8199604: Rename CardTableModRefBS to CardTableBarrierSet
Reviewed-by: stefank, pliden
/*
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_PARALLEL_PARALLELSCAVENGEHEAP_HPP
#define SHARE_VM_GC_PARALLEL_PARALLELSCAVENGEHEAP_HPP
#include "gc/parallel/generationSizer.hpp"
#include "gc/parallel/objectStartArray.hpp"
#include "gc/parallel/psGCAdaptivePolicyCounters.hpp"
#include "gc/parallel/psOldGen.hpp"
#include "gc/parallel/psYoungGen.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/collectorPolicy.hpp"
#include "gc/shared/gcPolicyCounters.hpp"
#include "gc/shared/gcWhen.hpp"
#include "gc/shared/softRefPolicy.hpp"
#include "gc/shared/strongRootsScope.hpp"
#include "memory/metaspace.hpp"
#include "utilities/growableArray.hpp"
#include "utilities/ostream.hpp"
class AdjoiningGenerations;
class GCHeapSummary;
class GCTaskManager;
class MemoryManager;
class MemoryPool;
class PSAdaptiveSizePolicy;
class PSCardTable;
class PSHeapSummary;
class ParallelScavengeHeap : public CollectedHeap {
friend class VMStructs;
private:
static PSYoungGen* _young_gen;
static PSOldGen* _old_gen;
// Sizing policy for entire heap
static PSAdaptiveSizePolicy* _size_policy;
static PSGCAdaptivePolicyCounters* _gc_policy_counters;
GenerationSizer* _collector_policy;
SoftRefPolicy _soft_ref_policy;
// Collection of generations that are adjacent in the
// space reserved for the heap.
AdjoiningGenerations* _gens;
unsigned int _death_march_count;
// The task manager
static GCTaskManager* _gc_task_manager;
GCMemoryManager* _young_manager;
GCMemoryManager* _old_manager;
MemoryPool* _eden_pool;
MemoryPool* _survivor_pool;
MemoryPool* _old_pool;
virtual void initialize_serviceability();
void trace_heap(GCWhen::Type when, const GCTracer* tracer);
protected:
static inline size_t total_invocations();
HeapWord* allocate_new_tlab(size_t size);
inline bool should_alloc_in_eden(size_t size) const;
inline void death_march_check(HeapWord* const result, size_t size);
HeapWord* mem_allocate_old_gen(size_t size);
public:
ParallelScavengeHeap(GenerationSizer* policy) :
CollectedHeap(), _collector_policy(policy), _death_march_count(0) { }
// For use by VM operations
enum CollectionType {
Scavenge,
MarkSweep
};
virtual Name kind() const {
return CollectedHeap::ParallelScavengeHeap;
}
virtual const char* name() const {
return "Parallel";
}
virtual CollectorPolicy* collector_policy() const { return _collector_policy; }
virtual SoftRefPolicy* soft_ref_policy() { return &_soft_ref_policy; }
virtual GrowableArray<GCMemoryManager*> memory_managers();
virtual GrowableArray<MemoryPool*> memory_pools();
static PSYoungGen* young_gen() { return _young_gen; }
static PSOldGen* old_gen() { return _old_gen; }
virtual PSAdaptiveSizePolicy* size_policy() { return _size_policy; }
static PSGCAdaptivePolicyCounters* gc_policy_counters() { return _gc_policy_counters; }
static ParallelScavengeHeap* heap();
static GCTaskManager* const gc_task_manager() { return _gc_task_manager; }
CardTableBarrierSet* barrier_set();
PSCardTable* card_table();
AdjoiningGenerations* gens() { return _gens; }
// Returns JNI_OK on success
virtual jint initialize();
void post_initialize();
void update_counters();
// The alignment used for the various areas
size_t space_alignment() { return _collector_policy->space_alignment(); }
size_t generation_alignment() { return _collector_policy->gen_alignment(); }
// Return the (conservative) maximum heap alignment
static size_t conservative_max_heap_alignment() {
return CollectorPolicy::compute_heap_alignment();
}
size_t capacity() const;
size_t used() const;
// Return "true" if all generations have reached the
// maximal committed limit that they can reach, without a garbage
// collection.
virtual bool is_maximal_no_gc() const;
// Return true if the reference points to an object that
// can be moved in a partial collection. For currently implemented
// generational collectors that means during a collection of
// the young gen.
virtual bool is_scavengable(oop obj);
virtual void register_nmethod(nmethod* nm);
virtual void verify_nmethod(nmethod* nmethod);
size_t max_capacity() const;
// Whether p is in the allocated part of the heap
bool is_in(const void* p) const;
bool is_in_reserved(const void* p) const;
bool is_in_young(oop p); // reserved part
bool is_in_old(oop p); // reserved part
// Memory allocation. "gc_time_limit_was_exceeded" will
// be set to true if the adaptive size policy determine that
// an excessive amount of time is being spent doing collections
// and caused a NULL to be returned. If a NULL is not returned,
// "gc_time_limit_was_exceeded" has an undefined meaning.
HeapWord* mem_allocate(size_t size, bool* gc_overhead_limit_was_exceeded);
// Allocation attempt(s) during a safepoint. It should never be called
// to allocate a new TLAB as this allocation might be satisfied out
// of the old generation.
HeapWord* failed_mem_allocate(size_t size);
// Support for System.gc()
void collect(GCCause::Cause cause);
// These also should be called by the vm thread at a safepoint (e.g., from a
// VM operation).
//
// The first collects the young generation only, unless the scavenge fails; it
// will then attempt a full gc. The second collects the entire heap; if
// maximum_compaction is true, it will compact everything and clear all soft
// references.
inline void invoke_scavenge();
// Perform a full collection
virtual void do_full_collection(bool clear_all_soft_refs);
bool supports_inline_contig_alloc() const { return !UseNUMA; }
HeapWord* volatile* top_addr() const { return !UseNUMA ? young_gen()->top_addr() : (HeapWord* volatile*)-1; }
HeapWord** end_addr() const { return !UseNUMA ? young_gen()->end_addr() : (HeapWord**)-1; }
void ensure_parsability(bool retire_tlabs);
void accumulate_statistics_all_tlabs();
void resize_all_tlabs();
bool supports_tlab_allocation() const { return true; }
size_t tlab_capacity(Thread* thr) const;
size_t tlab_used(Thread* thr) const;
size_t unsafe_max_tlab_alloc(Thread* thr) const;
void object_iterate(ObjectClosure* cl);
void safe_object_iterate(ObjectClosure* cl) { object_iterate(cl); }
HeapWord* block_start(const void* addr) const;
size_t block_size(const HeapWord* addr) const;
bool block_is_obj(const HeapWord* addr) const;
jlong millis_since_last_gc();
void prepare_for_verify();
PSHeapSummary create_ps_heap_summary();
virtual void print_on(outputStream* st) const;
virtual void print_on_error(outputStream* st) const;
virtual void print_gc_threads_on(outputStream* st) const;
virtual void gc_threads_do(ThreadClosure* tc) const;
virtual void print_tracing_info() const;
void verify(VerifyOption option /* ignored */);
// Resize the young generation. The reserved space for the
// generation may be expanded in preparation for the resize.
void resize_young_gen(size_t eden_size, size_t survivor_size);
// Resize the old generation. The reserved space for the
// generation may be expanded in preparation for the resize.
void resize_old_gen(size_t desired_free_space);
// Save the tops of the spaces in all generations
void record_gen_tops_before_GC() PRODUCT_RETURN;
// Mangle the unused parts of all spaces in the heap
void gen_mangle_unused_area() PRODUCT_RETURN;
// Call these in sequential code around the processing of strong roots.
class ParStrongRootsScope : public MarkScope {
public:
ParStrongRootsScope();
~ParStrongRootsScope();
};
GCMemoryManager* old_gc_manager() const { return _old_manager; }
GCMemoryManager* young_gc_manager() const { return _young_manager; }
};
// Simple class for storing info about the heap at the start of GC, to be used
// after GC for comparison/printing.
class PreGCValues {
public:
PreGCValues(ParallelScavengeHeap* heap) :
_heap_used(heap->used()),
_young_gen_used(heap->young_gen()->used_in_bytes()),
_old_gen_used(heap->old_gen()->used_in_bytes()),
_metadata_used(MetaspaceUtils::used_bytes()) { };
size_t heap_used() const { return _heap_used; }
size_t young_gen_used() const { return _young_gen_used; }
size_t old_gen_used() const { return _old_gen_used; }
size_t metadata_used() const { return _metadata_used; }
private:
size_t _heap_used;
size_t _young_gen_used;
size_t _old_gen_used;
size_t _metadata_used;
};
// Class that can be used to print information about the
// adaptive size policy at intervals specified by
// AdaptiveSizePolicyOutputInterval. Only print information
// if an adaptive size policy is in use.
class AdaptiveSizePolicyOutput : AllStatic {
static bool enabled() {
return UseParallelGC &&
UseAdaptiveSizePolicy &&
log_is_enabled(Debug, gc, ergo);
}
public:
static void print() {
if (enabled()) {
ParallelScavengeHeap::heap()->size_policy()->print();
}
}
static void print(AdaptiveSizePolicy* size_policy, uint count) {
bool do_print =
enabled() &&
(AdaptiveSizePolicyOutputInterval > 0) &&
(count % AdaptiveSizePolicyOutputInterval) == 0;
if (do_print) {
size_policy->print();
}
}
};
#endif // SHARE_VM_GC_PARALLEL_PARALLELSCAVENGEHEAP_HPP