/*
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
#define SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
#include "memory/allocation.hpp"
#include "memory/allocation.inline.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/top.hpp"
// A growable array.
/*************************************************************************/
/* */
/* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING */
/* */
/* Should you use GrowableArrays to contain handles you must be certain */
/* the the GrowableArray does not outlive the HandleMark that contains */
/* the handles. Since GrowableArrays are typically resource allocated */
/* the following is an example of INCORRECT CODE, */
/* */
/* ResourceMark rm; */
/* GrowableArray<Handle>* arr = new GrowableArray<Handle>(size); */
/* if (blah) { */
/* while (...) { */
/* HandleMark hm; */
/* ... */
/* Handle h(THREAD, some_oop); */
/* arr->append(h); */
/* } */
/* } */
/* if (arr->length() != 0 ) { */
/* oop bad_oop = arr->at(0)(); // Handle is BAD HERE. */
/* ... */
/* } */
/* */
/* If the GrowableArrays you are creating is C_Heap allocated then it */
/* hould not old handles since the handles could trivially try and */
/* outlive their HandleMark. In some situations you might need to do */
/* this and it would be legal but be very careful and see if you can do */
/* the code in some other manner. */
/* */
/*************************************************************************/
// To call default constructor the placement operator new() is used.
// It should be empty (it only returns the passed void* pointer).
// The definition of placement operator new(size_t, void*) in the <new>.
#include <new>
// Need the correct linkage to call qsort without warnings
extern "C" {
typedef int (*_sort_Fn)(const void *, const void *);
}
class GenericGrowableArray : public ResourceObj {
friend class VMStructs;
protected:
int _len; // current length
int _max; // maximum length
Arena* _arena; // Indicates where allocation occurs:
// 0 means default ResourceArea
// 1 means on C heap
// otherwise, allocate in _arena
MEMFLAGS _memflags; // memory type if allocation in C heap
#ifdef ASSERT
int _nesting; // resource area nesting at creation
void set_nesting();
void check_nesting();
#else
#define set_nesting();
#define check_nesting();
#endif
// Where are we going to allocate memory?
bool on_C_heap() { return _arena == (Arena*)1; }
bool on_stack () { return _arena == NULL; }
bool on_arena () { return _arena > (Arena*)1; }
// This GA will use the resource stack for storage if c_heap==false,
// Else it will use the C heap. Use clear_and_deallocate to avoid leaks.
GenericGrowableArray(int initial_size, int initial_len, bool c_heap, MEMFLAGS flags = mtNone) {
_len = initial_len;
_max = initial_size;
_memflags = flags;
// memory type has to be specified for C heap allocation
assert(!(c_heap && flags == mtNone), "memory type not specified for C heap object");
assert(_len >= 0 && _len <= _max, "initial_len too big");
_arena = (c_heap ? (Arena*)1 : NULL);
set_nesting();
assert(!on_C_heap() || allocated_on_C_heap(), "growable array must be on C heap if elements are");
assert(!on_stack() ||
(allocated_on_res_area() || allocated_on_stack()),
"growable array must be on stack if elements are not on arena and not on C heap");
}
// This GA will use the given arena for storage.
// Consider using new(arena) GrowableArray<T> to allocate the header.
GenericGrowableArray(Arena* arena, int initial_size, int initial_len) {
_len = initial_len;
_max = initial_size;
assert(_len >= 0 && _len <= _max, "initial_len too big");
_arena = arena;
_memflags = mtNone;
assert(on_arena(), "arena has taken on reserved value 0 or 1");
// Relax next assert to allow object allocation on resource area,
// on stack or embedded into an other object.
assert(allocated_on_arena() || allocated_on_stack(),
"growable array must be on arena or on stack if elements are on arena");
}
void* raw_allocate(int elementSize);
// some uses pass the Thread explicitly for speed (4990299 tuning)
void* raw_allocate(Thread* thread, int elementSize) {
assert(on_stack(), "fast ResourceObj path only");
return (void*)resource_allocate_bytes(thread, elementSize * _max);
}
};
template<class E> class GrowableArrayIterator;
template<class E, class UnaryPredicate> class GrowableArrayFilterIterator;
template<class E> class GrowableArray : public GenericGrowableArray {
friend class VMStructs;
private:
E* _data; // data array
void grow(int j);
void raw_at_put_grow(int i, const E& p, const E& fill);
void clear_and_deallocate();
public:
GrowableArray(Thread* thread, int initial_size) : GenericGrowableArray(initial_size, 0, false) {
_data = (E*)raw_allocate(thread, sizeof(E));
for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
}
GrowableArray(int initial_size, bool C_heap = false, MEMFLAGS F = mtInternal)
: GenericGrowableArray(initial_size, 0, C_heap, F) {
_data = (E*)raw_allocate(sizeof(E));
// Needed for Visual Studio 2012 and older
#ifdef _MSC_VER
#pragma warning(suppress: 4345)
#endif
for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
}
GrowableArray(int initial_size, int initial_len, const E& filler, bool C_heap = false, MEMFLAGS memflags = mtInternal)
: GenericGrowableArray(initial_size, initial_len, C_heap, memflags) {
_data = (E*)raw_allocate(sizeof(E));
int i = 0;
for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
for (; i < _max; i++) ::new ((void*)&_data[i]) E();
}
GrowableArray(Arena* arena, int initial_size, int initial_len, const E& filler) : GenericGrowableArray(arena, initial_size, initial_len) {
_data = (E*)raw_allocate(sizeof(E));
int i = 0;
for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
for (; i < _max; i++) ::new ((void*)&_data[i]) E();
}
GrowableArray() : GenericGrowableArray(2, 0, false) {
_data = (E*)raw_allocate(sizeof(E));
::new ((void*)&_data[0]) E();
::new ((void*)&_data[1]) E();
}
// Does nothing for resource and arena objects
~GrowableArray() { if (on_C_heap()) clear_and_deallocate(); }
void clear() { _len = 0; }
int length() const { return _len; }
int max_length() const { return _max; }
void trunc_to(int l) { assert(l <= _len,"cannot increase length"); _len = l; }
bool is_empty() const { return _len == 0; }
bool is_nonempty() const { return _len != 0; }
bool is_full() const { return _len == _max; }
DEBUG_ONLY(E* data_addr() const { return _data; })
void print();
int append(const E& elem) {
check_nesting();
if (_len == _max) grow(_len);
int idx = _len++;
_data[idx] = elem;
return idx;
}
bool append_if_missing(const E& elem) {
// Returns TRUE if elem is added.
bool missed = !contains(elem);
if (missed) append(elem);
return missed;
}
E& at(int i) {
assert(0 <= i && i < _len, "illegal index");
return _data[i];
}
E const& at(int i) const {
assert(0 <= i && i < _len, "illegal index");
return _data[i];
}
E* adr_at(int i) const {
assert(0 <= i && i < _len, "illegal index");
return &_data[i];
}
E first() const {
assert(_len > 0, "empty list");
return _data[0];
}
E top() const {
assert(_len > 0, "empty list");
return _data[_len-1];
}
GrowableArrayIterator<E> begin() const {
return GrowableArrayIterator<E>(this, 0);
}
GrowableArrayIterator<E> end() const {
return GrowableArrayIterator<E>(this, length());
}
void push(const E& elem) { append(elem); }
E pop() {
assert(_len > 0, "empty list");
return _data[--_len];
}
void at_put(int i, const E& elem) {
assert(0 <= i && i < _len, "illegal index");
_data[i] = elem;
}
E at_grow(int i, const E& fill = E()) {
assert(0 <= i, "negative index");
check_nesting();
if (i >= _len) {
if (i >= _max) grow(i);
for (int j = _len; j <= i; j++)
_data[j] = fill;
_len = i+1;
}
return _data[i];
}
void at_put_grow(int i, const E& elem, const E& fill = E()) {
assert(0 <= i, "negative index");
check_nesting();
raw_at_put_grow(i, elem, fill);
}
bool contains(const E& elem) const {
for (int i = 0; i < _len; i++) {
if (_data[i] == elem) return true;
}
return false;
}
int find(const E& elem) const {
for (int i = 0; i < _len; i++) {
if (_data[i] == elem) return i;
}
return -1;
}
int find_from_end(const E& elem) const {
for (int i = _len-1; i >= 0; i--) {
if (_data[i] == elem) return i;
}
return -1;
}
int find(void* token, bool f(void*, E)) const {
for (int i = 0; i < _len; i++) {
if (f(token, _data[i])) return i;
}
return -1;
}
int find_from_end(void* token, bool f(void*, E)) const {
// start at the end of the array
for (int i = _len-1; i >= 0; i--) {
if (f(token, _data[i])) return i;
}
return -1;
}
void remove(const E& elem) {
for (int i = 0; i < _len; i++) {
if (_data[i] == elem) {
for (int j = i + 1; j < _len; j++) _data[j-1] = _data[j];
_len--;
return;
}
}
ShouldNotReachHere();
}
// The order is preserved.
void remove_at(int index) {
assert(0 <= index && index < _len, "illegal index");
for (int j = index + 1; j < _len; j++) _data[j-1] = _data[j];
_len--;
}
// The order is changed.
void delete_at(int index) {
assert(0 <= index && index < _len, "illegal index");
if (index < --_len) {
// Replace removed element with last one.
_data[index] = _data[_len];
}
}
// inserts the given element before the element at index i
void insert_before(const int idx, const E& elem) {
assert(0 <= idx && idx <= _len, "illegal index");
check_nesting();
if (_len == _max) grow(_len);
for (int j = _len - 1; j >= idx; j--) {
_data[j + 1] = _data[j];
}
_len++;
_data[idx] = elem;
}
void appendAll(const GrowableArray<E>* l) {
for (int i = 0; i < l->_len; i++) {
raw_at_put_grow(_len, l->_data[i], E());
}
}
void sort(int f(E*,E*)) {
qsort(_data, length(), sizeof(E), (_sort_Fn)f);
}
// sort by fixed-stride sub arrays:
void sort(int f(E*,E*), int stride) {
qsort(_data, length() / stride, sizeof(E) * stride, (_sort_Fn)f);
}
// Binary search and insertion utility. Search array for element
// matching key according to the static compare function. Insert
// that element is not already in the list. Assumes the list is
// already sorted according to compare function.
template <int compare(const E&, const E&)> E insert_sorted(E& key) {
bool found;
int location = find_sorted<E, compare>(key, found);
if (!found) {
insert_before(location, key);
}
return at(location);
}
template <typename K, int compare(const K&, const E&)> int find_sorted(const K& key, bool& found) {
found = false;
int min = 0;
int max = length() - 1;
while (max >= min) {
int mid = (int)(((uint)max + min) / 2);
E value = at(mid);
int diff = compare(key, value);
if (diff > 0) {
min = mid + 1;
} else if (diff < 0) {
max = mid - 1;
} else {
found = true;
return mid;
}
}
return min;
}
};
// Global GrowableArray methods (one instance in the library per each 'E' type).
template<class E> void GrowableArray<E>::grow(int j) {
// grow the array by doubling its size (amortized growth)
int old_max = _max;
if (_max == 0) _max = 1; // prevent endless loop
while (j >= _max) _max = _max*2;
// j < _max
E* newData = (E*)raw_allocate(sizeof(E));
int i = 0;
for ( ; i < _len; i++) ::new ((void*)&newData[i]) E(_data[i]);
// Needed for Visual Studio 2012 and older
#ifdef _MSC_VER
#pragma warning(suppress: 4345)
#endif
for ( ; i < _max; i++) ::new ((void*)&newData[i]) E();
for (i = 0; i < old_max; i++) _data[i].~E();
if (on_C_heap() && _data != NULL) {
FreeHeap(_data);
}
_data = newData;
}
template<class E> void GrowableArray<E>::raw_at_put_grow(int i, const E& p, const E& fill) {
if (i >= _len) {
if (i >= _max) grow(i);
for (int j = _len; j < i; j++)
_data[j] = fill;
_len = i+1;
}
_data[i] = p;
}
// This function clears and deallocate the data in the growable array that
// has been allocated on the C heap. It's not public - called by the
// destructor.
template<class E> void GrowableArray<E>::clear_and_deallocate() {
assert(on_C_heap(),
"clear_and_deallocate should only be called when on C heap");
clear();
if (_data != NULL) {
for (int i = 0; i < _max; i++) _data[i].~E();
FreeHeap(_data);
_data = NULL;
}
}
template<class E> void GrowableArray<E>::print() {
tty->print("Growable Array " INTPTR_FORMAT, this);
tty->print(": length %ld (_max %ld) { ", _len, _max);
for (int i = 0; i < _len; i++) tty->print(INTPTR_FORMAT " ", *(intptr_t*)&(_data[i]));
tty->print("}\n");
}
// Custom STL-style iterator to iterate over GrowableArrays
// It is constructed by invoking GrowableArray::begin() and GrowableArray::end()
template<class E> class GrowableArrayIterator : public StackObj {
friend class GrowableArray<E>;
template<class F, class UnaryPredicate> friend class GrowableArrayFilterIterator;
private:
const GrowableArray<E>* _array; // GrowableArray we iterate over
int _position; // The current position in the GrowableArray
// Private constructor used in GrowableArray::begin() and GrowableArray::end()
GrowableArrayIterator(const GrowableArray<E>* array, int position) : _array(array), _position(position) {
assert(0 <= position && position <= _array->length(), "illegal position");
}
public:
GrowableArrayIterator<E>& operator++() { ++_position; return *this; }
E operator*() { return _array->at(_position); }
bool operator==(const GrowableArrayIterator<E>& rhs) {
assert(_array == rhs._array, "iterator belongs to different array");
return _position == rhs._position;
}
bool operator!=(const GrowableArrayIterator<E>& rhs) {
assert(_array == rhs._array, "iterator belongs to different array");
return _position != rhs._position;
}
};
// Custom STL-style iterator to iterate over elements of a GrowableArray that satisfy a given predicate
template<class E, class UnaryPredicate> class GrowableArrayFilterIterator : public StackObj {
friend class GrowableArray<E>;
private:
const GrowableArray<E>* _array; // GrowableArray we iterate over
int _position; // Current position in the GrowableArray
UnaryPredicate _predicate; // Unary predicate the elements of the GrowableArray should satisfy
public:
GrowableArrayFilterIterator(const GrowableArrayIterator<E>& begin, UnaryPredicate filter_predicate)
: _array(begin._array), _position(begin._position), _predicate(filter_predicate) {
// Advance to first element satisfying the predicate
while(_position != _array->length() && !_predicate(_array->at(_position))) {
++_position;
}
}
GrowableArrayFilterIterator<E, UnaryPredicate>& operator++() {
do {
// Advance to next element satisfying the predicate
++_position;
} while(_position != _array->length() && !_predicate(_array->at(_position)));
return *this;
}
E operator*() { return _array->at(_position); }
bool operator==(const GrowableArrayIterator<E>& rhs) {
assert(_array == rhs._array, "iterator belongs to different array");
return _position == rhs._position;
}
bool operator!=(const GrowableArrayIterator<E>& rhs) {
assert(_array == rhs._array, "iterator belongs to different array");
return _position != rhs._position;
}
bool operator==(const GrowableArrayFilterIterator<E, UnaryPredicate>& rhs) {
assert(_array == rhs._array, "iterator belongs to different array");
return _position == rhs._position;
}
bool operator!=(const GrowableArrayFilterIterator<E, UnaryPredicate>& rhs) {
assert(_array == rhs._array, "iterator belongs to different array");
return _position != rhs._position;
}
};
#endif // SHARE_VM_UTILITIES_GROWABLEARRAY_HPP