assert(sort_and_compare(test_array, expected_array, 10, test_comparator), "Array with 10 values not correctly sorted");
}
{
int test_array[] = {4,4,1,4};
int expected_array[] = {1,4,4,4};
assert(sort_and_compare(test_array, expected_array, 4, test_comparator), "3 duplicates not sorted correctly");
}
{
int test_array[] = {0,1,2,3,4,5,6,7,8,9};
int expected_array[] = {0,1,2,3,4,5,6,7,8,9};
assert(sort_and_compare(test_array, expected_array, 10, test_comparator), "Already sorted array not correctly sorted");
}
{
// one of the random arrays that found an issue in the partion method.
int test_array[] = {76,46,81,8,64,56,75,11,51,55,11,71,59,27,9,64,69,75,21,25,39,40,44,32,7,8,40,41,24,78,24,74,9,65,28,6,40,31,22,13,27,82};
int expected_array[] = {6,7,8,8,9,9,11,11,13,21,22,24,24,25,27,27,28,31,32,39,40,40,40,41,44,46,51,55,56,59,64,64,65,69,71,74,75,75,76,78,81,82};
assert(sort_and_compare(test_array, expected_array, 42, test_comparator), "Not correctly sorted");
}
{
int test_array[] = {2,8,1,4};
int expected_array[] = {1,4,2,8};
assert(sort_and_compare(test_array, expected_array, 4, test_even_odd_comparator), "Even/odd not sorted correctly");
}
{ // Some idempotent tests
{
// An array of lenght 3 is only sorted by find_pivot. Make sure that it is idempotent.
int test_array[] = {1,4,8};
int expected_array[] = {1,4,8};
assert(sort_and_compare(test_array, expected_array, 3, test_even_odd_comparator, true), "Even/odd not idempotent");
}
{
int test_array[] = {1,7,9,4,8,2};
int expected_array[] = {1,7,9,4,8,2};
assert(sort_and_compare(test_array, expected_array, 6, test_even_odd_comparator, true), "Even/odd not idempotent");
}
{
int test_array[] = {1,9,7,4,2,8};
int expected_array[] = {1,9,7,4,2,8};
assert(sort_and_compare(test_array, expected_array, 6, test_even_odd_comparator, true), "Even/odd not idempotent");
}
{
int test_array[] = {7,9,1,2,8,4};
int expected_array[] = {7,9,1,2,8,4};
assert(sort_and_compare(test_array, expected_array, 6, test_even_odd_comparator, true), "Even/odd not idempotent");
}
{
int test_array[] = {7,1,9,2,4,8};
int expected_array[] = {7,1,9,2,4,8};
assert(sort_and_compare(test_array, expected_array, 6, test_even_odd_comparator, true), "Even/odd not idempotent");
}
{
int test_array[] = {9,1,7,4,8,2};
int expected_array[] = {9,1,7,4,8,2};
assert(sort_and_compare(test_array, expected_array, 6, test_even_odd_comparator, true), "Even/odd not idempotent");
}
{
int test_array[] = {9,7,1,4,2,8};
int expected_array[] = {9,7,1,4,2,8};
assert(sort_and_compare(test_array, expected_array, 6, test_even_odd_comparator, true), "Even/odd not idempotent");
}
}
// test sorting random arrays
for (int i = 0; i < 1000; i++) {
int length = os::random() % 100;
int* test_array = NEW_C_HEAP_ARRAY(int, length, mtInternal);
int* expected_array = NEW_C_HEAP_ARRAY(int, length, mtInternal);
for (int j = 0; j < length; j++) {
// Choose random values, but get a chance of getting duplicates
test_array[j] = os::random() % (length * 2);
expected_array[j] = test_array[j];
}
// Compare sorting to stdlib::qsort()
qsort(expected_array, length, sizeof(int), test_stdlib_comparator);
assert(sort_and_compare(test_array, expected_array, length, test_comparator), "Random array not correctly sorted");
// Make sure sorting is idempotent.
// Both test_array and expected_array are sorted by the test_comparator.
// Now sort them once with the test_even_odd_comparator. Then sort the
// test_array one more time with test_even_odd_comparator and verify that
// it is idempotent.
QuickSort::sort(expected_array, length, test_even_odd_comparator, true);
QuickSort::sort(test_array, length, test_even_odd_comparator, true);
assert(compare_arrays(test_array, expected_array, length), "Sorting identical arrays rendered different results");
QuickSort::sort(test_array, length, test_even_odd_comparator, true);
assert(compare_arrays(test_array, expected_array, length), "Sorting already sorted array changed order of elements - not idempotent");
FREE_C_HEAP_ARRAY(int, test_array);
FREE_C_HEAP_ARRAY(int, expected_array);
}
}
#endif