8051989: Unportable format string argument mismatch in jdk/src/share/native/com/sun/java/util/jar/pack/unpack.cpp
Reviewed-by: ksrini
/*
* Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
// -*- C++ -*-
// Program for unpacking specially compressed Java packages.
// John R. Rose
/*
* When compiling for a 64bit LP64 system (longs and pointers being 64bits),
* the printf format %ld is correct and use of %lld will cause warning
* errors from some compilers (gcc/g++).
* _LP64 can be explicitly set (used on Linux).
* Should be checking for the Visual C++ since the _LP64 is set on the 64-bit
* systems but the correct format prefix for 64-bit integers is ll.
* Solaris compilers will define __sparcv9 or __x86_64 on 64bit compilations.
*/
#if !defined (_MSC_VER) && \
(defined(_LP64) || defined(__sparcv9) || defined(__x86_64))
#define LONG_LONG_FORMAT "%ld"
#define LONG_LONG_HEX_FORMAT "%lx"
#else
#define LONG_LONG_FORMAT "%lld"
#define LONG_LONG_HEX_FORMAT "%016llx"
#endif
#include <sys/types.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
#include <limits.h>
#include <time.h>
#include "defines.h"
#include "bytes.h"
#include "utils.h"
#include "coding.h"
#include "bands.h"
#include "constants.h"
#include "zip.h"
#include "unpack.h"
// tags, in canonical order:
static const byte TAGS_IN_ORDER[] = {
CONSTANT_Utf8,
CONSTANT_Integer,
CONSTANT_Float,
CONSTANT_Long,
CONSTANT_Double,
CONSTANT_String,
CONSTANT_Class,
CONSTANT_Signature,
CONSTANT_NameandType,
CONSTANT_Fieldref,
CONSTANT_Methodref,
CONSTANT_InterfaceMethodref,
// constants defined as of JDK 7
CONSTANT_MethodHandle,
CONSTANT_MethodType,
CONSTANT_BootstrapMethod,
CONSTANT_InvokeDynamic
};
#define N_TAGS_IN_ORDER (sizeof TAGS_IN_ORDER)
#ifndef PRODUCT
static const char* TAG_NAME[] = {
"*None",
"Utf8",
"*Unicode",
"Integer",
"Float",
"Long",
"Double",
"Class",
"String",
"Fieldref",
"Methodref",
"InterfaceMethodref",
"NameandType",
"*Signature",
"unused14",
"MethodHandle",
"MethodType",
"*BootstrapMethod",
"InvokeDynamic",
0
};
static const char* ATTR_CONTEXT_NAME[] = { // match ATTR_CONTEXT_NAME, etc.
"class", "field", "method", "code"
};
#else
#define ATTR_CONTEXT_NAME ((const char**)null)
#endif
// Note that REQUESTED_LDC comes first, then the normal REQUESTED,
// in the regular constant pool.
enum { REQUESTED_NONE = -1,
// The codes below REQUESTED_NONE are in constant pool output order,
// for the sake of outputEntry_cmp:
REQUESTED_LDC = -99, REQUESTED
};
#define NO_INORD ((uint)-1)
struct entry {
byte tag;
#if 0
byte bits;
enum {
//EB_EXTRA = 1,
EB_SUPER = 2
};
#endif
unsigned short nrefs; // pack w/ tag
int outputIndex;
uint inord; // &cp.entries[cp.tag_base[this->tag]+this->inord] == this
entry* *refs;
// put last to pack best
union {
bytes b;
int i;
jlong l;
} value;
void requestOutputIndex(cpool& cp, int req = REQUESTED);
int getOutputIndex() {
assert(outputIndex > REQUESTED_NONE);
return outputIndex;
}
entry* ref(int refnum) {
assert((uint)refnum < nrefs);
return refs[refnum];
}
const char* utf8String() {
assert(tagMatches(CONSTANT_Utf8));
assert(value.b.len == strlen((const char*)value.b.ptr));
return (const char*)value.b.ptr;
}
entry* className() {
assert(tagMatches(CONSTANT_Class));
return ref(0);
}
entry* memberClass() {
assert(tagMatches(CONSTANT_AnyMember));
return ref(0);
}
entry* memberDescr() {
assert(tagMatches(CONSTANT_AnyMember));
return ref(1);
}
entry* descrName() {
assert(tagMatches(CONSTANT_NameandType));
return ref(0);
}
entry* descrType() {
assert(tagMatches(CONSTANT_NameandType));
return ref(1);
}
int typeSize();
bytes& asUtf8();
int asInteger() { assert(tag == CONSTANT_Integer); return value.i; }
bool isUtf8(bytes& b) { return tagMatches(CONSTANT_Utf8) && value.b.equals(b); }
bool isDoubleWord() { return tag == CONSTANT_Double || tag == CONSTANT_Long; }
bool tagMatches(byte tag2) {
return (tag2 == tag)
|| (tag2 == CONSTANT_Utf8 && tag == CONSTANT_Signature)
#ifndef PRODUCT
|| (tag2 == CONSTANT_FieldSpecific
&& tag >= CONSTANT_Integer && tag <= CONSTANT_String && tag != CONSTANT_Class)
|| (tag2 == CONSTANT_AnyMember
&& tag >= CONSTANT_Fieldref && tag <= CONSTANT_InterfaceMethodref)
#endif
;
}
#ifdef PRODUCT
char* string() { return 0; }
#else
char* string(); // see far below
#endif
};
entry* cpindex::get(uint i) {
if (i >= len)
return null;
else if (base1 != null)
// primary index
return &base1[i];
else
// secondary index
return base2[i];
}
inline bytes& entry::asUtf8() {
assert(tagMatches(CONSTANT_Utf8));
return value.b;
}
int entry::typeSize() {
assert(tagMatches(CONSTANT_Utf8));
const char* sigp = (char*) value.b.ptr;
switch (*sigp) {
case '(': sigp++; break; // skip opening '('
case 'D':
case 'J': return 2; // double field
default: return 1; // field
}
int siglen = 0;
for (;;) {
int ch = *sigp++;
switch (ch) {
case 'D': case 'J':
siglen += 1;
break;
case '[':
// Skip rest of array info.
while (ch == '[') { ch = *sigp++; }
if (ch != 'L') break;
// else fall through
case 'L':
sigp = strchr(sigp, ';');
if (sigp == null) {
unpack_abort("bad data");
return 0;
}
sigp += 1;
break;
case ')': // closing ')'
return siglen;
}
siglen += 1;
}
}
inline cpindex* cpool::getFieldIndex(entry* classRef) {
if (classRef == NULL) { abort("missing class reference"); return NULL; }
assert(classRef->tagMatches(CONSTANT_Class));
assert((uint)classRef->inord < (uint)tag_count[CONSTANT_Class]);
return &member_indexes[classRef->inord*2+0];
}
inline cpindex* cpool::getMethodIndex(entry* classRef) {
if (classRef == NULL) { abort("missing class reference"); return NULL; }
assert(classRef->tagMatches(CONSTANT_Class));
assert((uint)classRef->inord < (uint)tag_count[CONSTANT_Class]);
return &member_indexes[classRef->inord*2+1];
}
struct inner_class {
entry* inner;
entry* outer;
entry* name;
int flags;
inner_class* next_sibling;
bool requested;
};
// Here is where everything gets deallocated:
void unpacker::free() {
int i;
assert(jniobj == null); // caller resp.
assert(infileptr == null); // caller resp.
if (jarout != null) jarout->reset();
if (gzin != null) { gzin->free(); gzin = null; }
if (free_input) input.free();
// free everybody ever allocated with U_NEW or (recently) with T_NEW
assert(smallbuf.base() == null || mallocs.contains(smallbuf.base()));
assert(tsmallbuf.base() == null || tmallocs.contains(tsmallbuf.base()));
mallocs.freeAll();
tmallocs.freeAll();
smallbuf.init();
tsmallbuf.init();
bcimap.free();
class_fixup_type.free();
class_fixup_offset.free();
class_fixup_ref.free();
code_fixup_type.free();
code_fixup_offset.free();
code_fixup_source.free();
requested_ics.free();
cp.requested_bsms.free();
cur_classfile_head.free();
cur_classfile_tail.free();
for (i = 0; i < ATTR_CONTEXT_LIMIT; i++)
attr_defs[i].free();
// free CP state
cp.outputEntries.free();
for (i = 0; i < CONSTANT_Limit; i++)
cp.tag_extras[i].free();
}
// input handling
// Attempts to advance rplimit so that (rplimit-rp) is at least 'more'.
// Will eagerly read ahead by larger chunks, if possible.
// Returns false if (rplimit-rp) is not at least 'more',
// unless rplimit hits input.limit().
bool unpacker::ensure_input(jlong more) {
julong want = more - input_remaining();
if ((jlong)want <= 0) return true; // it's already in the buffer
if (rplimit == input.limit()) return true; // not expecting any more
if (read_input_fn == null) {
// assume it is already all there
bytes_read += input.limit() - rplimit;
rplimit = input.limit();
return true;
}
CHECK_0;
julong remaining = (input.limit() - rplimit); // how much left to read?
byte* rpgoal = (want >= remaining)? input.limit(): rplimit + (size_t)want;
enum { CHUNK_SIZE = (1<<14) };
julong fetch = want;
if (fetch < CHUNK_SIZE)
fetch = CHUNK_SIZE;
if (fetch > remaining*3/4)
fetch = remaining;
// Try to fetch at least "more" bytes.
while ((jlong)fetch > 0) {
jlong nr = (*read_input_fn)(this, rplimit, fetch, remaining);
if (nr <= 0) {
return (rplimit >= rpgoal);
}
remaining -= nr;
rplimit += nr;
fetch -= nr;
bytes_read += nr;
assert(remaining == (julong)(input.limit() - rplimit));
}
return true;
}
// output handling
fillbytes* unpacker::close_output(fillbytes* which) {
assert(wp != null);
if (which == null) {
if (wpbase == cur_classfile_head.base()) {
which = &cur_classfile_head;
} else {
which = &cur_classfile_tail;
}
}
assert(wpbase == which->base());
assert(wplimit == which->end());
which->setLimit(wp);
wp = null;
wplimit = null;
//wpbase = null;
return which;
}
//maybe_inline
void unpacker::ensure_put_space(size_t size) {
if (wp + size <= wplimit) return;
// Determine which segment needs expanding.
fillbytes* which = close_output();
byte* wp0 = which->grow(size);
wpbase = which->base();
wplimit = which->end();
wp = wp0;
}
maybe_inline
byte* unpacker::put_space(size_t size) {
byte* wp0 = wp;
byte* wp1 = wp0 + size;
if (wp1 > wplimit) {
ensure_put_space(size);
wp0 = wp;
wp1 = wp0 + size;
}
wp = wp1;
return wp0;
}
maybe_inline
void unpacker::putu2_at(byte* wp, int n) {
if (n != (unsigned short)n) {
unpack_abort(ERROR_OVERFLOW);
return;
}
wp[0] = (n) >> 8;
wp[1] = (n) >> 0;
}
maybe_inline
void unpacker::putu4_at(byte* wp, int n) {
wp[0] = (n) >> 24;
wp[1] = (n) >> 16;
wp[2] = (n) >> 8;
wp[3] = (n) >> 0;
}
maybe_inline
void unpacker::putu8_at(byte* wp, jlong n) {
putu4_at(wp+0, (int)((julong)n >> 32));
putu4_at(wp+4, (int)((julong)n >> 0));
}
maybe_inline
void unpacker::putu2(int n) {
putu2_at(put_space(2), n);
}
maybe_inline
void unpacker::putu4(int n) {
putu4_at(put_space(4), n);
}
maybe_inline
void unpacker::putu8(jlong n) {
putu8_at(put_space(8), n);
}
maybe_inline
int unpacker::putref_index(entry* e, int size) {
if (e == null)
return 0;
else if (e->outputIndex > REQUESTED_NONE)
return e->outputIndex;
else if (e->tag == CONSTANT_Signature)
return putref_index(e->ref(0), size);
else {
e->requestOutputIndex(cp, (size == 1 ? REQUESTED_LDC : REQUESTED));
// Later on we'll fix the bits.
class_fixup_type.addByte(size);
class_fixup_offset.add((int)wpoffset());
class_fixup_ref.add(e);
#ifdef PRODUCT
return 0;
#else
return 0x20+size; // 0x22 is easy to eyeball
#endif
}
}
maybe_inline
void unpacker::putref(entry* e) {
int oidx = putref_index(e, 2);
putu2_at(put_space(2), oidx);
}
maybe_inline
void unpacker::putu1ref(entry* e) {
int oidx = putref_index(e, 1);
putu1_at(put_space(1), oidx);
}
static int total_cp_size[] = {0, 0};
static int largest_cp_ref[] = {0, 0};
static int hash_probes[] = {0, 0};
// Allocation of small and large blocks.
enum { CHUNK = (1 << 14), SMALL = (1 << 9) };
// Call malloc. Try to combine small blocks and free much later.
void* unpacker::alloc_heap(size_t size, bool smallOK, bool temp) {
if (!smallOK || size > SMALL) {
void* res = must_malloc((int)size);
(temp ? &tmallocs : &mallocs)->add(res);
return res;
}
fillbytes& xsmallbuf = *(temp ? &tsmallbuf : &smallbuf);
if (!xsmallbuf.canAppend(size+1)) {
xsmallbuf.init(CHUNK);
(temp ? &tmallocs : &mallocs)->add(xsmallbuf.base());
}
int growBy = (int)size;
growBy += -growBy & 7; // round up mod 8
return xsmallbuf.grow(growBy);
}
maybe_inline
void unpacker::saveTo(bytes& b, byte* ptr, size_t len) {
b.ptr = U_NEW(byte, add_size(len,1));
if (aborting()) {
b.len = 0;
return;
}
b.len = len;
b.copyFrom(ptr, len);
}
bool testBit(int archive_options, int bitMask) {
return (archive_options & bitMask) != 0;
}
// Read up through band_headers.
// Do the archive_size dance to set the size of the input mega-buffer.
void unpacker::read_file_header() {
// Read file header to determine file type and total size.
enum {
MAGIC_BYTES = 4,
AH_LENGTH_0 = 3, // archive_header_0 = {minver, majver, options}
AH_LENGTH_MIN = 15, // observed in spec {header_0[3], cp_counts[8], class_counts[4]}
AH_LENGTH_0_MAX = AH_LENGTH_0 + 1, // options might have 2 bytes
AH_LENGTH = 30, //maximum archive header length (w/ all fields)
// Length contributions from optional header fields:
AH_LENGTH_S = 2, // archive_header_S = optional {size_hi, size_lo}
AH_ARCHIVE_SIZE_HI = 0, // offset in archive_header_S
AH_ARCHIVE_SIZE_LO = 1, // offset in archive_header_S
AH_FILE_HEADER_LEN = 5, // file_counts = {{size_hi, size_lo), next, modtile, files}
AH_SPECIAL_FORMAT_LEN = 2, // special_count = {layouts, band_headers}
AH_CP_NUMBER_LEN = 4, // cp_number_counts = {int, float, long, double}
AH_CP_EXTRA_LEN = 4, // cp_attr_counts = {MH, MT, InDy, BSM}
ARCHIVE_SIZE_MIN = AH_LENGTH_MIN - AH_LENGTH_0 - AH_LENGTH_S,
FIRST_READ = MAGIC_BYTES + AH_LENGTH_MIN
};
assert(AH_LENGTH_MIN == 15); // # of UNSIGNED5 fields required after archive_magic
// An absolute minimum null archive is magic[4], {minver,majver,options}[3],
// archive_size[0], cp_counts[8], class_counts[4], for a total of 19 bytes.
// (Note that archive_size is optional; it may be 0..10 bytes in length.)
// The first read must capture everything up through the options field.
// This happens to work even if {minver,majver,options} is a pathological
// 15 bytes long. Legal pack files limit those three fields to 1+1+2 bytes.
assert(FIRST_READ >= MAGIC_BYTES + AH_LENGTH_0 * B_MAX);
// Up through archive_size, the largest possible archive header is
// magic[4], {minver,majver,options}[4], archive_size[10].
// (Note only the low 12 bits of options are allowed to be non-zero.)
// In order to parse archive_size, we need at least this many bytes
// in the first read. Of course, if archive_size_hi is more than
// a byte, we probably will fail to allocate the buffer, since it
// will be many gigabytes long. This is a practical, not an
// architectural limit to Pack200 archive sizes.
assert(FIRST_READ >= MAGIC_BYTES + AH_LENGTH_0_MAX + 2*B_MAX);
bool foreign_buf = (read_input_fn == null);
byte initbuf[(int)FIRST_READ + (int)C_SLOP + 200]; // 200 is for JAR I/O
if (foreign_buf) {
// inbytes is all there is
input.set(inbytes);
rp = input.base();
rplimit = input.limit();
} else {
// inbytes, if not empty, contains some read-ahead we must use first
// ensure_input will take care of copying it into initbuf,
// then querying read_input_fn for any additional data needed.
// However, the caller must assume that we use up all of inbytes.
// There is no way to tell the caller that we used only part of them.
// Therefore, the caller must use only a bare minimum of read-ahead.
if (inbytes.len > FIRST_READ) {
abort("too much read-ahead");
return;
}
input.set(initbuf, sizeof(initbuf));
input.b.clear();
input.b.copyFrom(inbytes);
rplimit = rp = input.base();
rplimit += inbytes.len;
bytes_read += inbytes.len;
}
// Read only 19 bytes, which is certain to contain #archive_options fields,
// but is certain not to overflow past the archive_header.
input.b.len = FIRST_READ;
if (!ensure_input(FIRST_READ))
abort("EOF reading archive magic number");
if (rp[0] == 'P' && rp[1] == 'K') {
#ifdef UNPACK_JNI
// Java driver must handle this case before we get this far.
abort("encountered a JAR header in unpacker");
#else
// In the Unix-style program, we simply simulate a copy command.
// Copy until EOF; assume the JAR file is the last segment.
fprintf(errstrm, "Copy-mode.\n");
for (;;) {
jarout->write_data(rp, (int)input_remaining());
if (foreign_buf)
break; // one-time use of a passed in buffer
if (input.size() < CHUNK) {
// Get some breathing room.
input.set(U_NEW(byte, (size_t) CHUNK + C_SLOP), (size_t) CHUNK);
CHECK;
}
rp = rplimit = input.base();
if (!ensure_input(1))
break;
}
jarout->closeJarFile(false);
#endif
return;
}
// Read the magic number.
magic = 0;
for (int i1 = 0; i1 < (int)sizeof(magic); i1++) {
magic <<= 8;
magic += (*rp++ & 0xFF);
}
// Read the first 3 values from the header.
value_stream hdr;
int hdrVals = 0;
int hdrValsSkipped = 0; // for assert
hdr.init(rp, rplimit, UNSIGNED5_spec);
minver = hdr.getInt();
majver = hdr.getInt();
hdrVals += 2;
int majmin[4][2] = {
{JAVA5_PACKAGE_MAJOR_VERSION, JAVA5_PACKAGE_MINOR_VERSION},
{JAVA6_PACKAGE_MAJOR_VERSION, JAVA6_PACKAGE_MINOR_VERSION},
{JAVA7_PACKAGE_MAJOR_VERSION, JAVA7_PACKAGE_MINOR_VERSION},
{JAVA8_PACKAGE_MAJOR_VERSION, JAVA8_PACKAGE_MINOR_VERSION}
};
int majminfound = false;
for (int i = 0 ; i < 4 ; i++) {
if (majver == majmin[i][0] && minver == majmin[i][1]) {
majminfound = true;
break;
}
}
if (majminfound == null) {
char message[200];
sprintf(message, "@" ERROR_FORMAT ": magic/ver = "
"%08X/%d.%d should be %08X/%d.%d OR %08X/%d.%d OR %08X/%d.%d OR %08X/%d.%d\n",
magic, majver, minver,
JAVA_PACKAGE_MAGIC, JAVA5_PACKAGE_MAJOR_VERSION, JAVA5_PACKAGE_MINOR_VERSION,
JAVA_PACKAGE_MAGIC, JAVA6_PACKAGE_MAJOR_VERSION, JAVA6_PACKAGE_MINOR_VERSION,
JAVA_PACKAGE_MAGIC, JAVA7_PACKAGE_MAJOR_VERSION, JAVA7_PACKAGE_MINOR_VERSION,
JAVA_PACKAGE_MAGIC, JAVA8_PACKAGE_MAJOR_VERSION, JAVA8_PACKAGE_MINOR_VERSION);
abort(message);
}
CHECK;
archive_options = hdr.getInt();
hdrVals += 1;
assert(hdrVals == AH_LENGTH_0); // first three fields only
bool haveSizeHi = testBit(archive_options, AO_HAVE_FILE_SIZE_HI);
bool haveModTime = testBit(archive_options, AO_HAVE_FILE_MODTIME);
bool haveFileOpt = testBit(archive_options, AO_HAVE_FILE_OPTIONS);
bool haveSpecial = testBit(archive_options, AO_HAVE_SPECIAL_FORMATS);
bool haveFiles = testBit(archive_options, AO_HAVE_FILE_HEADERS);
bool haveNumbers = testBit(archive_options, AO_HAVE_CP_NUMBERS);
bool haveCPExtra = testBit(archive_options, AO_HAVE_CP_EXTRAS);
if (majver < JAVA7_PACKAGE_MAJOR_VERSION) {
if (haveCPExtra) {
abort("Format bits for Java 7 must be zero in previous releases");
return;
}
}
if (testBit(archive_options, AO_UNUSED_MBZ)) {
abort("High archive option bits are reserved and must be zero");
return;
}
if (haveFiles) {
uint hi = hdr.getInt();
uint lo = hdr.getInt();
julong x = band::makeLong(hi, lo);
archive_size = (size_t) x;
if (archive_size != x) {
// Silly size specified; force overflow.
archive_size = PSIZE_MAX+1;
}
hdrVals += 2;
} else {
hdrValsSkipped += 2;
}
// Now we can size the whole archive.
// Read everything else into a mega-buffer.
rp = hdr.rp;
int header_size_0 = (int)(rp - input.base()); // used-up header (4byte + 3int)
int header_size_1 = (int)(rplimit - rp); // buffered unused initial fragment
int header_size = header_size_0+header_size_1;
unsized_bytes_read = header_size_0;
CHECK;
if (foreign_buf) {
if (archive_size > (size_t)header_size_1) {
abort("EOF reading fixed input buffer");
return;
}
} else if (archive_size != 0) {
if (archive_size < ARCHIVE_SIZE_MIN) {
abort("impossible archive size"); // bad input data
return;
}
if (archive_size < header_size_1) {
abort("too much read-ahead"); // somehow we pre-fetched too much?
return;
}
input.set(U_NEW(byte, add_size(header_size_0, archive_size, C_SLOP)),
(size_t) header_size_0 + archive_size);
CHECK;
assert(input.limit()[0] == 0);
// Move all the bytes we read initially into the real buffer.
input.b.copyFrom(initbuf, header_size);
rp = input.b.ptr + header_size_0;
rplimit = input.b.ptr + header_size;
} else {
// It's more complicated and painful.
// A zero archive_size means that we must read until EOF.
input.init(CHUNK*2);
CHECK;
input.b.len = input.allocated;
rp = rplimit = input.base();
// Set up input buffer as if we already read the header:
input.b.copyFrom(initbuf, header_size);
CHECK;
rplimit += header_size;
while (ensure_input(input.limit() - rp)) {
size_t dataSoFar = input_remaining();
size_t nextSize = add_size(dataSoFar, CHUNK);
input.ensureSize(nextSize);
CHECK;
input.b.len = input.allocated;
rp = rplimit = input.base();
rplimit += dataSoFar;
}
size_t dataSize = (rplimit - input.base());
input.b.len = dataSize;
input.grow(C_SLOP);
CHECK;
free_input = true; // free it later
input.b.len = dataSize;
assert(input.limit()[0] == 0);
rp = rplimit = input.base();
rplimit += dataSize;
rp += header_size_0; // already scanned these bytes...
}
live_input = true; // mark as "do not reuse"
if (aborting()) {
abort("cannot allocate large input buffer for package file");
return;
}
// read the rest of the header fields int assertSkipped = AH_LENGTH_MIN - AH_LENGTH_0 - AH_LENGTH_S;
int remainingHeaders = AH_LENGTH_MIN - AH_LENGTH_0 - AH_LENGTH_S;
if (haveSpecial)
remainingHeaders += AH_SPECIAL_FORMAT_LEN;
if (haveFiles)
remainingHeaders += AH_FILE_HEADER_LEN;
if (haveNumbers)
remainingHeaders += AH_CP_NUMBER_LEN;
if (haveCPExtra)
remainingHeaders += AH_CP_EXTRA_LEN;
ensure_input(remainingHeaders * B_MAX);
CHECK;
hdr.rp = rp;
hdr.rplimit = rplimit;
if (haveFiles) {
archive_next_count = hdr.getInt();
CHECK_COUNT(archive_next_count);
archive_modtime = hdr.getInt();
file_count = hdr.getInt();
CHECK_COUNT(file_count);
hdrVals += 3;
} else {
hdrValsSkipped += 3;
}
if (haveSpecial) {
band_headers_size = hdr.getInt();
CHECK_COUNT(band_headers_size);
attr_definition_count = hdr.getInt();
CHECK_COUNT(attr_definition_count);
hdrVals += 2;
} else {
hdrValsSkipped += 2;
}
int cp_counts[N_TAGS_IN_ORDER];
for (int k = 0; k < (int)N_TAGS_IN_ORDER; k++) {
if (!haveNumbers) {
switch (TAGS_IN_ORDER[k]) {
case CONSTANT_Integer:
case CONSTANT_Float:
case CONSTANT_Long:
case CONSTANT_Double:
cp_counts[k] = 0;
hdrValsSkipped += 1;
continue;
}
}
if (!haveCPExtra) {
switch(TAGS_IN_ORDER[k]) {
case CONSTANT_MethodHandle:
case CONSTANT_MethodType:
case CONSTANT_InvokeDynamic:
case CONSTANT_BootstrapMethod:
cp_counts[k] = 0;
hdrValsSkipped += 1;
continue;
}
}
cp_counts[k] = hdr.getInt();
CHECK_COUNT(cp_counts[k]);
hdrVals += 1;
}
ic_count = hdr.getInt();
CHECK_COUNT(ic_count);
default_class_minver = hdr.getInt();
default_class_majver = hdr.getInt();
class_count = hdr.getInt();
CHECK_COUNT(class_count);
hdrVals += 4;
// done with archive_header, time to reconcile to ensure
// we have read everything correctly
hdrVals += hdrValsSkipped;
assert(hdrVals == AH_LENGTH);
rp = hdr.rp;
if (rp > rplimit)
abort("EOF reading archive header");
// Now size the CP.
#ifndef PRODUCT
// bool x = (N_TAGS_IN_ORDER == CONSTANT_Limit);
// assert(x);
#endif //PRODUCT
cp.init(this, cp_counts);
CHECK;
default_file_modtime = archive_modtime;
if (default_file_modtime == 0 && haveModTime)
default_file_modtime = DEFAULT_ARCHIVE_MODTIME; // taken from driver
if (testBit(archive_options, AO_DEFLATE_HINT))
default_file_options |= FO_DEFLATE_HINT;
// meta-bytes, if any, immediately follow archive header
//band_headers.readData(band_headers_size);
ensure_input(band_headers_size);
if (input_remaining() < (size_t)band_headers_size) {
abort("EOF reading band headers");
return;
}
bytes band_headers;
// The "1+" allows an initial byte to be pushed on the front.
band_headers.set(1+U_NEW(byte, 1+band_headers_size+C_SLOP),
band_headers_size);
CHECK;
// Start scanning band headers here:
band_headers.copyFrom(rp, band_headers.len);
rp += band_headers.len;
assert(rp <= rplimit);
meta_rp = band_headers.ptr;
// Put evil meta-codes at the end of the band headers,
// so we are sure to throw an error if we run off the end.
bytes::of(band_headers.limit(), C_SLOP).clear(_meta_error);
}
void unpacker::finish() {
if (verbose >= 1) {
fprintf(errstrm,
"A total of "
LONG_LONG_FORMAT " bytes were read in %d segment(s).\n",
(bytes_read_before_reset+bytes_read),
segments_read_before_reset+1);
fprintf(errstrm,
"A total of "
LONG_LONG_FORMAT " file content bytes were written.\n",
(bytes_written_before_reset+bytes_written));
fprintf(errstrm,
"A total of %d files (of which %d are classes) were written to output.\n",
files_written_before_reset+files_written,
classes_written_before_reset+classes_written);
}
if (jarout != null)
jarout->closeJarFile(true);
if (errstrm != null) {
if (errstrm == stdout || errstrm == stderr) {
fflush(errstrm);
} else {
fclose(errstrm);
}
errstrm = null;
errstrm_name = null;
}
}
// Cf. PackageReader.readConstantPoolCounts
void cpool::init(unpacker* u_, int counts[CONSTANT_Limit]) {
this->u = u_;
// Fill-pointer for CP.
int next_entry = 0;
// Size the constant pool:
for (int k = 0; k < (int)N_TAGS_IN_ORDER; k++) {
byte tag = TAGS_IN_ORDER[k];
int len = counts[k];
tag_count[tag] = len;
tag_base[tag] = next_entry;
next_entry += len;
// Detect and defend against constant pool size overflow.
// (Pack200 forbids the sum of CP counts to exceed 2^29-1.)
enum {
CP_SIZE_LIMIT = (1<<29),
IMPLICIT_ENTRY_COUNT = 1 // empty Utf8 string
};
if (len >= (1<<29) || len < 0
|| next_entry >= CP_SIZE_LIMIT+IMPLICIT_ENTRY_COUNT) {
abort("archive too large: constant pool limit exceeded");
return;
}
}
// Close off the end of the CP:
nentries = next_entry;
// place a limit on future CP growth:
int generous = 0;
generous = add_size(generous, u->ic_count); // implicit name
generous = add_size(generous, u->ic_count); // outer
generous = add_size(generous, u->ic_count); // outer.utf8
generous = add_size(generous, 40); // WKUs, misc
generous = add_size(generous, u->class_count); // implicit SourceFile strings
maxentries = add_size(nentries, generous);
// Note that this CP does not include "empty" entries
// for longs and doubles. Those are introduced when
// the entries are renumbered for classfile output.
entries = U_NEW(entry, maxentries);
CHECK;
first_extra_entry = &entries[nentries];
// Initialize the standard indexes.
for (int tag = 0; tag < CONSTANT_Limit; tag++) {
entry* cpMap = &entries[tag_base[tag]];
tag_index[tag].init(tag_count[tag], cpMap, tag);
}
// Initialize *all* our entries once
for (int i = 0 ; i < maxentries ; i++)
entries[i].outputIndex = REQUESTED_NONE;
initGroupIndexes();
// Initialize hashTab to a generous power-of-two size.
uint pow2 = 1;
uint target = maxentries + maxentries/2; // 60% full
while (pow2 < target) pow2 <<= 1;
hashTab = U_NEW(entry*, hashTabLength = pow2);
}
static byte* store_Utf8_char(byte* cp, unsigned short ch) {
if (ch >= 0x001 && ch <= 0x007F) {
*cp++ = (byte) ch;
} else if (ch <= 0x07FF) {
*cp++ = (byte) (0xC0 | ((ch >> 6) & 0x1F));
*cp++ = (byte) (0x80 | ((ch >> 0) & 0x3F));
} else {
*cp++ = (byte) (0xE0 | ((ch >> 12) & 0x0F));
*cp++ = (byte) (0x80 | ((ch >> 6) & 0x3F));
*cp++ = (byte) (0x80 | ((ch >> 0) & 0x3F));
}
return cp;
}
static byte* skip_Utf8_chars(byte* cp, int len) {
for (;; cp++) {
int ch = *cp & 0xFF;
if ((ch & 0xC0) != 0x80) {
if (len-- == 0)
return cp;
if (ch < 0x80 && len == 0)
return cp+1;
}
}
}
static int compare_Utf8_chars(bytes& b1, bytes& b2) {
int l1 = (int)b1.len;
int l2 = (int)b2.len;
int l0 = (l1 < l2) ? l1 : l2;
byte* p1 = b1.ptr;
byte* p2 = b2.ptr;
int c0 = 0;
for (int i = 0; i < l0; i++) {
int c1 = p1[i] & 0xFF;
int c2 = p2[i] & 0xFF;
if (c1 != c2) {
// Before returning the obvious answer,
// check to see if c1 or c2 is part of a 0x0000,
// which encodes as {0xC0,0x80}. The 0x0000 is the
// lowest-sorting Java char value, and yet it encodes
// as if it were the first char after 0x7F, which causes
// strings containing nulls to sort too high. All other
// comparisons are consistent between Utf8 and Java chars.
if (c1 == 0xC0 && (p1[i+1] & 0xFF) == 0x80) c1 = 0;
if (c2 == 0xC0 && (p2[i+1] & 0xFF) == 0x80) c2 = 0;
if (c0 == 0xC0) {
assert(((c1|c2) & 0xC0) == 0x80); // c1 & c2 are extension chars
if (c1 == 0x80) c1 = 0; // will sort below c2
if (c2 == 0x80) c2 = 0; // will sort below c1
}
return c1 - c2;
}
c0 = c1; // save away previous char
}
// common prefix is identical; return length difference if any
return l1 - l2;
}
// Cf. PackageReader.readUtf8Bands
local_inline
void unpacker::read_Utf8_values(entry* cpMap, int len) {
// Implicit first Utf8 string is the empty string.
enum {
// certain bands begin with implicit zeroes
PREFIX_SKIP_2 = 2,
SUFFIX_SKIP_1 = 1
};
int i;
// First band: Read lengths of shared prefixes.
if (len > PREFIX_SKIP_2)
cp_Utf8_prefix.readData(len - PREFIX_SKIP_2);
NOT_PRODUCT(else cp_Utf8_prefix.readData(0)); // for asserts
// Second band: Read lengths of unshared suffixes:
if (len > SUFFIX_SKIP_1)
cp_Utf8_suffix.readData(len - SUFFIX_SKIP_1);
NOT_PRODUCT(else cp_Utf8_suffix.readData(0)); // for asserts
bytes* allsuffixes = T_NEW(bytes, len);
CHECK;
int nbigsuf = 0;
fillbytes charbuf; // buffer to allocate small strings
charbuf.init();
// Third band: Read the char values in the unshared suffixes:
cp_Utf8_chars.readData(cp_Utf8_suffix.getIntTotal());
for (i = 0; i < len; i++) {
int suffix = (i < SUFFIX_SKIP_1)? 0: cp_Utf8_suffix.getInt();
if (suffix < 0) {
abort("bad utf8 suffix");
return;
}
if (suffix == 0 && i >= SUFFIX_SKIP_1) {
// chars are packed in cp_Utf8_big_chars
nbigsuf += 1;
continue;
}
bytes& chars = allsuffixes[i];
uint size3 = suffix * 3; // max Utf8 length
bool isMalloc = (suffix > SMALL);
if (isMalloc) {
chars.malloc(size3);
} else {
if (!charbuf.canAppend(size3+1)) {
assert(charbuf.allocated == 0 || tmallocs.contains(charbuf.base()));
charbuf.init(CHUNK); // Reset to new buffer.
tmallocs.add(charbuf.base());
}
chars.set(charbuf.grow(size3+1), size3);
}
CHECK;
byte* chp = chars.ptr;
for (int j = 0; j < suffix; j++) {
unsigned short ch = cp_Utf8_chars.getInt();
chp = store_Utf8_char(chp, ch);
}
// shrink to fit:
if (isMalloc) {
chars.realloc(chp - chars.ptr);
CHECK;
tmallocs.add(chars.ptr); // free it later
} else {
int shrink = (int)(chars.limit() - chp);
chars.len -= shrink;
charbuf.b.len -= shrink; // ungrow to reclaim buffer space
// Note that we did not reclaim the final '\0'.
assert(chars.limit() == charbuf.limit()-1);
assert(strlen((char*)chars.ptr) == chars.len);
}
}
//cp_Utf8_chars.done();
#ifndef PRODUCT
charbuf.b.set(null, 0); // tidy
#endif
// Fourth band: Go back and size the specially packed strings.
int maxlen = 0;
cp_Utf8_big_suffix.readData(nbigsuf);
cp_Utf8_suffix.rewind();
for (i = 0; i < len; i++) {
int suffix = (i < SUFFIX_SKIP_1)? 0: cp_Utf8_suffix.getInt();
int prefix = (i < PREFIX_SKIP_2)? 0: cp_Utf8_prefix.getInt();
if (prefix < 0 || prefix+suffix < 0) {
abort("bad utf8 prefix");
return;
}
bytes& chars = allsuffixes[i];
if (suffix == 0 && i >= SUFFIX_SKIP_1) {
suffix = cp_Utf8_big_suffix.getInt();
assert(chars.ptr == null);
chars.len = suffix; // just a momentary hack
} else {
assert(chars.ptr != null);
}
if (maxlen < prefix + suffix) {
maxlen = prefix + suffix;
}
}
//cp_Utf8_suffix.done(); // will use allsuffixes[i].len (ptr!=null)
//cp_Utf8_big_suffix.done(); // will use allsuffixes[i].len
// Fifth band(s): Get the specially packed characters.
cp_Utf8_big_suffix.rewind();
for (i = 0; i < len; i++) {
bytes& chars = allsuffixes[i];
if (chars.ptr != null) continue; // already input
int suffix = (int)chars.len; // pick up the hack
uint size3 = suffix * 3;
if (suffix == 0) continue; // done with empty string
chars.malloc(size3);
CHECK;
byte* chp = chars.ptr;
band saved_band = cp_Utf8_big_chars;
cp_Utf8_big_chars.readData(suffix);
CHECK;
for (int j = 0; j < suffix; j++) {
unsigned short ch = cp_Utf8_big_chars.getInt();
CHECK;
chp = store_Utf8_char(chp, ch);
}
chars.realloc(chp - chars.ptr);
CHECK;
tmallocs.add(chars.ptr); // free it later
//cp_Utf8_big_chars.done();
cp_Utf8_big_chars = saved_band; // reset the band for the next string
}
cp_Utf8_big_chars.readData(0); // zero chars
//cp_Utf8_big_chars.done();
// Finally, sew together all the prefixes and suffixes.
bytes bigbuf;
bigbuf.malloc(maxlen * 3 + 1); // max Utf8 length, plus slop for null
CHECK;
int prevlen = 0; // previous string length (in chars)
tmallocs.add(bigbuf.ptr); // free after this block
CHECK;
cp_Utf8_prefix.rewind();
for (i = 0; i < len; i++) {
bytes& chars = allsuffixes[i];
int prefix = (i < PREFIX_SKIP_2)? 0: cp_Utf8_prefix.getInt();
CHECK;
int suffix = (int)chars.len;
byte* fillp;
// by induction, the buffer is already filled with the prefix
// make sure the prefix value is not corrupted, though:
if (prefix > prevlen) {
abort("utf8 prefix overflow");
return;
}
fillp = skip_Utf8_chars(bigbuf.ptr, prefix);
// copy the suffix into the same buffer:
fillp = chars.writeTo(fillp);
assert(bigbuf.inBounds(fillp));
*fillp = 0; // bigbuf must contain a well-formed Utf8 string
int length = (int)(fillp - bigbuf.ptr);
bytes& value = cpMap[i].value.b;
value.set(U_NEW(byte, add_size(length,1)), length);
value.copyFrom(bigbuf.ptr, length);
CHECK;
// Index all Utf8 strings
entry* &htref = cp.hashTabRef(CONSTANT_Utf8, value);
if (htref == null) {
// Note that if two identical strings are transmitted,
// the first is taken to be the canonical one.
htref = &cpMap[i];
}
prevlen = prefix + suffix;
}
//cp_Utf8_prefix.done();
// Free intermediate buffers.
free_temps();
}
local_inline
void unpacker::read_single_words(band& cp_band, entry* cpMap, int len) {
cp_band.readData(len);
for (int i = 0; i < len; i++) {
cpMap[i].value.i = cp_band.getInt(); // coding handles signs OK
}
}
maybe_inline
void unpacker::read_double_words(band& cp_bands, entry* cpMap, int len) {
band& cp_band_hi = cp_bands;
band& cp_band_lo = cp_bands.nextBand();
cp_band_hi.readData(len);
cp_band_lo.readData(len);
for (int i = 0; i < len; i++) {
cpMap[i].value.l = cp_band_hi.getLong(cp_band_lo, true);
}
//cp_band_hi.done();
//cp_band_lo.done();
}
maybe_inline
void unpacker::read_single_refs(band& cp_band, byte refTag, entry* cpMap, int len) {
assert(refTag == CONSTANT_Utf8);
cp_band.setIndexByTag(refTag);
cp_band.readData(len);
CHECK;
int indexTag = (cp_band.bn == e_cp_Class) ? CONSTANT_Class : 0;
for (int i = 0; i < len; i++) {
entry& e = cpMap[i];
e.refs = U_NEW(entry*, e.nrefs = 1);
entry* utf = cp_band.getRef();
CHECK;
e.refs[0] = utf;
e.value.b = utf->value.b; // copy value of Utf8 string to self
if (indexTag != 0) {
// Maintain cross-reference:
entry* &htref = cp.hashTabRef(indexTag, e.value.b);
if (htref == null) {
// Note that if two identical classes are transmitted,
// the first is taken to be the canonical one.
htref = &e;
}
}
}
//cp_band.done();
}
maybe_inline
void unpacker::read_double_refs(band& cp_band, byte ref1Tag, byte ref2Tag,
entry* cpMap, int len) {
band& cp_band1 = cp_band;
band& cp_band2 = cp_band.nextBand();
cp_band1.setIndexByTag(ref1Tag);
cp_band2.setIndexByTag(ref2Tag);
cp_band1.readData(len);
cp_band2.readData(len);
CHECK;
for (int i = 0; i < len; i++) {
entry& e = cpMap[i];
e.refs = U_NEW(entry*, e.nrefs = 2);
e.refs[0] = cp_band1.getRef();
CHECK;
e.refs[1] = cp_band2.getRef();
CHECK;
}
//cp_band1.done();
//cp_band2.done();
}
// Cf. PackageReader.readSignatureBands
maybe_inline
void unpacker::read_signature_values(entry* cpMap, int len) {
cp_Signature_form.setIndexByTag(CONSTANT_Utf8);
cp_Signature_form.readData(len);
CHECK;
int ncTotal = 0;
int i;
for (i = 0; i < len; i++) {
entry& e = cpMap[i];
entry& form = *cp_Signature_form.getRef();
CHECK;
int nc = 0;
for ( const char* ncp = form.utf8String() ; *ncp; ncp++) {
if (*ncp == 'L') nc++;
}
ncTotal += nc;
e.refs = U_NEW(entry*, cpMap[i].nrefs = 1 + nc);
CHECK;
e.refs[0] = &form;
}
//cp_Signature_form.done();
cp_Signature_classes.setIndexByTag(CONSTANT_Class);
cp_Signature_classes.readData(ncTotal);
for (i = 0; i < len; i++) {
entry& e = cpMap[i];
for (int j = 1; j < e.nrefs; j++) {
e.refs[j] = cp_Signature_classes.getRef();
CHECK;
}
}
//cp_Signature_classes.done();
}
maybe_inline
void unpacker::checkLegacy(const char* name) {
if (u->majver < JAVA7_PACKAGE_MAJOR_VERSION) {
char message[100];
snprintf(message, 99, "unexpected band %s\n", name);
abort(message);
}
}
maybe_inline
void unpacker::read_method_handle(entry* cpMap, int len) {
if (len > 0) {
checkLegacy(cp_MethodHandle_refkind.name);
}
cp_MethodHandle_refkind.readData(len);
cp_MethodHandle_member.setIndexByTag(CONSTANT_AnyMember);
cp_MethodHandle_member.readData(len);
for (int i = 0 ; i < len ; i++) {
entry& e = cpMap[i];
e.value.i = cp_MethodHandle_refkind.getInt();
e.refs = U_NEW(entry*, e.nrefs = 1);
e.refs[0] = cp_MethodHandle_member.getRef();
CHECK;
}
}
maybe_inline
void unpacker::read_method_type(entry* cpMap, int len) {
if (len > 0) {
checkLegacy(cp_MethodType.name);
}
cp_MethodType.setIndexByTag(CONSTANT_Signature);
cp_MethodType.readData(len);
for (int i = 0 ; i < len ; i++) {
entry& e = cpMap[i];
e.refs = U_NEW(entry*, e.nrefs = 1);
e.refs[0] = cp_MethodType.getRef();
CHECK;
}
}
maybe_inline
void unpacker::read_bootstrap_methods(entry* cpMap, int len) {
if (len > 0) {
checkLegacy(cp_BootstrapMethod_ref.name);
}
cp_BootstrapMethod_ref.setIndexByTag(CONSTANT_MethodHandle);
cp_BootstrapMethod_ref.readData(len);
cp_BootstrapMethod_arg_count.readData(len);
int totalArgCount = cp_BootstrapMethod_arg_count.getIntTotal();
cp_BootstrapMethod_arg.setIndexByTag(CONSTANT_LoadableValue);
cp_BootstrapMethod_arg.readData(totalArgCount);
for (int i = 0; i < len; i++) {
entry& e = cpMap[i];
int argc = cp_BootstrapMethod_arg_count.getInt();
e.value.i = argc;
e.refs = U_NEW(entry*, e.nrefs = argc + 1);
e.refs[0] = cp_BootstrapMethod_ref.getRef();
for (int j = 1 ; j < e.nrefs ; j++) {
e.refs[j] = cp_BootstrapMethod_arg.getRef();
CHECK;
}
}
}
// Cf. PackageReader.readConstantPool
void unpacker::read_cp() {
byte* rp0 = rp;
int i;
for (int k = 0; k < (int)N_TAGS_IN_ORDER; k++) {
byte tag = TAGS_IN_ORDER[k];
int len = cp.tag_count[tag];
int base = cp.tag_base[tag];
PRINTCR((1,"Reading %d %s entries...", len, NOT_PRODUCT(TAG_NAME[tag])+0));
entry* cpMap = &cp.entries[base];
for (i = 0; i < len; i++) {
cpMap[i].tag = tag;
cpMap[i].inord = i;
}
// Initialize the tag's CP index right away, since it might be needed
// in the next pass to initialize the CP for another tag.
#ifndef PRODUCT
cpindex* ix = &cp.tag_index[tag];
assert(ix->ixTag == tag);
assert((int)ix->len == len);
assert(ix->base1 == cpMap);
#endif
switch (tag) {
case CONSTANT_Utf8:
read_Utf8_values(cpMap, len);
break;
case CONSTANT_Integer:
read_single_words(cp_Int, cpMap, len);
break;
case CONSTANT_Float:
read_single_words(cp_Float, cpMap, len);
break;
case CONSTANT_Long:
read_double_words(cp_Long_hi /*& cp_Long_lo*/, cpMap, len);
break;
case CONSTANT_Double:
read_double_words(cp_Double_hi /*& cp_Double_lo*/, cpMap, len);
break;
case CONSTANT_String:
read_single_refs(cp_String, CONSTANT_Utf8, cpMap, len);
break;
case CONSTANT_Class:
read_single_refs(cp_Class, CONSTANT_Utf8, cpMap, len);
break;
case CONSTANT_Signature:
read_signature_values(cpMap, len);
break;
case CONSTANT_NameandType:
read_double_refs(cp_Descr_name /*& cp_Descr_type*/,
CONSTANT_Utf8, CONSTANT_Signature,
cpMap, len);
break;
case CONSTANT_Fieldref:
read_double_refs(cp_Field_class /*& cp_Field_desc*/,
CONSTANT_Class, CONSTANT_NameandType,
cpMap, len);
break;
case CONSTANT_Methodref:
read_double_refs(cp_Method_class /*& cp_Method_desc*/,
CONSTANT_Class, CONSTANT_NameandType,
cpMap, len);
break;
case CONSTANT_InterfaceMethodref:
read_double_refs(cp_Imethod_class /*& cp_Imethod_desc*/,
CONSTANT_Class, CONSTANT_NameandType,
cpMap, len);
break;
case CONSTANT_MethodHandle:
// consumes cp_MethodHandle_refkind and cp_MethodHandle_member
read_method_handle(cpMap, len);
break;
case CONSTANT_MethodType:
// consumes cp_MethodType
read_method_type(cpMap, len);
break;
case CONSTANT_InvokeDynamic:
read_double_refs(cp_InvokeDynamic_spec, CONSTANT_BootstrapMethod,
CONSTANT_NameandType,
cpMap, len);
break;
case CONSTANT_BootstrapMethod:
// consumes cp_BootstrapMethod_ref, cp_BootstrapMethod_arg_count and cp_BootstrapMethod_arg
read_bootstrap_methods(cpMap, len);
break;
default:
assert(false);
break;
}
CHECK;
}
cp.expandSignatures();
CHECK;
cp.initMemberIndexes();
CHECK;
PRINTCR((1,"parsed %d constant pool entries in %d bytes", cp.nentries, (rp - rp0)));
#define SNAME(n,s) #s "\0"
const char* symNames = (
ALL_ATTR_DO(SNAME)
"<init>"
);
#undef SNAME
for (int sn = 0; sn < cpool::s_LIMIT; sn++) {
assert(symNames[0] >= '0' && symNames[0] <= 'Z'); // sanity
bytes name; name.set(symNames);
if (name.len > 0 && name.ptr[0] != '0') {
cp.sym[sn] = cp.ensureUtf8(name);
PRINTCR((4, "well-known sym %d=%s", sn, cp.sym[sn]->string()));
}
symNames += name.len + 1; // skip trailing null to next name
}
band::initIndexes(this);
}
static band* no_bands[] = { null }; // shared empty body
inline
band& unpacker::attr_definitions::fixed_band(int e_class_xxx) {
return u->all_bands[xxx_flags_hi_bn + (e_class_xxx-e_class_flags_hi)];
}
inline band& unpacker::attr_definitions::xxx_flags_hi()
{ return fixed_band(e_class_flags_hi); }
inline band& unpacker::attr_definitions::xxx_flags_lo()
{ return fixed_band(e_class_flags_lo); }
inline band& unpacker::attr_definitions::xxx_attr_count()
{ return fixed_band(e_class_attr_count); }
inline band& unpacker::attr_definitions::xxx_attr_indexes()
{ return fixed_band(e_class_attr_indexes); }
inline band& unpacker::attr_definitions::xxx_attr_calls()
{ return fixed_band(e_class_attr_calls); }
inline
unpacker::layout_definition*
unpacker::attr_definitions::defineLayout(int idx,
entry* nameEntry,
const char* layout) {
const char* name = nameEntry->value.b.strval();
layout_definition* lo = defineLayout(idx, name, layout);
CHECK_0;
lo->nameEntry = nameEntry;
return lo;
}
unpacker::layout_definition*
unpacker::attr_definitions::defineLayout(int idx,
const char* name,
const char* layout) {
assert(flag_limit != 0); // must be set up already
if (idx >= 0) {
// Fixed attr.
if (idx >= (int)flag_limit)
abort("attribute index too large");
if (isRedefined(idx))
abort("redefined attribute index");
redef |= ((julong)1<<idx);
} else {
idx = flag_limit + overflow_count.length();
overflow_count.add(0); // make a new counter
}
layout_definition* lo = U_NEW(layout_definition, 1);
CHECK_0;
lo->idx = idx;
lo->name = name;
lo->layout = layout;
for (int adds = (idx+1) - layouts.length(); adds > 0; adds--) {
layouts.add(null);
}
CHECK_0;
layouts.get(idx) = lo;
return lo;
}
band**
unpacker::attr_definitions::buildBands(unpacker::layout_definition* lo) {
int i;
if (lo->elems != null)
return lo->bands();
if (lo->layout[0] == '\0') {
lo->elems = no_bands;
} else {
// Create bands for this attribute by parsing the layout.
bool hasCallables = lo->hasCallables();
bands_made = 0x10000; // base number for bands made
const char* lp = lo->layout;
lp = parseLayout(lp, lo->elems, -1);
CHECK_0;
if (lp[0] != '\0' || band_stack.length() > 0) {
abort("garbage at end of layout");
}
band_stack.popTo(0);
CHECK_0;
// Fix up callables to point at their callees.
band** bands = lo->elems;
assert(bands == lo->bands());
int num_callables = 0;
if (hasCallables) {
while (bands[num_callables] != null) {
if (bands[num_callables]->le_kind != EK_CBLE) {
abort("garbage mixed with callables");
break;
}
num_callables += 1;
}
}
for (i = 0; i < calls_to_link.length(); i++) {
band& call = *(band*) calls_to_link.get(i);
assert(call.le_kind == EK_CALL);
// Determine the callee.
int call_num = call.le_len;
if (call_num < 0 || call_num >= num_callables) {
abort("bad call in layout");
break;
}
band& cble = *bands[call_num];
// Link the call to it.
call.le_body[0] = &cble;
// Distinguish backward calls and callables:
assert(cble.le_kind == EK_CBLE);
assert(cble.le_len == call_num);
cble.le_back |= call.le_back;
}
calls_to_link.popTo(0);
}
return lo->elems;
}
/* attribute layout language parser
attribute_layout:
( layout_element )* | ( callable )+
layout_element:
( integral | replication | union | call | reference )
callable:
'[' body ']'
body:
( layout_element )+
integral:
( unsigned_int | signed_int | bc_index | bc_offset | flag )
unsigned_int:
uint_type
signed_int:
'S' uint_type
any_int:
( unsigned_int | signed_int )
bc_index:
( 'P' uint_type | 'PO' uint_type )
bc_offset:
'O' any_int
flag:
'F' uint_type
uint_type:
( 'B' | 'H' | 'I' | 'V' )
replication:
'N' uint_type '[' body ']'
union:
'T' any_int (union_case)* '(' ')' '[' (body)? ']'
union_case:
'(' union_case_tag (',' union_case_tag)* ')' '[' (body)? ']'
union_case_tag:
( numeral | numeral '-' numeral )
call:
'(' numeral ')'
reference:
reference_type ( 'N' )? uint_type
reference_type:
( constant_ref | schema_ref | utf8_ref | untyped_ref )
constant_ref:
( 'KI' | 'KJ' | 'KF' | 'KD' | 'KS' | 'KQ' )
schema_ref:
( 'RC' | 'RS' | 'RD' | 'RF' | 'RM' | 'RI' )
utf8_ref:
'RU'
untyped_ref:
'RQ'
numeral:
'(' ('-')? (digit)+ ')'
digit:
( '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' )
*/
const char*
unpacker::attr_definitions::parseIntLayout(const char* lp, band* &res,
byte le_kind, bool can_be_signed) {
const char* lp0 = lp;
band* b = U_NEW(band, 1);
CHECK_(lp);
char le = *lp++;
int spec = UNSIGNED5_spec;
if (le == 'S' && can_be_signed) {
// Note: This is the last use of sign. There is no 'EF_SIGN'.
spec = SIGNED5_spec;
le = *lp++;
} else if (le == 'B') {
spec = BYTE1_spec; // unsigned byte
}
b->init(u, bands_made++, spec);
b->le_kind = le_kind;
int le_len = 0;
switch (le) {
case 'B': le_len = 1; break;
case 'H': le_len = 2; break;
case 'I': le_len = 4; break;
case 'V': le_len = 0; break;
default: abort("bad layout element");
}
b->le_len = le_len;
band_stack.add(b);
res = b;
return lp;
}
const char*
unpacker::attr_definitions::parseNumeral(const char* lp, int &res) {
const char* lp0 = lp;
bool sgn = false;
if (*lp == '0') { res = 0; return lp+1; } // special case '0'
if (*lp == '-') { sgn = true; lp++; }
const char* dp = lp;
int con = 0;
while (*dp >= '0' && *dp <= '9') {
int con0 = con;
con *= 10;
con += (*dp++) - '0';
if (con <= con0) { con = -1; break; } // numeral overflow
}
if (lp == dp) {
abort("missing numeral in layout");
return "";
}
lp = dp;
if (con < 0 && !(sgn && con == -con)) {
// (Portability note: Misses the error if int is not 32 bits.)
abort("numeral overflow");
return "" ;
}
if (sgn) con = -con;
res = con;
return lp;
}
band**
unpacker::attr_definitions::popBody(int bs_base) {
// Return everything that was pushed, as a null-terminated pointer array.
int bs_limit = band_stack.length();
if (bs_base == bs_limit) {
return no_bands;
} else {
int nb = bs_limit - bs_base;
band** res = U_NEW(band*, add_size(nb, 1));
CHECK_(no_bands);
for (int i = 0; i < nb; i++) {
band* b = (band*) band_stack.get(bs_base + i);
res[i] = b;
}
band_stack.popTo(bs_base);
return res;
}
}
const char*
unpacker::attr_definitions::parseLayout(const char* lp, band** &res,
int curCble) {
const char* lp0 = lp;
int bs_base = band_stack.length();
bool top_level = (bs_base == 0);
band* b;
enum { can_be_signed = true }; // optional arg to parseIntLayout
for (bool done = false; !done; ) {
switch (*lp++) {
case 'B': case 'H': case 'I': case 'V': // unsigned_int
case 'S': // signed_int
--lp; // reparse
case 'F':
lp = parseIntLayout(lp, b, EK_INT);
break;
case 'P':
{
int le_bci = EK_BCI;
if (*lp == 'O') {
++lp;
le_bci = EK_BCID;
}
assert(*lp != 'S'); // no PSH, etc.
lp = parseIntLayout(lp, b, EK_INT);
b->le_bci = le_bci;
if (le_bci == EK_BCI)
b->defc = coding::findBySpec(BCI5_spec);
else
b->defc = coding::findBySpec(BRANCH5_spec);
}
break;
case 'O':
lp = parseIntLayout(lp, b, EK_INT, can_be_signed);
b->le_bci = EK_BCO;
b->defc = coding::findBySpec(BRANCH5_spec);
break;
case 'N': // replication: 'N' uint '[' elem ... ']'
lp = parseIntLayout(lp, b, EK_REPL);
assert(*lp == '[');
++lp;
lp = parseLayout(lp, b->le_body, curCble);
CHECK_(lp);
break;
case 'T': // union: 'T' any_int union_case* '(' ')' '[' body ']'
lp = parseIntLayout(lp, b, EK_UN, can_be_signed);
{
int union_base = band_stack.length();
for (;;) { // for each case
band& k_case = *U_NEW(band, 1);
CHECK_(lp);
band_stack.add(&k_case);
k_case.le_kind = EK_CASE;
k_case.bn = bands_made++;
if (*lp++ != '(') {
abort("bad union case");
return "";
}
if (*lp++ != ')') {
--lp; // reparse
// Read some case values. (Use band_stack for temp. storage.)
int case_base = band_stack.length();
for (;;) {
int caseval = 0;
lp = parseNumeral(lp, caseval);
band_stack.add((void*)(size_t)caseval);
if (*lp == '-') {
// new in version 160, allow (1-5) for (1,2,3,4,5)
if (u->majver < JAVA6_PACKAGE_MAJOR_VERSION) {
abort("bad range in union case label (old archive format)");
return "";
}
int caselimit = caseval;
lp++;
lp = parseNumeral(lp, caselimit);
if (caseval >= caselimit
|| (uint)(caselimit - caseval) > 0x10000) {
// Note: 0x10000 is arbitrary implementation restriction.
// We can remove it later if it's important to.
abort("bad range in union case label");
return "";
}
for (;;) {
++caseval;
band_stack.add((void*)(size_t)caseval);
if (caseval == caselimit) break;
}
}
if (*lp != ',') break;
lp++;
}
if (*lp++ != ')') {
abort("bad case label");
return "";
}
// save away the case labels
int ntags = band_stack.length() - case_base;
int* tags = U_NEW(int, add_size(ntags, 1));
CHECK_(lp);
k_case.le_casetags = tags;
*tags++ = ntags;
for (int i = 0; i < ntags; i++) {
*tags++ = ptrlowbits(band_stack.get(case_base+i));
}
band_stack.popTo(case_base);
CHECK_(lp);
}
// Got le_casetags. Now grab the body.
assert(*lp == '[');
++lp;
lp = parseLayout(lp, k_case.le_body, curCble);
CHECK_(lp);
if (k_case.le_casetags == null) break; // done
}
b->le_body = popBody(union_base);
}
break;
case '(': // call: '(' -?NN* ')'
{
band& call = *U_NEW(band, 1);
CHECK_(lp);
band_stack.add(&call);
call.le_kind = EK_CALL;
call.bn = bands_made++;
call.le_body = U_NEW(band*, 2); // fill in later
int call_num = 0;
lp = parseNumeral(lp, call_num);
call.le_back = (call_num <= 0);
call_num += curCble; // numeral is self-relative offset
call.le_len = call_num; //use le_len as scratch
calls_to_link.add(&call);
CHECK_(lp);
if (*lp++ != ')') {
abort("bad call label");
return "";
}
}
break;
case 'K': // reference_type: constant_ref
case 'R': // reference_type: schema_ref
{
int ixTag = CONSTANT_None;
if (lp[-1] == 'K') {
switch (*lp++) {
case 'I': ixTag = CONSTANT_Integer; break;
case 'J': ixTag = CONSTANT_Long; break;
case 'F': ixTag = CONSTANT_Float; break;
case 'D': ixTag = CONSTANT_Double; break;
case 'S': ixTag = CONSTANT_String; break;
case 'Q': ixTag = CONSTANT_FieldSpecific; break;
// new in 1.7
case 'M': ixTag = CONSTANT_MethodHandle; break;
case 'T': ixTag = CONSTANT_MethodType; break;
case 'L': ixTag = CONSTANT_LoadableValue; break;
}
} else {
switch (*lp++) {
case 'C': ixTag = CONSTANT_Class; break;
case 'S': ixTag = CONSTANT_Signature; break;
case 'D': ixTag = CONSTANT_NameandType; break;
case 'F': ixTag = CONSTANT_Fieldref; break;
case 'M': ixTag = CONSTANT_Methodref; break;
case 'I': ixTag = CONSTANT_InterfaceMethodref; break;
case 'U': ixTag = CONSTANT_Utf8; break; //utf8_ref
case 'Q': ixTag = CONSTANT_All; break; //untyped_ref
// new in 1.7
case 'Y': ixTag = CONSTANT_InvokeDynamic; break;
case 'B': ixTag = CONSTANT_BootstrapMethod; break;
case 'N': ixTag = CONSTANT_AnyMember; break;
}
}
if (ixTag == CONSTANT_None) {
abort("bad reference layout");
break;
}
bool nullOK = false;
if (*lp == 'N') {
nullOK = true;
lp++;
}
lp = parseIntLayout(lp, b, EK_REF);
b->defc = coding::findBySpec(UNSIGNED5_spec);
b->initRef(ixTag, nullOK);
}
break;
case '[':
{
// [callable1][callable2]...
if (!top_level) {
abort("bad nested callable");
break;
}
curCble += 1;
NOT_PRODUCT(int call_num = band_stack.length() - bs_base);
band& cble = *U_NEW(band, 1);
CHECK_(lp);
band_stack.add(&cble);
cble.le_kind = EK_CBLE;
NOT_PRODUCT(cble.le_len = call_num);
cble.bn = bands_made++;
lp = parseLayout(lp, cble.le_body, curCble);
}
break;
case ']':
// Hit a closing brace. This ends whatever body we were in.
done = true;
break;
case '\0':
// Hit a null. Also ends the (top-level) body.
--lp; // back up, so caller can see the null also
done = true;
break;
default:
abort("bad layout");
break;
}
CHECK_(lp);
}
// Return the accumulated bands:
res = popBody(bs_base);
return lp;
}
void unpacker::read_attr_defs() {
int i;
// Tell each AD which attrc it is and where its fixed flags are:
attr_defs[ATTR_CONTEXT_CLASS].attrc = ATTR_CONTEXT_CLASS;
attr_defs[ATTR_CONTEXT_CLASS].xxx_flags_hi_bn = e_class_flags_hi;
attr_defs[ATTR_CONTEXT_FIELD].attrc = ATTR_CONTEXT_FIELD;
attr_defs[ATTR_CONTEXT_FIELD].xxx_flags_hi_bn = e_field_flags_hi;
attr_defs[ATTR_CONTEXT_METHOD].attrc = ATTR_CONTEXT_METHOD;
attr_defs[ATTR_CONTEXT_METHOD].xxx_flags_hi_bn = e_method_flags_hi;
attr_defs[ATTR_CONTEXT_CODE].attrc = ATTR_CONTEXT_CODE;
attr_defs[ATTR_CONTEXT_CODE].xxx_flags_hi_bn = e_code_flags_hi;
// Decide whether bands for the optional high flag words are present.
attr_defs[ATTR_CONTEXT_CLASS]
.setHaveLongFlags(testBit(archive_options, AO_HAVE_CLASS_FLAGS_HI));
attr_defs[ATTR_CONTEXT_FIELD]
.setHaveLongFlags(testBit(archive_options, AO_HAVE_FIELD_FLAGS_HI));
attr_defs[ATTR_CONTEXT_METHOD]
.setHaveLongFlags(testBit(archive_options, AO_HAVE_METHOD_FLAGS_HI));
attr_defs[ATTR_CONTEXT_CODE]
.setHaveLongFlags(testBit(archive_options, AO_HAVE_CODE_FLAGS_HI));
// Set up built-in attrs.
// (The simple ones are hard-coded. The metadata layouts are not.)
const char* md_layout = (
// parameter annotations:
#define MDL0 \
"[NB[(1)]]"
MDL0
// annotations:
#define MDL1 \
"[NH[(1)]]"
MDL1
#define MDL2 \
"[RSHNH[RUH(1)]]"
MDL2
// element_value:
#define MDL3 \
"[TB" \
"(66,67,73,83,90)[KIH]" \
"(68)[KDH]" \
"(70)[KFH]" \
"(74)[KJH]" \
"(99)[RSH]" \
"(101)[RSHRUH]" \
"(115)[RUH]" \
"(91)[NH[(0)]]" \
"(64)[" \
/* nested annotation: */ \
"RSH" \
"NH[RUH(0)]" \
"]" \
"()[]" \
"]"
MDL3
);
const char* md_layout_P = md_layout;
const char* md_layout_A = md_layout+strlen(MDL0);
const char* md_layout_V = md_layout+strlen(MDL0 MDL1 MDL2);
assert(0 == strncmp(&md_layout_A[-3], ")]][", 4));
assert(0 == strncmp(&md_layout_V[-3], ")]][", 4));
const char* type_md_layout(
"[NH[(1)(2)(3)]]"
// target-type + target_info
"[TB"
"(0,1)[B]"
"(16)[FH]"
"(17,18)[BB]"
"(19,20,21)[]"
"(22)[B]"
"(23)[H]"
"(64,65)[NH[PHOHH]]"
"(66)[H]"
"(67,68,69,70)[PH]"
"(71,72,73,74,75)[PHB]"
"()[]]"
// target-path
"[NB[BB]]"
// annotation + element_value
MDL2
MDL3
);
for (i = 0; i < ATTR_CONTEXT_LIMIT; i++) {
attr_definitions& ad = attr_defs[i];
if (i != ATTR_CONTEXT_CODE) {
ad.defineLayout(X_ATTR_RuntimeVisibleAnnotations,
"RuntimeVisibleAnnotations", md_layout_A);
ad.defineLayout(X_ATTR_RuntimeInvisibleAnnotations,
"RuntimeInvisibleAnnotations", md_layout_A);
if (i == ATTR_CONTEXT_METHOD) {
ad.defineLayout(METHOD_ATTR_RuntimeVisibleParameterAnnotations,
"RuntimeVisibleParameterAnnotations", md_layout_P);
ad.defineLayout(METHOD_ATTR_RuntimeInvisibleParameterAnnotations,
"RuntimeInvisibleParameterAnnotations", md_layout_P);
ad.defineLayout(METHOD_ATTR_AnnotationDefault,
"AnnotationDefault", md_layout_V);
}
}
ad.defineLayout(X_ATTR_RuntimeVisibleTypeAnnotations,
"RuntimeVisibleTypeAnnotations", type_md_layout);
ad.defineLayout(X_ATTR_RuntimeInvisibleTypeAnnotations,
"RuntimeInvisibleTypeAnnotations", type_md_layout);
}
attr_definition_headers.readData(attr_definition_count);
attr_definition_name.readData(attr_definition_count);
attr_definition_layout.readData(attr_definition_count);
CHECK;
// Initialize correct predef bits, to distinguish predefs from new defs.
#define ORBIT(n,s) |((julong)1<<n)
attr_defs[ATTR_CONTEXT_CLASS].predef
= (0 X_ATTR_DO(ORBIT) CLASS_ATTR_DO(ORBIT));
attr_defs[ATTR_CONTEXT_FIELD].predef
= (0 X_ATTR_DO(ORBIT) FIELD_ATTR_DO(ORBIT));
attr_defs[ATTR_CONTEXT_METHOD].predef
= (0 X_ATTR_DO(ORBIT) METHOD_ATTR_DO(ORBIT));
attr_defs[ATTR_CONTEXT_CODE].predef
= (0 O_ATTR_DO(ORBIT) CODE_ATTR_DO(ORBIT));
#undef ORBIT
// Clear out the redef bits, folding them back into predef.
for (i = 0; i < ATTR_CONTEXT_LIMIT; i++) {
attr_defs[i].predef |= attr_defs[i].redef;
attr_defs[i].redef = 0;
}
// Now read the transmitted locally defined attrs.
// This will set redef bits again.
for (i = 0; i < attr_definition_count; i++) {
int header = attr_definition_headers.getByte();
int attrc = ADH_BYTE_CONTEXT(header);
int idx = ADH_BYTE_INDEX(header);
entry* name = attr_definition_name.getRef();
CHECK;
entry* layout = attr_definition_layout.getRef();
CHECK;
attr_defs[attrc].defineLayout(idx, name, layout->value.b.strval());
}
}
#define NO_ENTRY_YET ((entry*)-1)
static bool isDigitString(bytes& x, int beg, int end) {
if (beg == end) return false; // null string
byte* xptr = x.ptr;
for (int i = beg; i < end; i++) {
char ch = xptr[i];
if (!(ch >= '0' && ch <= '9')) return false;
}
return true;
}
enum { // constants for parsing class names
SLASH_MIN = '.',
SLASH_MAX = '/',
DOLLAR_MIN = 0,
DOLLAR_MAX = '-'
};
static int lastIndexOf(int chmin, int chmax, bytes& x, int pos) {
byte* ptr = x.ptr;
for (byte* cp = ptr + pos; --cp >= ptr; ) {
assert(x.inBounds(cp));
if (*cp >= chmin && *cp <= chmax)
return (int)(cp - ptr);
}
return -1;
}
maybe_inline
inner_class* cpool::getIC(entry* inner) {
if (inner == null) return null;
assert(inner->tag == CONSTANT_Class);
if (inner->inord == NO_INORD) return null;
inner_class* ic = ic_index[inner->inord];
assert(ic == null || ic->inner == inner);
return ic;
}
maybe_inline
inner_class* cpool::getFirstChildIC(entry* outer) {
if (outer == null) return null;
assert(outer->tag == CONSTANT_Class);
if (outer->inord == NO_INORD) return null;
inner_class* ic = ic_child_index[outer->inord];
assert(ic == null || ic->outer == outer);
return ic;
}
maybe_inline
inner_class* cpool::getNextChildIC(inner_class* child) {
inner_class* ic = child->next_sibling;
assert(ic == null || ic->outer == child->outer);
return ic;
}
void unpacker::read_ics() {
int i;
int index_size = cp.tag_count[CONSTANT_Class];
inner_class** ic_index = U_NEW(inner_class*, index_size);
inner_class** ic_child_index = U_NEW(inner_class*, index_size);
cp.ic_index = ic_index;
cp.ic_child_index = ic_child_index;
ics = U_NEW(inner_class, ic_count);
ic_this_class.readData(ic_count);
ic_flags.readData(ic_count);
CHECK;
// Scan flags to get count of long-form bands.
int long_forms = 0;
for (i = 0; i < ic_count; i++) {
int flags = ic_flags.getInt(); // may be long form!
if ((flags & ACC_IC_LONG_FORM) != 0) {
long_forms += 1;
ics[i].name = NO_ENTRY_YET;
}
flags &= ~ACC_IC_LONG_FORM;
entry* inner = ic_this_class.getRef();
CHECK;
uint inord = inner->inord;
assert(inord < (uint)cp.tag_count[CONSTANT_Class]);
if (ic_index[inord] != null) {
abort("identical inner class");
break;
}
ic_index[inord] = &ics[i];
ics[i].inner = inner;
ics[i].flags = flags;
assert(cp.getIC(inner) == &ics[i]);
}
CHECK;
//ic_this_class.done();
//ic_flags.done();
ic_outer_class.readData(long_forms);
ic_name.readData(long_forms);
for (i = 0; i < ic_count; i++) {
if (ics[i].name == NO_ENTRY_YET) {
// Long form.
ics[i].outer = ic_outer_class.getRefN();
CHECK;
ics[i].name = ic_name.getRefN();
CHECK;
} else {
// Fill in outer and name based on inner.
bytes& n = ics[i].inner->value.b;
bytes pkgOuter;
bytes number;
bytes name;
// Parse n into pkgOuter and name (and number).
PRINTCR((5, "parse short IC name %s", n.ptr));
int dollar1, dollar2; // pointers to $ in the pattern
// parse n = (<pkg>/)*<outer>($<number>)?($<name>)?
int nlen = (int)n.len;
int pkglen = lastIndexOf(SLASH_MIN, SLASH_MAX, n, nlen) + 1;
dollar2 = lastIndexOf(DOLLAR_MIN, DOLLAR_MAX, n, nlen);
if (dollar2 < 0) {
abort();
return;
}
assert(dollar2 >= pkglen);
if (isDigitString(n, dollar2+1, nlen)) {
// n = (<pkg>/)*<outer>$<number>
number = n.slice(dollar2+1, nlen);
name.set(null,0);
dollar1 = dollar2;
} else if (pkglen < (dollar1
= lastIndexOf(DOLLAR_MIN, DOLLAR_MAX, n, dollar2-1))
&& isDigitString(n, dollar1+1, dollar2)) {
// n = (<pkg>/)*<outer>$<number>$<name>
number = n.slice(dollar1+1, dollar2);
name = n.slice(dollar2+1, nlen);
} else {
// n = (<pkg>/)*<outer>$<name>
dollar1 = dollar2;
number.set(null,0);
name = n.slice(dollar2+1, nlen);
}
if (number.ptr == null)
pkgOuter = n.slice(0, dollar1);
else
pkgOuter.set(null,0);
PRINTCR((5,"=> %s$ 0%s $%s",
pkgOuter.string(), number.string(), name.string()));
if (pkgOuter.ptr != null)
ics[i].outer = cp.ensureClass(pkgOuter);
if (name.ptr != null)
ics[i].name = cp.ensureUtf8(name);
}
// update child/sibling list
if (ics[i].outer != null) {
uint outord = ics[i].outer->inord;
if (outord != NO_INORD) {
assert(outord < (uint)cp.tag_count[CONSTANT_Class]);
ics[i].next_sibling = ic_child_index[outord];
ic_child_index[outord] = &ics[i];
}
}
}
//ic_outer_class.done();
//ic_name.done();
}
void unpacker::read_classes() {
PRINTCR((1," ...scanning %d classes...", class_count));
class_this.readData(class_count);
class_super.readData(class_count);
class_interface_count.readData(class_count);
class_interface.readData(class_interface_count.getIntTotal());
CHECK;
#if 0
int i;
// Make a little mark on super-classes.
for (i = 0; i < class_count; i++) {
entry* e = class_super.getRefN();
if (e != null) e->bits |= entry::EB_SUPER;
}
class_super.rewind();
#endif
// Members.
class_field_count.readData(class_count);
class_method_count.readData(class_count);
CHECK;
int field_count = class_field_count.getIntTotal();
int method_count = class_method_count.getIntTotal();
field_descr.readData(field_count);
read_attrs(ATTR_CONTEXT_FIELD, field_count);
CHECK;
method_descr.readData(method_count);
read_attrs(ATTR_CONTEXT_METHOD, method_count);
CHECK;
read_attrs(ATTR_CONTEXT_CLASS, class_count);
CHECK;
read_code_headers();
PRINTCR((1,"scanned %d classes, %d fields, %d methods, %d code headers",
class_count, field_count, method_count, code_count));
}
maybe_inline
int unpacker::attr_definitions::predefCount(uint idx) {
return isPredefined(idx) ? flag_count[idx] : 0;
}
void unpacker::read_attrs(int attrc, int obj_count) {
attr_definitions& ad = attr_defs[attrc];
assert(ad.attrc == attrc);
int i, idx, count;
CHECK;
bool haveLongFlags = ad.haveLongFlags();
band& xxx_flags_hi = ad.xxx_flags_hi();
assert(endsWith(xxx_flags_hi.name, "_flags_hi"));
if (haveLongFlags)
xxx_flags_hi.readData(obj_count);
CHECK;
band& xxx_flags_lo = ad.xxx_flags_lo();
assert(endsWith(xxx_flags_lo.name, "_flags_lo"));
xxx_flags_lo.readData(obj_count);
CHECK;
// pre-scan flags, counting occurrences of each index bit
julong indexMask = ad.flagIndexMask(); // which flag bits are index bits?
for (i = 0; i < obj_count; i++) {
julong indexBits = xxx_flags_hi.getLong(xxx_flags_lo, haveLongFlags);
if ((indexBits & ~indexMask) > (ushort)-1) {
abort("undefined attribute flag bit");
return;
}
indexBits &= indexMask; // ignore classfile flag bits
for (idx = 0; indexBits != 0; idx++, indexBits >>= 1) {
ad.flag_count[idx] += (int)(indexBits & 1);
}
}
// we'll scan these again later for output:
xxx_flags_lo.rewind();
xxx_flags_hi.rewind();
band& xxx_attr_count = ad.xxx_attr_count();
assert(endsWith(xxx_attr_count.name, "_attr_count"));
// There is one count element for each 1<<16 bit set in flags:
xxx_attr_count.readData(ad.predefCount(X_ATTR_OVERFLOW));
CHECK;
band& xxx_attr_indexes = ad.xxx_attr_indexes();
assert(endsWith(xxx_attr_indexes.name, "_attr_indexes"));
int overflowIndexCount = xxx_attr_count.getIntTotal();
xxx_attr_indexes.readData(overflowIndexCount);
CHECK;
// pre-scan attr indexes, counting occurrences of each value
for (i = 0; i < overflowIndexCount; i++) {
idx = xxx_attr_indexes.getInt();
if (!ad.isIndex(idx)) {
abort("attribute index out of bounds");
return;
}
ad.getCount(idx) += 1;
}
xxx_attr_indexes.rewind(); // we'll scan it again later for output
// We will need a backward call count for each used backward callable.
int backwardCounts = 0;
for (idx = 0; idx < ad.layouts.length(); idx++) {
layout_definition* lo = ad.getLayout(idx);
if (lo != null && ad.getCount(idx) != 0) {
// Build the bands lazily, only when they are used.
band** bands = ad.buildBands(lo);
CHECK;
if (lo->hasCallables()) {
for (i = 0; bands[i] != null; i++) {
if (bands[i]->le_back) {
assert(bands[i]->le_kind == EK_CBLE);
backwardCounts += 1;
}
}
}
}
}
ad.xxx_attr_calls().readData(backwardCounts);
CHECK;
// Read built-in bands.
// Mostly, these are hand-coded equivalents to readBandData().
switch (attrc) {
case ATTR_CONTEXT_CLASS:
count = ad.predefCount(CLASS_ATTR_SourceFile);
class_SourceFile_RUN.readData(count);
CHECK;
count = ad.predefCount(CLASS_ATTR_EnclosingMethod);
class_EnclosingMethod_RC.readData(count);
class_EnclosingMethod_RDN.readData(count);
CHECK;
count = ad.predefCount(X_ATTR_Signature);
class_Signature_RS.readData(count);
CHECK;
ad.readBandData(X_ATTR_RuntimeVisibleAnnotations);
ad.readBandData(X_ATTR_RuntimeInvisibleAnnotations);
CHECK;
count = ad.predefCount(CLASS_ATTR_InnerClasses);
class_InnerClasses_N.readData(count);
CHECK;
count = class_InnerClasses_N.getIntTotal();
class_InnerClasses_RC.readData(count);
class_InnerClasses_F.readData(count);
CHECK;
// Drop remaining columns wherever flags are zero:
count -= class_InnerClasses_F.getIntCount(0);
class_InnerClasses_outer_RCN.readData(count);
class_InnerClasses_name_RUN.readData(count);
CHECK;
count = ad.predefCount(CLASS_ATTR_ClassFile_version);
class_ClassFile_version_minor_H.readData(count);
class_ClassFile_version_major_H.readData(count);
CHECK;
ad.readBandData(X_ATTR_RuntimeVisibleTypeAnnotations);
ad.readBandData(X_ATTR_RuntimeInvisibleTypeAnnotations);
CHECK;
break;
case ATTR_CONTEXT_FIELD:
count = ad.predefCount(FIELD_ATTR_ConstantValue);
field_ConstantValue_KQ.readData(count);
CHECK;
count = ad.predefCount(X_ATTR_Signature);
field_Signature_RS.readData(count);
CHECK;
ad.readBandData(X_ATTR_RuntimeVisibleAnnotations);
ad.readBandData(X_ATTR_RuntimeInvisibleAnnotations);
CHECK;
ad.readBandData(X_ATTR_RuntimeVisibleTypeAnnotations);
ad.readBandData(X_ATTR_RuntimeInvisibleTypeAnnotations);
CHECK;
break;
case ATTR_CONTEXT_METHOD:
code_count = ad.predefCount(METHOD_ATTR_Code);
// Code attrs are handled very specially below...
count = ad.predefCount(METHOD_ATTR_Exceptions);
method_Exceptions_N.readData(count);
count = method_Exceptions_N.getIntTotal();
method_Exceptions_RC.readData(count);
CHECK;
count = ad.predefCount(X_ATTR_Signature);
method_Signature_RS.readData(count);
CHECK;
ad.readBandData(X_ATTR_RuntimeVisibleAnnotations);
ad.readBandData(X_ATTR_RuntimeInvisibleAnnotations);
ad.readBandData(METHOD_ATTR_RuntimeVisibleParameterAnnotations);
ad.readBandData(METHOD_ATTR_RuntimeInvisibleParameterAnnotations);
ad.readBandData(METHOD_ATTR_AnnotationDefault);
CHECK;
count = ad.predefCount(METHOD_ATTR_MethodParameters);
method_MethodParameters_NB.readData(count);
count = method_MethodParameters_NB.getIntTotal();
method_MethodParameters_name_RUN.readData(count);
method_MethodParameters_flag_FH.readData(count);
CHECK;
ad.readBandData(X_ATTR_RuntimeVisibleTypeAnnotations);
ad.readBandData(X_ATTR_RuntimeInvisibleTypeAnnotations);
CHECK;
break;
case ATTR_CONTEXT_CODE:
// (keep this code aligned with its brother in unpacker::write_attrs)
count = ad.predefCount(CODE_ATTR_StackMapTable);
// disable this feature in old archives!
if (count != 0 && majver < JAVA6_PACKAGE_MAJOR_VERSION) {
abort("undefined StackMapTable attribute (old archive format)");
return;
}
code_StackMapTable_N.readData(count);
CHECK;
count = code_StackMapTable_N.getIntTotal();
code_StackMapTable_frame_T.readData(count);
CHECK;
// the rest of it depends in a complicated way on frame tags
{
int fat_frame_count = 0;
int offset_count = 0;
int type_count = 0;
for (int k = 0; k < count; k++) {
int tag = code_StackMapTable_frame_T.getByte();
if (tag <= 127) {
// (64-127) [(2)]
if (tag >= 64) type_count++;
} else if (tag <= 251) {
// (247) [(1)(2)]
// (248-251) [(1)]
if (tag >= 247) offset_count++;
if (tag == 247) type_count++;
} else if (tag <= 254) {
// (252) [(1)(2)]
// (253) [(1)(2)(2)]
// (254) [(1)(2)(2)(2)]
offset_count++;
type_count += (tag - 251);
} else {
// (255) [(1)NH[(2)]NH[(2)]]
fat_frame_count++;
}
}
// done pre-scanning frame tags:
code_StackMapTable_frame_T.rewind();
// deal completely with fat frames:
offset_count += fat_frame_count;
code_StackMapTable_local_N.readData(fat_frame_count);
CHECK;
type_count += code_StackMapTable_local_N.getIntTotal();
code_StackMapTable_stack_N.readData(fat_frame_count);
type_count += code_StackMapTable_stack_N.getIntTotal();
CHECK;
// read the rest:
code_StackMapTable_offset.readData(offset_count);
code_StackMapTable_T.readData(type_count);
CHECK;
// (7) [RCH]
count = code_StackMapTable_T.getIntCount(7);
code_StackMapTable_RC.readData(count);
CHECK;
// (8) [PH]
count = code_StackMapTable_T.getIntCount(8);
code_StackMapTable_P.readData(count);
CHECK;
}
count = ad.predefCount(CODE_ATTR_LineNumberTable);
code_LineNumberTable_N.readData(count);
CHECK;
count = code_LineNumberTable_N.getIntTotal();
code_LineNumberTable_bci_P.readData(count);
code_LineNumberTable_line.readData(count);
CHECK;
count = ad.predefCount(CODE_ATTR_LocalVariableTable);
code_LocalVariableTable_N.readData(count);
CHECK;
count = code_LocalVariableTable_N.getIntTotal();
code_LocalVariableTable_bci_P.readData(count);
code_LocalVariableTable_span_O.readData(count);
code_LocalVariableTable_name_RU.readData(count);
code_LocalVariableTable_type_RS.readData(count);
code_LocalVariableTable_slot.readData(count);
CHECK;
count = ad.predefCount(CODE_ATTR_LocalVariableTypeTable);
code_LocalVariableTypeTable_N.readData(count);
count = code_LocalVariableTypeTable_N.getIntTotal();
code_LocalVariableTypeTable_bci_P.readData(count);
code_LocalVariableTypeTable_span_O.readData(count);
code_LocalVariableTypeTable_name_RU.readData(count);
code_LocalVariableTypeTable_type_RS.readData(count);
code_LocalVariableTypeTable_slot.readData(count);
CHECK;
ad.readBandData(X_ATTR_RuntimeVisibleTypeAnnotations);
ad.readBandData(X_ATTR_RuntimeInvisibleTypeAnnotations);
CHECK;
break;
}
// Read compressor-defined bands.
for (idx = 0; idx < ad.layouts.length(); idx++) {
if (ad.getLayout(idx) == null)
continue; // none at this fixed index <32
if (idx < (int)ad.flag_limit && ad.isPredefined(idx))
continue; // already handled
if (ad.getCount(idx) == 0)
continue; // no attributes of this type (then why transmit layouts?)
ad.readBandData(idx);
}
}
void unpacker::attr_definitions::readBandData(int idx) {
int j;
uint count = getCount(idx);
if (count == 0) return;
layout_definition* lo = getLayout(idx);
if (lo != null) {
PRINTCR((1, "counted %d [redefined = %d predefined = %d] attributes of type %s.%s",
count, isRedefined(idx), isPredefined(idx),
ATTR_CONTEXT_NAME[attrc], lo->name));
}
bool hasCallables = lo->hasCallables();
band** bands = lo->bands();
if (!hasCallables) {
// Read through the rest of the bands in a regular way.
readBandData(bands, count);
} else {
// Deal with the callables.
// First set up the forward entry count for each callable.
// This is stored on band::length of the callable.
bands[0]->expectMoreLength(count);
for (j = 0; bands[j] != null; j++) {
band& j_cble = *bands[j];
assert(j_cble.le_kind == EK_CBLE);
if (j_cble.le_back) {
// Add in the predicted effects of backward calls, too.
int back_calls = xxx_attr_calls().getInt();
j_cble.expectMoreLength(back_calls);
// In a moment, more forward calls may increment j_cble.length.
}
}
// Now consult whichever callables have non-zero entry counts.
readBandData(bands, (uint)-1);
}
}
// Recursive helper to the previous function:
void unpacker::attr_definitions::readBandData(band** body, uint count) {
int j, k;
for (j = 0; body[j] != null; j++) {
band& b = *body[j];
if (b.defc != null) {
// It has data, so read it.
b.readData(count);
}
switch (b.le_kind) {
case EK_REPL:
{
int reps = b.getIntTotal();
readBandData(b.le_body, reps);
}
break;
case EK_UN:
{
int remaining = count;
for (k = 0; b.le_body[k] != null; k++) {
band& k_case = *b.le_body[k];
int k_count = 0;
if (k_case.le_casetags == null) {
k_count = remaining; // last (empty) case
} else {
int* tags = k_case.le_casetags;
int ntags = *tags++; // 1st element is length (why not?)
while (ntags-- > 0) {
int tag = *tags++;
k_count += b.getIntCount(tag);
}
}
readBandData(k_case.le_body, k_count);
remaining -= k_count;
}
assert(remaining == 0);
}
break;
case EK_CALL:
// Push the count forward, if it is not a backward call.
if (!b.le_back) {
band& cble = *b.le_body[0];
assert(cble.le_kind == EK_CBLE);
cble.expectMoreLength(count);
}
break;
case EK_CBLE:
assert((int)count == -1); // incoming count is meaningless
k = b.length;
assert(k >= 0);
// This is intended and required for non production mode.
assert((b.length = -1)); // make it unable to accept more calls now.
readBandData(b.le_body, k);
break;
}
}
}
static inline
band** findMatchingCase(int matchTag, band** cases) {
for (int k = 0; cases[k] != null; k++) {
band& k_case = *cases[k];
if (k_case.le_casetags != null) {
// If it has tags, it must match a tag.
int* tags = k_case.le_casetags;
int ntags = *tags++; // 1st element is length
for (; ntags > 0; ntags--) {
int tag = *tags++;
if (tag == matchTag)
break;
}
if (ntags == 0)
continue; // does not match
}
return k_case.le_body;
}
return null;
}
// write attribute band data:
void unpacker::putlayout(band** body) {
int i;
int prevBII = -1;
int prevBCI = -1;
if (body == NULL) {
abort("putlayout: unexpected NULL for body");
return;
}
for (i = 0; body[i] != null; i++) {
band& b = *body[i];
byte le_kind = b.le_kind;
// Handle scalar part, if any.
int x = 0;
entry* e = null;
if (b.defc != null) {
// It has data, so unparse an element.
if (b.ixTag != CONSTANT_None) {
assert(le_kind == EK_REF);
if (b.ixTag == CONSTANT_FieldSpecific)
e = b.getRefUsing(cp.getKQIndex());
else
e = b.getRefN();
CHECK;
switch (b.le_len) {
case 0: break;
case 1: putu1ref(e); break;
case 2: putref(e); break;
case 4: putu2(0); putref(e); break;
default: assert(false);
}
} else {
assert(le_kind == EK_INT || le_kind == EK_REPL || le_kind == EK_UN);
x = b.getInt();
assert(!b.le_bci || prevBCI == (int)to_bci(prevBII));
switch (b.le_bci) {
case EK_BCI: // PH: transmit R(bci), store bci
x = to_bci(prevBII = x);
prevBCI = x;
break;
case EK_BCID: // POH: transmit D(R(bci)), store bci
x = to_bci(prevBII += x);
prevBCI = x;
break;
case EK_BCO: // OH: transmit D(R(bci)), store D(bci)
x = to_bci(prevBII += x) - prevBCI;
prevBCI += x;
break;
}
assert(!b.le_bci || prevBCI == (int)to_bci(prevBII));
switch (b.le_len) {
case 0: break;
case 1: putu1(x); break;
case 2: putu2(x); break;
case 4: putu4(x); break;
default: assert(false);
}
}
}
// Handle subparts, if any.
switch (le_kind) {
case EK_REPL:
// x is the repeat count
while (x-- > 0) {
putlayout(b.le_body);
}
break;
case EK_UN:
// x is the tag
putlayout(findMatchingCase(x, b.le_body));
break;
case EK_CALL:
{
band& cble = *b.le_body[0];
assert(cble.le_kind == EK_CBLE);
assert(cble.le_len == b.le_len);
putlayout(cble.le_body);
}
break;
#ifndef PRODUCT
case EK_CBLE:
case EK_CASE:
assert(false); // should not reach here
#endif
}
}
}
void unpacker::read_files() {
file_name.readData(file_count);
if (testBit(archive_options, AO_HAVE_FILE_SIZE_HI))
file_size_hi.readData(file_count);
file_size_lo.readData(file_count);
if (testBit(archive_options, AO_HAVE_FILE_MODTIME))
file_modtime.readData(file_count);
int allFiles = file_count + class_count;
if (testBit(archive_options, AO_HAVE_FILE_OPTIONS)) {
file_options.readData(file_count);
// FO_IS_CLASS_STUB might be set, causing overlap between classes and files
for (int i = 0; i < file_count; i++) {
if ((file_options.getInt() & FO_IS_CLASS_STUB) != 0) {
allFiles -= 1; // this one counts as both class and file
}
}
file_options.rewind();
}
assert((default_file_options & FO_IS_CLASS_STUB) == 0);
files_remaining = allFiles;
}
maybe_inline
void unpacker::get_code_header(int& max_stack,
int& max_na_locals,
int& handler_count,
int& cflags) {
int sc = code_headers.getByte();
if (sc == 0) {
max_stack = max_na_locals = handler_count = cflags = -1;
return;
}
// Short code header is the usual case:
int nh;
int mod;
if (sc < 1 + 12*12) {
sc -= 1;
nh = 0;
mod = 12;
} else if (sc < 1 + 12*12 + 8*8) {
sc -= 1 + 12*12;
nh = 1;
mod = 8;
} else {
assert(sc < 1 + 12*12 + 8*8 + 7*7);
sc -= 1 + 12*12 + 8*8;
nh = 2;
mod = 7;
}
max_stack = sc % mod;
max_na_locals = sc / mod; // caller must add static, siglen
handler_count = nh;
if (testBit(archive_options, AO_HAVE_ALL_CODE_FLAGS))
cflags = -1;
else
cflags = 0; // this one has no attributes
}
// Cf. PackageReader.readCodeHeaders
void unpacker::read_code_headers() {
code_headers.readData(code_count);
CHECK;
int totalHandlerCount = 0;
int totalFlagsCount = 0;
for (int i = 0; i < code_count; i++) {
int max_stack, max_locals, handler_count, cflags;
get_code_header(max_stack, max_locals, handler_count, cflags);
if (max_stack < 0) code_max_stack.expectMoreLength(1);
if (max_locals < 0) code_max_na_locals.expectMoreLength(1);
if (handler_count < 0) code_handler_count.expectMoreLength(1);
else totalHandlerCount += handler_count;
if (cflags < 0) totalFlagsCount += 1;
}
code_headers.rewind(); // replay later during writing
code_max_stack.readData();
code_max_na_locals.readData();
code_handler_count.readData();
totalHandlerCount += code_handler_count.getIntTotal();
CHECK;
// Read handler specifications.
// Cf. PackageReader.readCodeHandlers.
code_handler_start_P.readData(totalHandlerCount);
code_handler_end_PO.readData(totalHandlerCount);
code_handler_catch_PO.readData(totalHandlerCount);
code_handler_class_RCN.readData(totalHandlerCount);
CHECK;
read_attrs(ATTR_CONTEXT_CODE, totalFlagsCount);
CHECK;
}
static inline bool is_in_range(uint n, uint min, uint max) {
return n - min <= max - min; // unsigned arithmetic!
}
static inline bool is_field_op(int bc) {
return is_in_range(bc, bc_getstatic, bc_putfield);
}
static inline bool is_invoke_init_op(int bc) {
return is_in_range(bc, _invokeinit_op, _invokeinit_limit-1);
}
static inline bool is_self_linker_op(int bc) {
return is_in_range(bc, _self_linker_op, _self_linker_limit-1);
}
static bool is_branch_op(int bc) {
return is_in_range(bc, bc_ifeq, bc_jsr)
|| is_in_range(bc, bc_ifnull, bc_jsr_w);
}
static bool is_local_slot_op(int bc) {
return is_in_range(bc, bc_iload, bc_aload)
|| is_in_range(bc, bc_istore, bc_astore)
|| bc == bc_iinc || bc == bc_ret;
}
band* unpacker::ref_band_for_op(int bc) {
switch (bc) {
case bc_ildc:
case bc_ildc_w:
return &bc_intref;
case bc_fldc:
case bc_fldc_w:
return &bc_floatref;
case bc_lldc2_w:
return &bc_longref;
case bc_dldc2_w:
return &bc_doubleref;
case bc_sldc:
case bc_sldc_w:
return &bc_stringref;
case bc_cldc:
case bc_cldc_w:
return &bc_classref;
case bc_qldc: case bc_qldc_w:
return &bc_loadablevalueref;
case bc_getstatic:
case bc_putstatic:
case bc_getfield:
case bc_putfield:
return &bc_fieldref;
case _invokespecial_int:
case _invokestatic_int:
return &bc_imethodref;
case bc_invokevirtual:
case bc_invokespecial:
case bc_invokestatic:
return &bc_methodref;
case bc_invokeinterface:
return &bc_imethodref;
case bc_invokedynamic:
return &bc_indyref;
case bc_new:
case bc_anewarray:
case bc_checkcast:
case bc_instanceof:
case bc_multianewarray:
return &bc_classref;
}
return null;
}
maybe_inline
band* unpacker::ref_band_for_self_op(int bc, bool& isAloadVar, int& origBCVar) {
if (!is_self_linker_op(bc)) return null;
int idx = (bc - _self_linker_op);
bool isSuper = (idx >= _self_linker_super_flag);
if (isSuper) idx -= _self_linker_super_flag;
bool isAload = (idx >= _self_linker_aload_flag);
if (isAload) idx -= _self_linker_aload_flag;
int origBC = _first_linker_op + idx;
bool isField = is_field_op(origBC);
isAloadVar = isAload;
origBCVar = _first_linker_op + idx;
if (!isSuper)
return isField? &bc_thisfield: &bc_thismethod;
else
return isField? &bc_superfield: &bc_supermethod;
}
// Cf. PackageReader.readByteCodes
inline // called exactly once => inline
void unpacker::read_bcs() {
PRINTCR((3, "reading compressed bytecodes and operands for %d codes...",
code_count));
// read from bc_codes and bc_case_count
fillbytes all_switch_ops;
all_switch_ops.init();
CHECK;
// Read directly from rp/rplimit.
//Do this later: bc_codes.readData(...)
byte* rp0 = rp;
band* bc_which;
byte* opptr = rp;
byte* oplimit = rplimit;
bool isAload; // passed by ref and then ignored
int junkBC; // passed by ref and then ignored
for (int k = 0; k < code_count; k++) {
// Scan one method:
for (;;) {
if (opptr+2 > oplimit) {
rp = opptr;
ensure_input(2);
oplimit = rplimit;
rp = rp0; // back up
}
if (opptr == oplimit) { abort(); break; }
int bc = *opptr++ & 0xFF;
bool isWide = false;
if (bc == bc_wide) {
if (opptr == oplimit) { abort(); break; }
bc = *opptr++ & 0xFF;
isWide = true;
}
// Adjust expectations of various band sizes.
switch (bc) {
case bc_tableswitch:
case bc_lookupswitch:
all_switch_ops.addByte(bc);
break;
case bc_iinc:
bc_local.expectMoreLength(1);
bc_which = isWide ? &bc_short : &bc_byte;
bc_which->expectMoreLength(1);
break;
case bc_sipush:
bc_short.expectMoreLength(1);
break;
case bc_bipush:
bc_byte.expectMoreLength(1);
break;
case bc_newarray:
bc_byte.expectMoreLength(1);
break;
case bc_multianewarray:
assert(ref_band_for_op(bc) == &bc_classref);
bc_classref.expectMoreLength(1);
bc_byte.expectMoreLength(1);
break;
case bc_ref_escape:
bc_escrefsize.expectMoreLength(1);
bc_escref.expectMoreLength(1);
break;
case bc_byte_escape:
bc_escsize.expectMoreLength(1);
// bc_escbyte will have to be counted too
break;
default:
if (is_invoke_init_op(bc)) {
bc_initref.expectMoreLength(1);
break;
}
bc_which = ref_band_for_self_op(bc, isAload, junkBC);
if (bc_which != null) {
bc_which->expectMoreLength(1);
break;
}
if (is_branch_op(bc)) {
bc_label.expectMoreLength(1);
break;
}
bc_which = ref_band_for_op(bc);
if (bc_which != null) {
bc_which->expectMoreLength(1);
assert(bc != bc_multianewarray); // handled elsewhere
break;
}
if (is_local_slot_op(bc)) {
bc_local.expectMoreLength(1);
break;
}
break;
case bc_end_marker:
// Increment k and test against code_count.
goto doneScanningMethod;
}
}
doneScanningMethod:{}
if (aborting()) break;
}
// Go through the formality, so we can use it in a regular fashion later:
assert(rp == rp0);
bc_codes.readData((int)(opptr - rp));
int i = 0;
// To size instruction bands correctly, we need info on switches:
bc_case_count.readData((int)all_switch_ops.size());
for (i = 0; i < (int)all_switch_ops.size(); i++) {
int caseCount = bc_case_count.getInt();
int bc = all_switch_ops.getByte(i);
bc_label.expectMoreLength(1+caseCount); // default label + cases
bc_case_value.expectMoreLength(bc == bc_tableswitch ? 1 : caseCount);
PRINTCR((2, "switch bc=%d caseCount=%d", bc, caseCount));
}
bc_case_count.rewind(); // uses again for output
all_switch_ops.free();
for (i = e_bc_case_value; i <= e_bc_escsize; i++) {
all_bands[i].readData();
}
// The bc_escbyte band is counted by the immediately previous band.
bc_escbyte.readData(bc_escsize.getIntTotal());
PRINTCR((3, "scanned %d opcode and %d operand bytes for %d codes...",
(int)(bc_codes.size()),
(int)(bc_escsize.maxRP() - bc_case_value.minRP()),
code_count));
}
void unpacker::read_bands() {
byte* rp0 = rp;
CHECK;
read_file_header();
CHECK;
if (cp.nentries == 0) {
// read_file_header failed to read a CP, because it copied a JAR.
return;
}
// Do this after the file header has been read:
check_options();
read_cp();
CHECK;
read_attr_defs();
CHECK;
read_ics();
CHECK;
read_classes();
CHECK;
read_bcs();
CHECK;
read_files();
}
/// CP routines
entry*& cpool::hashTabRef(byte tag, bytes& b) {
PRINTCR((5, "hashTabRef tag=%d %s[%d]", tag, b.string(), b.len));
uint hash = tag + (int)b.len;
for (int i = 0; i < (int)b.len; i++) {
hash = hash * 31 + (0xFF & b.ptr[i]);
}
entry** ht = hashTab;
int hlen = hashTabLength;
assert((hlen & (hlen-1)) == 0); // must be power of 2
uint hash1 = hash & (hlen-1); // == hash % hlen
uint hash2 = 0; // lazily computed (requires mod op.)
int probes = 0;
while (ht[hash1] != null) {
entry& e = *ht[hash1];
if (e.value.b.equals(b) && e.tag == tag)
break;
if (hash2 == 0)
// Note: hash2 must be relatively prime to hlen, hence the "|1".
hash2 = (((hash % 499) & (hlen-1)) | 1);
hash1 += hash2;
if (hash1 >= (uint)hlen) hash1 -= hlen;
assert(hash1 < (uint)hlen);
assert(++probes < hlen);
}
#ifndef PRODUCT
hash_probes[0] += 1;
hash_probes[1] += probes;
#endif
PRINTCR((5, " => @%d %p", hash1, ht[hash1]));
return ht[hash1];
}
maybe_inline
static void insert_extra(entry* e, ptrlist& extras) {
// This ordering helps implement the Pack200 requirement
// of a predictable CP order in the class files produced.
e->inord = NO_INORD; // mark as an "extra"
extras.add(e);
// Note: We will sort the list (by string-name) later.
}
entry* cpool::ensureUtf8(bytes& b) {
entry*& ix = hashTabRef(CONSTANT_Utf8, b);
if (ix != null) return ix;
// Make one.
if (nentries == maxentries) {
abort("cp utf8 overflow");
return &entries[tag_base[CONSTANT_Utf8]]; // return something
}
entry& e = entries[nentries++];
e.tag = CONSTANT_Utf8;
u->saveTo(e.value.b, b);
assert(&e >= first_extra_entry);
insert_extra(&e, tag_extras[CONSTANT_Utf8]);
PRINTCR((4,"ensureUtf8 miss %s", e.string()));
return ix = &e;
}
entry* cpool::ensureClass(bytes& b) {
entry*& ix = hashTabRef(CONSTANT_Class, b);
if (ix != null) return ix;
// Make one.
if (nentries == maxentries) {
abort("cp class overflow");
return &entries[tag_base[CONSTANT_Class]]; // return something
}
entry& e = entries[nentries++];
e.tag = CONSTANT_Class;
e.nrefs = 1;
e.refs = U_NEW(entry*, 1);
ix = &e; // hold my spot in the index
entry* utf = ensureUtf8(b);
e.refs[0] = utf;
e.value.b = utf->value.b;
assert(&e >= first_extra_entry);
insert_extra(&e, tag_extras[CONSTANT_Class]);
PRINTCR((4,"ensureClass miss %s", e.string()));
return &e;
}
void cpool::expandSignatures() {
int i;
int nsigs = 0;
int nreused = 0;
int first_sig = tag_base[CONSTANT_Signature];
int sig_limit = tag_count[CONSTANT_Signature] + first_sig;
fillbytes buf;
buf.init(1<<10);
CHECK;
for (i = first_sig; i < sig_limit; i++) {
entry& e = entries[i];
assert(e.tag == CONSTANT_Signature);
int refnum = 0;
bytes form = e.refs[refnum++]->asUtf8();
buf.empty();
for (int j = 0; j < (int)form.len; j++) {
int c = form.ptr[j];
buf.addByte(c);
if (c == 'L') {
entry* cls = e.refs[refnum++];
buf.append(cls->className()->asUtf8());
}
}
assert(refnum == e.nrefs);
bytes& sig = buf.b;
PRINTCR((5,"signature %d %s -> %s", i, form.ptr, sig.ptr));
// try to find a pre-existing Utf8:
entry* &e2 = hashTabRef(CONSTANT_Utf8, sig);
if (e2 != null) {
assert(e2->isUtf8(sig));
e.value.b = e2->value.b;
e.refs[0] = e2;
e.nrefs = 1;
PRINTCR((5,"signature replaced %d => %s", i, e.string()));
nreused++;
} else {
// there is no other replacement; reuse this CP entry as a Utf8
u->saveTo(e.value.b, sig);
e.tag = CONSTANT_Utf8;
e.nrefs = 0;
e2 = &e;
PRINTCR((5,"signature changed %d => %s", e.inord, e.string()));
}
nsigs++;
}
PRINTCR((1,"expanded %d signatures (reused %d utfs)", nsigs, nreused));
buf.free();
// go expunge all references to remaining signatures:
for (i = 0; i < (int)nentries; i++) {
entry& e = entries[i];
for (int j = 0; j < e.nrefs; j++) {
entry*& e2 = e.refs[j];
if (e2 != null && e2->tag == CONSTANT_Signature)
e2 = e2->refs[0];
}
}
}
bool isLoadableValue(int tag) {
switch(tag) {
case CONSTANT_Integer:
case CONSTANT_Float:
case CONSTANT_Long:
case CONSTANT_Double:
case CONSTANT_String:
case CONSTANT_Class:
case CONSTANT_MethodHandle:
case CONSTANT_MethodType:
return true;
default:
return false;
}
}
/*
* this method can be used to size an array using null as the parameter,
* thereafter can be reused to initialize the array using a valid pointer
* as a parameter.
*/
int cpool::initLoadableValues(entry** loadable_entries) {
int loadable_count = 0;
for (int i = 0; i < (int)N_TAGS_IN_ORDER; i++) {
int tag = TAGS_IN_ORDER[i];
if (!isLoadableValue(tag))
continue;
if (loadable_entries != NULL) {
for (int n = 0 ; n < tag_count[tag] ; n++) {
loadable_entries[loadable_count + n] = &entries[tag_base[tag] + n];
}
}
loadable_count += tag_count[tag];
}
return loadable_count;
}
// Initialize various views into the constant pool.
void cpool::initGroupIndexes() {
// Initialize All
int all_count = 0;
for (int tag = CONSTANT_None ; tag < CONSTANT_Limit ; tag++) {
all_count += tag_count[tag];
}
entry* all_entries = &entries[tag_base[CONSTANT_None]];
tag_group_count[CONSTANT_All - CONSTANT_All] = all_count;
tag_group_index[CONSTANT_All - CONSTANT_All].init(all_count, all_entries, CONSTANT_All);
// Initialize LoadableValues
int loadable_count = initLoadableValues(NULL);
entry** loadable_entries = U_NEW(entry*, loadable_count);
initLoadableValues(loadable_entries);
tag_group_count[CONSTANT_LoadableValue - CONSTANT_All] = loadable_count;
tag_group_index[CONSTANT_LoadableValue - CONSTANT_All].init(loadable_count,
loadable_entries, CONSTANT_LoadableValue);
// Initialize AnyMembers
int any_count = tag_count[CONSTANT_Fieldref] +
tag_count[CONSTANT_Methodref] +
tag_count[CONSTANT_InterfaceMethodref];
entry *any_entries = &entries[tag_base[CONSTANT_Fieldref]];
tag_group_count[CONSTANT_AnyMember - CONSTANT_All] = any_count;
tag_group_index[CONSTANT_AnyMember - CONSTANT_All].init(any_count,
any_entries, CONSTANT_AnyMember);
}
void cpool::initMemberIndexes() {
// This function does NOT refer to any class schema.
// It is totally internal to the cpool.
int i, j;
// Get the pre-existing indexes:
int nclasses = tag_count[CONSTANT_Class];
entry* classes = tag_base[CONSTANT_Class] + entries;
int nfields = tag_count[CONSTANT_Fieldref];
entry* fields = tag_base[CONSTANT_Fieldref] + entries;
int nmethods = tag_count[CONSTANT_Methodref];
entry* methods = tag_base[CONSTANT_Methodref] + entries;
int* field_counts = T_NEW(int, nclasses);
int* method_counts = T_NEW(int, nclasses);
cpindex* all_indexes = U_NEW(cpindex, nclasses*2);
entry** field_ix = U_NEW(entry*, add_size(nfields, nclasses));
entry** method_ix = U_NEW(entry*, add_size(nmethods, nclasses));
for (j = 0; j < nfields; j++) {
entry& f = fields[j];
i = f.memberClass()->inord;
assert(i < nclasses);
field_counts[i]++;
}
for (j = 0; j < nmethods; j++) {
entry& m = methods[j];
i = m.memberClass()->inord;
assert(i < nclasses);
method_counts[i]++;
}
int fbase = 0, mbase = 0;
for (i = 0; i < nclasses; i++) {
int fc = field_counts[i];
int mc = method_counts[i];
all_indexes[i*2+0].init(fc, field_ix+fbase,
CONSTANT_Fieldref + SUBINDEX_BIT);
all_indexes[i*2+1].init(mc, method_ix+mbase,
CONSTANT_Methodref + SUBINDEX_BIT);
// reuse field_counts and member_counts as fill pointers:
field_counts[i] = fbase;
method_counts[i] = mbase;
PRINTCR((3, "class %d fields @%d[%d] methods @%d[%d]",
i, fbase, fc, mbase, mc));
fbase += fc+1;
mbase += mc+1;
// (the +1 leaves a space between every subarray)
}
assert(fbase == nfields+nclasses);
assert(mbase == nmethods+nclasses);
for (j = 0; j < nfields; j++) {
entry& f = fields[j];
i = f.memberClass()->inord;
field_ix[field_counts[i]++] = &f;
}
for (j = 0; j < nmethods; j++) {
entry& m = methods[j];
i = m.memberClass()->inord;
method_ix[method_counts[i]++] = &m;
}
member_indexes = all_indexes;
#ifndef PRODUCT
// Test the result immediately on every class and field.
int fvisited = 0, mvisited = 0;
int prevord, len;
for (i = 0; i < nclasses; i++) {
entry* cls = &classes[i];
cpindex* fix = getFieldIndex(cls);
cpindex* mix = getMethodIndex(cls);
PRINTCR((2, "field and method index for %s [%d] [%d]",
cls->string(), mix->len, fix->len));
prevord = -1;
for (j = 0, len = fix->len; j < len; j++) {
entry* f = fix->get(j);
assert(f != null);
PRINTCR((3, "- field %s", f->string()));
assert(f->memberClass() == cls);
assert(prevord < (int)f->inord);
prevord = f->inord;
fvisited++;
}
assert(fix->base2[j] == null);
prevord = -1;
for (j = 0, len = mix->len; j < len; j++) {
entry* m = mix->get(j);
assert(m != null);
PRINTCR((3, "- method %s", m->string()));
assert(m->memberClass() == cls);
assert(prevord < (int)m->inord);
prevord = m->inord;
mvisited++;
}
assert(mix->base2[j] == null);
}
assert(fvisited == nfields);
assert(mvisited == nmethods);
#endif
// Free intermediate buffers.
u->free_temps();
}
void entry::requestOutputIndex(cpool& cp, int req) {
assert(outputIndex <= REQUESTED_NONE); // must not have assigned indexes yet
if (tag == CONSTANT_Signature) {
ref(0)->requestOutputIndex(cp, req);
return;
}
assert(req == REQUESTED || req == REQUESTED_LDC);
if (outputIndex != REQUESTED_NONE) {
if (req == REQUESTED_LDC)
outputIndex = req; // this kind has precedence
return;
}
outputIndex = req;
//assert(!cp.outputEntries.contains(this));
assert(tag != CONSTANT_Signature);
// The BSMs are jetisoned to a side table, however all references
// that the BSMs refer to, need to be considered.
if (tag == CONSTANT_BootstrapMethod) {
// this is a a pseudo-op entry; an attribute will be generated later on
cp.requested_bsms.add(this);
} else {
// all other tag types go into real output file CP:
cp.outputEntries.add(this);
}
for (int j = 0; j < nrefs; j++) {
ref(j)->requestOutputIndex(cp);
}
}
void cpool::resetOutputIndexes() {
/*
* reset those few entries that are being used in the current class
* (Caution since this method is called after every class written, a loop
* over every global constant pool entry would be a quadratic cost.)
*/
int noes = outputEntries.length();
entry** oes = (entry**) outputEntries.base();
for (int i = 0 ; i < noes ; i++) {
entry& e = *oes[i];
e.outputIndex = REQUESTED_NONE;
}
// do the same for bsms and reset them if required
int nbsms = requested_bsms.length();
entry** boes = (entry**) requested_bsms.base();
for (int i = 0 ; i < nbsms ; i++) {
entry& e = *boes[i];
e.outputIndex = REQUESTED_NONE;
}
outputIndexLimit = 0;
outputEntries.empty();
#ifndef PRODUCT
// ensure things are cleared out
for (int i = 0; i < (int)maxentries; i++)
assert(entries[i].outputIndex == REQUESTED_NONE);
#endif
}
static const byte TAG_ORDER[CONSTANT_Limit] = {
0, 1, 0, 2, 3, 4, 5, 7, 6, 10, 11, 12, 9, 8, 0, 13, 14, 15, 16
};
extern "C"
int outputEntry_cmp(const void* e1p, const void* e2p) {
// Sort entries according to the Pack200 rules for deterministic
// constant pool ordering.
//
// The four sort keys as follows, in order of decreasing importance:
// 1. ldc first, then non-ldc guys
// 2. normal cp_All entries by input order (i.e., address order)
// 3. after that, extra entries by lexical order (as in tag_extras[*])
entry& e1 = *(entry*) *(void**) e1p;
entry& e2 = *(entry*) *(void**) e2p;
int oi1 = e1.outputIndex;
int oi2 = e2.outputIndex;
assert(oi1 == REQUESTED || oi1 == REQUESTED_LDC);
assert(oi2 == REQUESTED || oi2 == REQUESTED_LDC);
if (oi1 != oi2) {
if (oi1 == REQUESTED_LDC) return 0-1;
if (oi2 == REQUESTED_LDC) return 1-0;
// Else fall through; neither is an ldc request.
}
if (e1.inord != NO_INORD || e2.inord != NO_INORD) {
// One or both is normal. Use input order.
if (&e1 > &e2) return 1-0;
if (&e1 < &e2) return 0-1;
return 0; // equal pointers
}
// Both are extras. Sort by tag and then by value.
if (e1.tag != e2.tag) {
return TAG_ORDER[e1.tag] - TAG_ORDER[e2.tag];
}
// If the tags are the same, use string comparison.
return compare_Utf8_chars(e1.value.b, e2.value.b);
}
void cpool::computeOutputIndexes() {
int i;
#ifndef PRODUCT
// outputEntries must be a complete list of those requested:
static uint checkStart = 0;
int checkStep = 1;
if (nentries > 100) checkStep = nentries / 100;
for (i = (int)(checkStart++ % checkStep); i < (int)nentries; i += checkStep) {
entry& e = entries[i];
if (e.tag == CONSTANT_BootstrapMethod) {
if (e.outputIndex != REQUESTED_NONE) {
assert(requested_bsms.contains(&e));
} else {
assert(!requested_bsms.contains(&e));
}
} else {
if (e.outputIndex != REQUESTED_NONE) {
assert(outputEntries.contains(&e));
} else {
assert(!outputEntries.contains(&e));
}
}
}
// check hand-initialization of TAG_ORDER
for (i = 0; i < (int)N_TAGS_IN_ORDER; i++) {
byte tag = TAGS_IN_ORDER[i];
assert(TAG_ORDER[tag] == i+1);
}
#endif
int noes = outputEntries.length();
entry** oes = (entry**) outputEntries.base();
// Sort the output constant pool into the order required by Pack200.
PTRLIST_QSORT(outputEntries, outputEntry_cmp);
// Allocate a new index for each entry that needs one.
// We do this in two passes, one for LDC entries and one for the rest.
int nextIndex = 1; // always skip index #0 in output cpool
for (i = 0; i < noes; i++) {
entry& e = *oes[i];
assert(e.outputIndex >= REQUESTED_LDC);
e.outputIndex = nextIndex++;
if (e.isDoubleWord()) nextIndex++; // do not use the next index
}
outputIndexLimit = nextIndex;
PRINTCR((3,"renumbering CP to %d entries", outputIndexLimit));
}
#ifndef PRODUCT
// debugging goo
unpacker* debug_u;
static bytes& getbuf(int len) { // for debugging only!
static int bn = 0;
static bytes bufs[8];
bytes& buf = bufs[bn++ & 7];
while ((int)buf.len < len+10)
buf.realloc(buf.len ? buf.len * 2 : 1000);
buf.ptr[0] = 0; // for the sake of strcat
return buf;
}
char* entry::string() {
bytes buf;
switch (tag) {
case CONSTANT_None:
return (char*)"<empty>";
case CONSTANT_Signature:
if (value.b.ptr == null)
return ref(0)->string();
// else fall through:
case CONSTANT_Utf8:
buf = value.b;
break;
case CONSTANT_Integer:
case CONSTANT_Float:
buf = getbuf(12);
sprintf((char*)buf.ptr, "0x%08x", value.i);
break;
case CONSTANT_Long:
case CONSTANT_Double:
buf = getbuf(24);
sprintf((char*)buf.ptr, "0x" LONG_LONG_HEX_FORMAT, value.l);
break;
default:
if (nrefs == 0) {
buf = getbuf(20);
sprintf((char*)buf.ptr, TAG_NAME[tag]);
} else if (nrefs == 1) {
return refs[0]->string();
} else {
char* s1 = refs[0]->string();
char* s2 = refs[1]->string();
buf = getbuf((int)strlen(s1) + 1 + (int)strlen(s2) + 4 + 1);
buf.strcat(s1).strcat(" ").strcat(s2);
if (nrefs > 2) buf.strcat(" ...");
}
}
return (char*)buf.ptr;
}
void print_cp_entry(int i) {
entry& e = debug_u->cp.entries[i];
char buf[30];
sprintf(buf, ((uint)e.tag < CONSTANT_Limit)? TAG_NAME[e.tag]: "%d", e.tag);
printf(" %d\t%s %s\n", i, buf, e.string());
}
void print_cp_entries(int beg, int end) {
for (int i = beg; i < end; i++)
print_cp_entry(i);
}
void print_cp() {
print_cp_entries(0, debug_u->cp.nentries);
}
#endif
// Unpacker Start
const char str_tf[] = "true\0false";
#undef STR_TRUE
#undef STR_FALSE
#define STR_TRUE (&str_tf[0])
#define STR_FALSE (&str_tf[5])
const char* unpacker::get_option(const char* prop) {
if (prop == null ) return null;
if (strcmp(prop, UNPACK_DEFLATE_HINT) == 0) {
return deflate_hint_or_zero == 0? null : STR_TF(deflate_hint_or_zero > 0);
#ifdef HAVE_STRIP
} else if (strcmp(prop, UNPACK_STRIP_COMPILE) == 0) {
return STR_TF(strip_compile);
} else if (strcmp(prop, UNPACK_STRIP_DEBUG) == 0) {
return STR_TF(strip_debug);
} else if (strcmp(prop, UNPACK_STRIP_JCOV) == 0) {
return STR_TF(strip_jcov);
#endif /*HAVE_STRIP*/
} else if (strcmp(prop, UNPACK_REMOVE_PACKFILE) == 0) {
return STR_TF(remove_packfile);
} else if (strcmp(prop, DEBUG_VERBOSE) == 0) {
return saveIntStr(verbose);
} else if (strcmp(prop, UNPACK_MODIFICATION_TIME) == 0) {
return (modification_time_or_zero == 0)? null:
saveIntStr(modification_time_or_zero);
} else if (strcmp(prop, UNPACK_LOG_FILE) == 0) {
return log_file;
} else {
return NULL; // unknown option ignore
}
}
bool unpacker::set_option(const char* prop, const char* value) {
if (prop == NULL) return false;
if (strcmp(prop, UNPACK_DEFLATE_HINT) == 0) {
deflate_hint_or_zero = ( (value == null || strcmp(value, "keep") == 0)
? 0: BOOL_TF(value) ? +1: -1);
#ifdef HAVE_STRIP
} else if (strcmp(prop, UNPACK_STRIP_COMPILE) == 0) {
strip_compile = STR_TF(value);
} else if (strcmp(prop, UNPACK_STRIP_DEBUG) == 0) {
strip_debug = STR_TF(value);
} else if (strcmp(prop, UNPACK_STRIP_JCOV) == 0) {
strip_jcov = STR_TF(value);
#endif /*HAVE_STRIP*/
} else if (strcmp(prop, UNPACK_REMOVE_PACKFILE) == 0) {
remove_packfile = STR_TF(value);
} else if (strcmp(prop, DEBUG_VERBOSE) == 0) {
verbose = (value == null)? 0: atoi(value);
} else if (strcmp(prop, DEBUG_VERBOSE ".bands") == 0) {
#ifndef PRODUCT
verbose_bands = (value == null)? 0: atoi(value);
#endif
} else if (strcmp(prop, UNPACK_MODIFICATION_TIME) == 0) {
if (value == null || (strcmp(value, "keep") == 0)) {
modification_time_or_zero = 0;
} else if (strcmp(value, "now") == 0) {
time_t now;
time(&now);
modification_time_or_zero = (int) now;
} else {
modification_time_or_zero = atoi(value);
if (modification_time_or_zero == 0)
modification_time_or_zero = 1; // make non-zero
}
} else if (strcmp(prop, UNPACK_LOG_FILE) == 0) {
log_file = (value == null)? value: saveStr(value);
} else {
return false; // unknown option ignore
}
return true;
}
// Deallocate all internal storage and reset to a clean state.
// Do not disturb any input or output connections, including
// infileptr, infileno, inbytes, read_input_fn, jarout, or errstrm.
// Do not reset any unpack options.
void unpacker::reset() {
bytes_read_before_reset += bytes_read;
bytes_written_before_reset += bytes_written;
files_written_before_reset += files_written;
classes_written_before_reset += classes_written;
segments_read_before_reset += 1;
if (verbose >= 2) {
fprintf(errstrm,
"After segment %d, "
LONG_LONG_FORMAT " bytes read and "
LONG_LONG_FORMAT " bytes written.\n",
segments_read_before_reset-1,
bytes_read_before_reset, bytes_written_before_reset);
fprintf(errstrm,
"After segment %d, %d files (of which %d are classes) written to output.\n",
segments_read_before_reset-1,
files_written_before_reset, classes_written_before_reset);
if (archive_next_count != 0) {
fprintf(errstrm,
"After segment %d, %d segment%s remaining (estimated).\n",
segments_read_before_reset-1,
archive_next_count, archive_next_count==1?"":"s");
}
}
unpacker save_u = (*this); // save bytewise image
infileptr = null; // make asserts happy
jniobj = null; // make asserts happy
jarout = null; // do not close the output jar
gzin = null; // do not close the input gzip stream
bytes esn;
if (errstrm_name != null) {
esn.saveFrom(errstrm_name);
} else {
esn.set(null, 0);
}
this->free();
mtrace('s', 0, 0); // note the boundary between segments
this->init(read_input_fn);
// restore selected interface state:
#define SAVE(x) this->x = save_u.x
SAVE(jniobj);
SAVE(jnienv);
SAVE(infileptr); // buffered
SAVE(infileno); // unbuffered
SAVE(inbytes); // direct
SAVE(jarout);
SAVE(gzin);
//SAVE(read_input_fn);
SAVE(errstrm);
SAVE(verbose); // verbose level, 0 means no output
SAVE(strip_compile);
SAVE(strip_debug);
SAVE(strip_jcov);
SAVE(remove_packfile);
SAVE(deflate_hint_or_zero); // ==0 means not set, otherwise -1 or 1
SAVE(modification_time_or_zero);
SAVE(bytes_read_before_reset);
SAVE(bytes_written_before_reset);
SAVE(files_written_before_reset);
SAVE(classes_written_before_reset);
SAVE(segments_read_before_reset);
#undef SAVE
if (esn.len > 0) {
errstrm_name = saveStr(esn.strval());
esn.free();
}
log_file = errstrm_name;
// Note: If we use strip_names, watch out: They get nuked here.
}
void unpacker::init(read_input_fn_t input_fn) {
int i;
NOT_PRODUCT(debug_u = this);
BYTES_OF(*this).clear();
#ifndef PRODUCT
free(); // just to make sure freeing is idempotent
#endif
this->u = this; // self-reference for U_NEW macro
errstrm = stdout; // default error-output
log_file = LOGFILE_STDOUT;
read_input_fn = input_fn;
all_bands = band::makeBands(this);
// Make a default jar buffer; caller may safely overwrite it.
jarout = U_NEW(jar, 1);
jarout->init(this);
for (i = 0; i < ATTR_CONTEXT_LIMIT; i++)
attr_defs[i].u = u; // set up outer ptr
}
const char* unpacker::get_abort_message() {
return abort_message;
}
void unpacker::dump_options() {
static const char* opts[] = {
UNPACK_LOG_FILE,
UNPACK_DEFLATE_HINT,
#ifdef HAVE_STRIP
UNPACK_STRIP_COMPILE,
UNPACK_STRIP_DEBUG,
UNPACK_STRIP_JCOV,
#endif /*HAVE_STRIP*/
UNPACK_REMOVE_PACKFILE,
DEBUG_VERBOSE,
UNPACK_MODIFICATION_TIME,
null
};
for (int i = 0; opts[i] != null; i++) {
const char* str = get_option(opts[i]);
if (str == null) {
if (verbose == 0) continue;
str = "(not set)";
}
fprintf(errstrm, "%s=%s\n", opts[i], str);
}
}
// Usage: unpack a byte buffer
// packptr is a reference to byte buffer containing a
// packed file and len is the length of the buffer.
// If null, the callback is used to fill an internal buffer.
void unpacker::start(void* packptr, size_t len) {
CHECK;
NOT_PRODUCT(debug_u = this);
if (packptr != null && len != 0) {
inbytes.set((byte*) packptr, len);
}
CHECK;
read_bands();
}
void unpacker::check_options() {
const char* strue = "true";
const char* sfalse = "false";
if (deflate_hint_or_zero != 0) {
bool force_deflate_hint = (deflate_hint_or_zero > 0);
if (force_deflate_hint)
default_file_options |= FO_DEFLATE_HINT;
else
default_file_options &= ~FO_DEFLATE_HINT;
// Turn off per-file deflate hint by force.
suppress_file_options |= FO_DEFLATE_HINT;
}
if (modification_time_or_zero != 0) {
default_file_modtime = modification_time_or_zero;
// Turn off per-file modtime by force.
archive_options &= ~AO_HAVE_FILE_MODTIME;
}
// %%% strip_compile, etc...
}
// classfile writing
void unpacker::reset_cur_classfile() {
// set defaults
cur_class_minver = default_class_minver;
cur_class_majver = default_class_majver;
// reset constant pool state
cp.resetOutputIndexes();
// reset fixups
class_fixup_type.empty();
class_fixup_offset.empty();
class_fixup_ref.empty();
requested_ics.empty();
cp.requested_bsms.empty();
}
cpindex* cpool::getKQIndex() {
char ch = '?';
if (u->cur_descr != null) {
entry* type = u->cur_descr->descrType();
ch = type->value.b.ptr[0];
}
byte tag = CONSTANT_Integer;
switch (ch) {
case 'L': tag = CONSTANT_String; break;
case 'I': tag = CONSTANT_Integer; break;
case 'J': tag = CONSTANT_Long; break;
case 'F': tag = CONSTANT_Float; break;
case 'D': tag = CONSTANT_Double; break;
case 'B': case 'S': case 'C':
case 'Z': tag = CONSTANT_Integer; break;
default: abort("bad KQ reference"); break;
}
return getIndex(tag);
}
uint unpacker::to_bci(uint bii) {
uint len = bcimap.length();
uint* map = (uint*) bcimap.base();
assert(len > 0); // must be initialized before using to_bci
if (bii < len)
return map[bii];
// Else it's a fractional or out-of-range BCI.
uint key = bii-len;
for (int i = len; ; i--) {
if (map[i-1]-(i-1) <= key)
break;
else
--bii;
}
return bii;
}
void unpacker::put_stackmap_type() {
int tag = code_StackMapTable_T.getByte();
putu1(tag);
switch (tag) {
case 7: // (7) [RCH]
putref(code_StackMapTable_RC.getRef());
break;
case 8: // (8) [PH]
putu2(to_bci(code_StackMapTable_P.getInt()));
break;
}
}
// Functions for writing code.
maybe_inline
void unpacker::put_label(int curIP, int size) {
code_fixup_type.addByte(size);
code_fixup_offset.add((int)put_empty(size));
code_fixup_source.add(curIP);
}
inline // called exactly once => inline
void unpacker::write_bc_ops() {
bcimap.empty();
code_fixup_type.empty();
code_fixup_offset.empty();
code_fixup_source.empty();
band* bc_which;
byte* opptr = bc_codes.curRP();
// No need for oplimit, since the codes are pre-counted.
size_t codeBase = wpoffset();
bool isAload; // copy-out result
int origBC;
entry* thisClass = cur_class;
entry* superClass = cur_super;
entry* newClass = null; // class of last _new opcode
// overwrite any prior index on these bands; it changes w/ current class:
bc_thisfield.setIndex( cp.getFieldIndex( thisClass));
bc_thismethod.setIndex( cp.getMethodIndex(thisClass));
if (superClass != null) {
bc_superfield.setIndex( cp.getFieldIndex( superClass));
bc_supermethod.setIndex(cp.getMethodIndex(superClass));
} else {
NOT_PRODUCT(bc_superfield.setIndex(null));
NOT_PRODUCT(bc_supermethod.setIndex(null));
}
CHECK;
for (int curIP = 0; ; curIP++) {
int curPC = (int)(wpoffset() - codeBase);
bcimap.add(curPC);
ensure_put_space(10); // covers most instrs w/o further bounds check
int bc = *opptr++ & 0xFF;
putu1_fast(bc);
// Note: See '--wp' below for pseudo-bytecodes like bc_end_marker.
bool isWide = false;
if (bc == bc_wide) {
bc = *opptr++ & 0xFF;
putu1_fast(bc);
isWide = true;
}
switch (bc) {
case bc_end_marker:
--wp; // not really part of the code
assert(opptr <= bc_codes.maxRP());
bc_codes.curRP() = opptr; // advance over this in bc_codes
goto doneScanningMethod;
case bc_tableswitch: // apc: (df, lo, hi, (hi-lo+1)*(label))
case bc_lookupswitch: // apc: (df, nc, nc*(case, label))
{
int caseCount = bc_case_count.getInt();
while (((wpoffset() - codeBase) % 4) != 0) putu1_fast(0);
ensure_put_space(30 + caseCount*8);
put_label(curIP, 4); //int df = bc_label.getInt();
if (bc == bc_tableswitch) {
int lo = bc_case_value.getInt();
int hi = lo + caseCount-1;
putu4(lo);
putu4(hi);
for (int j = 0; j < caseCount; j++) {
put_label(curIP, 4); //int lVal = bc_label.getInt();
//int cVal = lo + j;
}
} else {
putu4(caseCount);
for (int j = 0; j < caseCount; j++) {
int cVal = bc_case_value.getInt();
putu4(cVal);
put_label(curIP, 4); //int lVal = bc_label.getInt();
}
}
assert((int)to_bci(curIP) == curPC);
continue;
}
case bc_iinc:
{
int local = bc_local.getInt();
int delta = (isWide ? bc_short : bc_byte).getInt();
if (isWide) {
putu2(local);
putu2(delta);
} else {
putu1_fast(local);
putu1_fast(delta);
}
continue;
}
case bc_sipush:
{
int val = bc_short.getInt();
putu2(val);
continue;
}
case bc_bipush:
case bc_newarray:
{
int val = bc_byte.getByte();
putu1_fast(val);
continue;
}
case bc_ref_escape:
{
// Note that insnMap has one entry for this.
--wp; // not really part of the code
int size = bc_escrefsize.getInt();
entry* ref = bc_escref.getRefN();
CHECK;
switch (size) {
case 1: putu1ref(ref); break;
case 2: putref(ref); break;
default: assert(false);
}
continue;
}
case bc_byte_escape:
{
// Note that insnMap has one entry for all these bytes.
--wp; // not really part of the code
int size = bc_escsize.getInt();
ensure_put_space(size);
for (int j = 0; j < size; j++)
putu1_fast(bc_escbyte.getByte());
continue;
}
default:
if (is_invoke_init_op(bc)) {
origBC = bc_invokespecial;
entry* classRef;
switch (bc - _invokeinit_op) {
case _invokeinit_self_option: classRef = thisClass; break;
case _invokeinit_super_option: classRef = superClass; break;
default: assert(bc == _invokeinit_op+_invokeinit_new_option);
case _invokeinit_new_option: classRef = newClass; break;
}
wp[-1] = origBC; // overwrite with origBC
int coding = bc_initref.getInt();
// Find the nth overloading of <init> in classRef.
entry* ref = null;
cpindex* ix = cp.getMethodIndex(classRef);
CHECK;
for (int j = 0, which_init = 0; ; j++) {
ref = (ix == null)? null: ix->get(j);
if (ref == null) break; // oops, bad input
assert(ref->tag == CONSTANT_Methodref);
if (ref->memberDescr()->descrName() == cp.sym[cpool::s_lt_init_gt]) {
if (which_init++ == coding) break;
}
}
putref(ref);
continue;
}
bc_which = ref_band_for_self_op(bc, isAload, origBC);
if (bc_which != null) {
if (!isAload) {
wp[-1] = origBC; // overwrite with origBC
} else {
wp[-1] = bc_aload_0; // overwrite with _aload_0
// Note: insnMap keeps the _aload_0 separate.
bcimap.add(++curPC);
++curIP;
putu1_fast(origBC);
}
entry* ref = bc_which->getRef();
CHECK;
putref(ref);
continue;
}
if (is_branch_op(bc)) {
//int lVal = bc_label.getInt();
if (bc < bc_goto_w) {
put_label(curIP, 2); //putu2(lVal & 0xFFFF);
} else {
assert(bc <= bc_jsr_w);
put_label(curIP, 4); //putu4(lVal);
}
assert((int)to_bci(curIP) == curPC);
continue;
}
bc_which = ref_band_for_op(bc);
if (bc_which != null) {
entry* ref = bc_which->getRefCommon(bc_which->ix, bc_which->nullOK);
CHECK;
if (ref == null && bc_which == &bc_classref) {
// Shorthand for class self-references.
ref = thisClass;
}
origBC = bc;
switch (bc) {
case _invokestatic_int:
origBC = bc_invokestatic;
break;
case _invokespecial_int:
origBC = bc_invokespecial;
break;
case bc_ildc:
case bc_cldc:
case bc_fldc:
case bc_sldc:
case bc_qldc:
origBC = bc_ldc;
break;
case bc_ildc_w:
case bc_cldc_w:
case bc_fldc_w:
case bc_sldc_w:
case bc_qldc_w:
origBC = bc_ldc_w;
break;
case bc_lldc2_w:
case bc_dldc2_w:
origBC = bc_ldc2_w;
break;
case bc_new:
newClass = ref;
break;
}
wp[-1] = origBC; // overwrite with origBC
if (origBC == bc_ldc) {
putu1ref(ref);
} else {
putref(ref);
}
if (origBC == bc_multianewarray) {
// Copy the trailing byte also.
int val = bc_byte.getByte();
putu1_fast(val);
} else if (origBC == bc_invokeinterface) {
int argSize = ref->memberDescr()->descrType()->typeSize();
putu1_fast(1 + argSize);
putu1_fast(0);
} else if (origBC == bc_invokedynamic) {
// pad the next two byte
putu1_fast(0);
putu1_fast(0);
}
continue;
}
if (is_local_slot_op(bc)) {
int local = bc_local.getInt();
if (isWide) {
putu2(local);
if (bc == bc_iinc) {
int iVal = bc_short.getInt();
putu2(iVal);
}
} else {
putu1_fast(local);
if (bc == bc_iinc) {
int iVal = bc_byte.getByte();
putu1_fast(iVal);
}
}
continue;
}
// Random bytecode. Just copy it.
assert(bc < bc_bytecode_limit);
}
}
doneScanningMethod:{}
//bcimap.add(curPC); // PC limit is already also in map, from bc_end_marker
// Armed with a bcimap, we can now fix up all the labels.
for (int i = 0; i < (int)code_fixup_type.size(); i++) {
int type = code_fixup_type.getByte(i);
byte* bp = wp_at(code_fixup_offset.get(i));
int curIP = code_fixup_source.get(i);
int destIP = curIP + bc_label.getInt();
int span = to_bci(destIP) - to_bci(curIP);
switch (type) {
case 2: putu2_at(bp, (ushort)span); break;
case 4: putu4_at(bp, span); break;
default: assert(false);
}
}
}
inline // called exactly once => inline
void unpacker::write_code() {
int j;
int max_stack, max_locals, handler_count, cflags;
get_code_header(max_stack, max_locals, handler_count, cflags);
if (max_stack < 0) max_stack = code_max_stack.getInt();
if (max_locals < 0) max_locals = code_max_na_locals.getInt();
if (handler_count < 0) handler_count = code_handler_count.getInt();
int siglen = cur_descr->descrType()->typeSize();
CHECK;
if ((cur_descr_flags & ACC_STATIC) == 0) siglen++;
max_locals += siglen;
putu2(max_stack);
putu2(max_locals);
size_t bcbase = put_empty(4);
// Write the bytecodes themselves.
write_bc_ops();
CHECK;
byte* bcbasewp = wp_at(bcbase);
putu4_at(bcbasewp, (int)(wp - (bcbasewp+4))); // size of code attr
putu2(handler_count);
for (j = 0; j < handler_count; j++) {
int bii = code_handler_start_P.getInt();
putu2(to_bci(bii));
bii += code_handler_end_PO.getInt();
putu2(to_bci(bii));
bii += code_handler_catch_PO.getInt();
putu2(to_bci(bii));
putref(code_handler_class_RCN.getRefN());
CHECK;
}
julong indexBits = cflags;
if (cflags < 0) {
bool haveLongFlags = attr_defs[ATTR_CONTEXT_CODE].haveLongFlags();
indexBits = code_flags_hi.getLong(code_flags_lo, haveLongFlags);
}
write_attrs(ATTR_CONTEXT_CODE, indexBits);
}
int unpacker::write_attrs(int attrc, julong indexBits) {
CHECK_0;
if (indexBits == 0) {
// Quick short-circuit.
putu2(0);
return 0;
}
attr_definitions& ad = attr_defs[attrc];
int i, j, j2, idx, count;
int oiCount = 0;
if (ad.isPredefined(X_ATTR_OVERFLOW)
&& (indexBits & ((julong)1<<X_ATTR_OVERFLOW)) != 0) {
indexBits -= ((julong)1<<X_ATTR_OVERFLOW);
oiCount = ad.xxx_attr_count().getInt();
}
int bitIndexes[X_ATTR_LIMIT_FLAGS_HI];
int biCount = 0;
// Fill bitIndexes with index bits, in order.
for (idx = 0; indexBits != 0; idx++, indexBits >>= 1) {
if ((indexBits & 1) != 0)
bitIndexes[biCount++] = idx;
}
assert(biCount <= (int)lengthof(bitIndexes));
// Write a provisional attribute count, perhaps to be corrected later.
int naOffset = (int)wpoffset();
int na0 = biCount + oiCount;
putu2(na0);
int na = 0;
for (i = 0; i < na0; i++) {
if (i < biCount)
idx = bitIndexes[i];
else
idx = ad.xxx_attr_indexes().getInt();
assert(ad.isIndex(idx));
entry* aname = null;
entry* ref; // scratch
size_t abase = put_empty(2+4);
CHECK_0;
if (idx < (int)ad.flag_limit && ad.isPredefined(idx)) {
// Switch on the attrc and idx simultaneously.
switch (ADH_BYTE(attrc, idx)) {
case ADH_BYTE(ATTR_CONTEXT_CLASS, X_ATTR_OVERFLOW):
case ADH_BYTE(ATTR_CONTEXT_FIELD, X_ATTR_OVERFLOW):
case ADH_BYTE(ATTR_CONTEXT_METHOD, X_ATTR_OVERFLOW):
case ADH_BYTE(ATTR_CONTEXT_CODE, X_ATTR_OVERFLOW):
// no attribute at all, so back up on this one
wp = wp_at(abase);
continue;
case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_ClassFile_version):
cur_class_minver = class_ClassFile_version_minor_H.getInt();
cur_class_majver = class_ClassFile_version_major_H.getInt();
// back up; not a real attribute
wp = wp_at(abase);
continue;
case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_InnerClasses):
// note the existence of this attr, but save for later
if (cur_class_has_local_ics)
abort("too many InnerClasses attrs");
cur_class_has_local_ics = true;
wp = wp_at(abase);
continue;
case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_SourceFile):
aname = cp.sym[cpool::s_SourceFile];
ref = class_SourceFile_RUN.getRefN();
CHECK_0;
if (ref == null) {
bytes& n = cur_class->ref(0)->value.b;
// parse n = (<pkg>/)*<outer>?($<id>)*
int pkglen = lastIndexOf(SLASH_MIN, SLASH_MAX, n, (int)n.len)+1;
bytes prefix = n.slice(pkglen, n.len);
for (;;) {
// Work backwards, finding all '$', '#', etc.
int dollar = lastIndexOf(DOLLAR_MIN, DOLLAR_MAX, prefix, (int)prefix.len);
if (dollar < 0) break;
prefix = prefix.slice(0, dollar);
}
const char* suffix = ".java";
int len = (int)(prefix.len + strlen(suffix));
bytes name; name.set(T_NEW(byte, add_size(len, 1)), len);
name.strcat(prefix).strcat(suffix);
ref = cp.ensureUtf8(name);
}
putref(ref);
break;
case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_EnclosingMethod):
aname = cp.sym[cpool::s_EnclosingMethod];
putref(class_EnclosingMethod_RC.getRefN());
CHECK_0;
putref(class_EnclosingMethod_RDN.getRefN());
break;
case ADH_BYTE(ATTR_CONTEXT_FIELD, FIELD_ATTR_ConstantValue):
aname = cp.sym[cpool::s_ConstantValue];
putref(field_ConstantValue_KQ.getRefUsing(cp.getKQIndex()));
break;
case ADH_BYTE(ATTR_CONTEXT_METHOD, METHOD_ATTR_Code):
aname = cp.sym[cpool::s_Code];
write_code();
break;
case ADH_BYTE(ATTR_CONTEXT_METHOD, METHOD_ATTR_Exceptions):
aname = cp.sym[cpool::s_Exceptions];
putu2(count = method_Exceptions_N.getInt());
for (j = 0; j < count; j++) {
putref(method_Exceptions_RC.getRefN());
CHECK_0;
}
break;
case ADH_BYTE(ATTR_CONTEXT_METHOD, METHOD_ATTR_MethodParameters):
aname = cp.sym[cpool::s_MethodParameters];
putu1(count = method_MethodParameters_NB.getByte());
for (j = 0; j < count; j++) {
putref(method_MethodParameters_name_RUN.getRefN());
putu2(method_MethodParameters_flag_FH.getInt());
}
break;
case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_StackMapTable):
aname = cp.sym[cpool::s_StackMapTable];
// (keep this code aligned with its brother in unpacker::read_attrs)
putu2(count = code_StackMapTable_N.getInt());
for (j = 0; j < count; j++) {
int tag = code_StackMapTable_frame_T.getByte();
putu1(tag);
if (tag <= 127) {
// (64-127) [(2)]
if (tag >= 64) put_stackmap_type();
} else if (tag <= 251) {
// (247) [(1)(2)]
// (248-251) [(1)]
if (tag >= 247) putu2(code_StackMapTable_offset.getInt());
if (tag == 247) put_stackmap_type();
} else if (tag <= 254) {
// (252) [(1)(2)]
// (253) [(1)(2)(2)]
// (254) [(1)(2)(2)(2)]
putu2(code_StackMapTable_offset.getInt());
CHECK_0;
for (int k = (tag - 251); k > 0; k--) {
put_stackmap_type();
CHECK_0;
}
} else {
// (255) [(1)NH[(2)]NH[(2)]]
putu2(code_StackMapTable_offset.getInt());
putu2(j2 = code_StackMapTable_local_N.getInt());
while (j2-- > 0) {put_stackmap_type(); CHECK_0;}
putu2(j2 = code_StackMapTable_stack_N.getInt());
while (j2-- > 0) {put_stackmap_type(); CHECK_0;}
}
}
break;
case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_LineNumberTable):
aname = cp.sym[cpool::s_LineNumberTable];
putu2(count = code_LineNumberTable_N.getInt());
for (j = 0; j < count; j++) {
putu2(to_bci(code_LineNumberTable_bci_P.getInt()));
putu2(code_LineNumberTable_line.getInt());
}
break;
case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_LocalVariableTable):
aname = cp.sym[cpool::s_LocalVariableTable];
putu2(count = code_LocalVariableTable_N.getInt());
for (j = 0; j < count; j++) {
int bii = code_LocalVariableTable_bci_P.getInt();
int bci = to_bci(bii);
putu2(bci);
bii += code_LocalVariableTable_span_O.getInt();
putu2(to_bci(bii) - bci);
putref(code_LocalVariableTable_name_RU.getRefN());
CHECK_0;
putref(code_LocalVariableTable_type_RS.getRefN());
CHECK_0;
putu2(code_LocalVariableTable_slot.getInt());
}
break;
case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_LocalVariableTypeTable):
aname = cp.sym[cpool::s_LocalVariableTypeTable];
putu2(count = code_LocalVariableTypeTable_N.getInt());
for (j = 0; j < count; j++) {
int bii = code_LocalVariableTypeTable_bci_P.getInt();
int bci = to_bci(bii);
putu2(bci);
bii += code_LocalVariableTypeTable_span_O.getInt();
putu2(to_bci(bii) - bci);
putref(code_LocalVariableTypeTable_name_RU.getRefN());
CHECK_0;
putref(code_LocalVariableTypeTable_type_RS.getRefN());
CHECK_0;
putu2(code_LocalVariableTypeTable_slot.getInt());
}
break;
case ADH_BYTE(ATTR_CONTEXT_CLASS, X_ATTR_Signature):
aname = cp.sym[cpool::s_Signature];
putref(class_Signature_RS.getRefN());
break;
case ADH_BYTE(ATTR_CONTEXT_FIELD, X_ATTR_Signature):
aname = cp.sym[cpool::s_Signature];
putref(field_Signature_RS.getRefN());
break;
case ADH_BYTE(ATTR_CONTEXT_METHOD, X_ATTR_Signature):
aname = cp.sym[cpool::s_Signature];
putref(method_Signature_RS.getRefN());
break;
case ADH_BYTE(ATTR_CONTEXT_CLASS, X_ATTR_Deprecated):
case ADH_BYTE(ATTR_CONTEXT_FIELD, X_ATTR_Deprecated):
case ADH_BYTE(ATTR_CONTEXT_METHOD, X_ATTR_Deprecated):
aname = cp.sym[cpool::s_Deprecated];
// no data
break;
}
}
CHECK_0;
if (aname == null) {
// Unparse a compressor-defined attribute.
layout_definition* lo = ad.getLayout(idx);
if (lo == null) {
abort("bad layout index");
break;
}
assert((int)lo->idx == idx);
aname = lo->nameEntry;
if (aname == null) {
bytes nameb; nameb.set(lo->name);
aname = cp.ensureUtf8(nameb);
// Cache the name entry for next time.
lo->nameEntry = aname;
}
// Execute all the layout elements.
band** bands = lo->bands();
if (lo->hasCallables()) {
band& cble = *bands[0];
assert(cble.le_kind == EK_CBLE);
bands = cble.le_body;
}
putlayout(bands);
}
if (aname == null)
abort("bad attribute index");
CHECK_0;
byte* wp1 = wp;
wp = wp_at(abase);
// DTRT if this attr is on the strip-list.
// (Note that we emptied the data out of the band first.)
if (ad.strip_names.contains(aname)) {
continue;
}
// patch the name and length
putref(aname);
putu4((int)(wp1 - (wp+4))); // put the attr size
wp = wp1;
na++; // count the attrs actually written
}
if (na != na0)
// Refresh changed count.
putu2_at(wp_at(naOffset), na);
return na;
}
void unpacker::write_members(int num, int attrc) {
CHECK;
attr_definitions& ad = attr_defs[attrc];
band& member_flags_hi = ad.xxx_flags_hi();
band& member_flags_lo = ad.xxx_flags_lo();
band& member_descr = (&member_flags_hi)[e_field_descr-e_field_flags_hi];
assert(endsWith(member_descr.name, "_descr"));
assert(endsWith(member_flags_lo.name, "_flags_lo"));
assert(endsWith(member_flags_lo.name, "_flags_lo"));
bool haveLongFlags = ad.haveLongFlags();
putu2(num);
julong indexMask = attr_defs[attrc].flagIndexMask();
for (int i = 0; i < num; i++) {
julong mflags = member_flags_hi.getLong(member_flags_lo, haveLongFlags);
entry* mdescr = member_descr.getRef();
cur_descr = mdescr;
putu2(cur_descr_flags = (ushort)(mflags & ~indexMask));
CHECK;
putref(mdescr->descrName());
putref(mdescr->descrType());
write_attrs(attrc, (mflags & indexMask));
CHECK;
}
cur_descr = null;
}
extern "C"
int raw_address_cmp(const void* p1p, const void* p2p) {
void* p1 = *(void**) p1p;
void* p2 = *(void**) p2p;
return (p1 > p2)? 1: (p1 < p2)? -1: 0;
}
/*
* writes the InnerClass attributes and returns the updated attribute
*/
int unpacker::write_ics(int naOffset, int na) {
#ifdef ASSERT
for (int i = 0; i < ic_count; i++) {
assert(!ics[i].requested);
}
#endif
// First, consult the global table and the local constant pool,
// and decide on the globally implied inner classes.
// (Note that we read the cpool's outputIndex fields, but we
// do not yet write them, since the local IC attribute might
// reverse a global decision to declare an IC.)
assert(requested_ics.length() == 0); // must start out empty
// Always include all members of the current class.
for (inner_class* child = cp.getFirstChildIC(cur_class);
child != null;
child = cp.getNextChildIC(child)) {
child->requested = true;
requested_ics.add(child);
}
// And, for each inner class mentioned in the constant pool,
// include it and all its outers.
int noes = cp.outputEntries.length();
entry** oes = (entry**) cp.outputEntries.base();
for (int i = 0; i < noes; i++) {
entry& e = *oes[i];
if (e.tag != CONSTANT_Class) continue; // wrong sort
for (inner_class* ic = cp.getIC(&e);
ic != null;
ic = cp.getIC(ic->outer)) {
if (ic->requested) break; // already processed
ic->requested = true;
requested_ics.add(ic);
}
}
int local_ics = requested_ics.length();
// Second, consult a local attribute (if any) and adjust the global set.
inner_class* extra_ics = null;
int num_extra_ics = 0;
if (cur_class_has_local_ics) {
// adjust the set of ICs by symmetric set difference w/ the locals
num_extra_ics = class_InnerClasses_N.getInt();
if (num_extra_ics == 0) {
// Explicit zero count has an irregular meaning: It deletes the attr.
local_ics = 0; // (short-circuit all tests of requested bits)
} else {
extra_ics = T_NEW(inner_class, num_extra_ics);
// Note: extra_ics will be freed up by next call to get_next_file().
}
}
for (int i = 0; i < num_extra_ics; i++) {
inner_class& extra_ic = extra_ics[i];
extra_ic.inner = class_InnerClasses_RC.getRef();
CHECK_0;
// Find the corresponding equivalent global IC:
inner_class* global_ic = cp.getIC(extra_ic.inner);
int flags = class_InnerClasses_F.getInt();
if (flags == 0) {
// The extra IC is simply a copy of a global IC.
if (global_ic == null) {
abort("bad reference to inner class");
break;
}
extra_ic = (*global_ic); // fill in rest of fields
} else {
flags &= ~ACC_IC_LONG_FORM; // clear high bit if set to get clean zero
extra_ic.flags = flags;
extra_ic.outer = class_InnerClasses_outer_RCN.getRefN();
CHECK_0;
extra_ic.name = class_InnerClasses_name_RUN.getRefN();
CHECK_0;
// Detect if this is an exact copy of the global tuple.
if (global_ic != null) {
if (global_ic->flags != extra_ic.flags ||
global_ic->outer != extra_ic.outer ||
global_ic->name != extra_ic.name) {
global_ic = null; // not really the same, so break the link
}
}
}
if (global_ic != null && global_ic->requested) {
// This local repetition reverses the globally implied request.
global_ic->requested = false;
extra_ic.requested = false;
local_ics -= 1;
} else {
// The global either does not exist, or is not yet requested.
extra_ic.requested = true;
local_ics += 1;
}
}
// Finally, if there are any that survived, put them into an attribute.
// (Note that a zero-count attribute is always deleted.)
// The putref calls below will tell the constant pool to add any
// necessary local CP references to support the InnerClasses attribute.
// This step must be the last round of additions to the local CP.
if (local_ics > 0) {
// append the new attribute:
putref(cp.sym[cpool::s_InnerClasses]);
putu4(2 + 2*4*local_ics);
putu2(local_ics);
PTRLIST_QSORT(requested_ics, raw_address_cmp);
int num_global_ics = requested_ics.length();
for (int i = -num_global_ics; i < num_extra_ics; i++) {
inner_class* ic;
if (i < 0)
ic = (inner_class*) requested_ics.get(num_global_ics+i);
else
ic = &extra_ics[i];
if (ic->requested) {
putref(ic->inner);
putref(ic->outer);
putref(ic->name);
putu2(ic->flags);
NOT_PRODUCT(local_ics--);
}
}
assert(local_ics == 0); // must balance
putu2_at(wp_at(naOffset), ++na); // increment class attr count
}
// Tidy up global 'requested' bits:
for (int i = requested_ics.length(); --i >= 0; ) {
inner_class* ic = (inner_class*) requested_ics.get(i);
ic->requested = false;
}
requested_ics.empty();
return na;
}
/*
* Writes the BootstrapMethods attribute and returns the updated attribute count
*/
int unpacker::write_bsms(int naOffset, int na) {
cur_class_local_bsm_count = cp.requested_bsms.length();
if (cur_class_local_bsm_count > 0) {
int noes = cp.outputEntries.length();
entry** oes = (entry**) cp.outputEntries.base();
PTRLIST_QSORT(cp.requested_bsms, outputEntry_cmp);
// append the BootstrapMethods attribute (after the InnerClasses attr):
putref(cp.sym[cpool::s_BootstrapMethods]);
// make a note of the offset, for lazy patching
int sizeOffset = (int)wpoffset();
putu4(-99); // attr size will be patched
putu2(cur_class_local_bsm_count);
int written_bsms = 0;
for (int i = 0 ; i < cur_class_local_bsm_count ; i++) {
entry* e = (entry*)cp.requested_bsms.get(i);
assert(e->outputIndex != REQUESTED_NONE);
// output index is the index within the array
e->outputIndex = i;
putref(e->refs[0]); // bsm
putu2(e->nrefs-1); // number of args after bsm
for (int j = 1; j < e->nrefs; j++) {
putref(e->refs[j]);
}
written_bsms += 1;
}
assert(written_bsms == cur_class_local_bsm_count); // else insane
byte* sizewp = wp_at(sizeOffset);
putu4_at(sizewp, (int)(wp - (sizewp+4))); // size of code attr
putu2_at(wp_at(naOffset), ++na); // increment class attr count
}
return na;
}
void unpacker::write_classfile_tail() {
cur_classfile_tail.empty();
set_output(&cur_classfile_tail);
int i, num;
attr_definitions& ad = attr_defs[ATTR_CONTEXT_CLASS];
bool haveLongFlags = ad.haveLongFlags();
julong kflags = class_flags_hi.getLong(class_flags_lo, haveLongFlags);
julong indexMask = ad.flagIndexMask();
cur_class = class_this.getRef();
CHECK;
cur_super = class_super.getRef();
CHECK;
if (cur_super == cur_class) cur_super = null;
// special representation for java/lang/Object
putu2((ushort)(kflags & ~indexMask));
putref(cur_class);
putref(cur_super);
putu2(num = class_interface_count.getInt());
for (i = 0; i < num; i++) {
putref(class_interface.getRef());
CHECK;
}
write_members(class_field_count.getInt(), ATTR_CONTEXT_FIELD);
write_members(class_method_count.getInt(), ATTR_CONTEXT_METHOD);
CHECK;
cur_class_has_local_ics = false; // may be set true by write_attrs
int naOffset = (int)wpoffset(); // note the attr count location
int na = write_attrs(ATTR_CONTEXT_CLASS, (kflags & indexMask));
CHECK;
na = write_bsms(naOffset, na);
CHECK;
// choose which inner classes (if any) pertain to k:
na = write_ics(naOffset, na);
CHECK;
close_output();
cp.computeOutputIndexes();
// rewrite CP references in the tail
int nextref = 0;
for (i = 0; i < (int)class_fixup_type.size(); i++) {
int type = class_fixup_type.getByte(i);
byte* fixp = wp_at(class_fixup_offset.get(i));
entry* e = (entry*)class_fixup_ref.get(nextref++);
int idx = e->getOutputIndex();
switch (type) {
case 1: putu1_at(fixp, idx); break;
case 2: putu2_at(fixp, idx); break;
default: assert(false); // should not reach here
}
}
CHECK;
}
void unpacker::write_classfile_head() {
cur_classfile_head.empty();
set_output(&cur_classfile_head);
putu4(JAVA_MAGIC);
putu2(cur_class_minver);
putu2(cur_class_majver);
putu2(cp.outputIndexLimit);
int checkIndex = 1;
int noes = cp.outputEntries.length();
entry** oes = (entry**) cp.outputEntries.base();
for (int i = 0; i < noes; i++) {
entry& e = *oes[i];
assert(e.getOutputIndex() == checkIndex++);
byte tag = e.tag;
assert(tag != CONSTANT_Signature);
putu1(tag);
switch (tag) {
case CONSTANT_Utf8:
putu2((int)e.value.b.len);
put_bytes(e.value.b);
break;
case CONSTANT_Integer:
case CONSTANT_Float:
putu4(e.value.i);
break;
case CONSTANT_Long:
case CONSTANT_Double:
putu8(e.value.l);
assert(checkIndex++);
break;
case CONSTANT_Class:
case CONSTANT_String:
// just write the ref
putu2(e.refs[0]->getOutputIndex());
break;
case CONSTANT_Fieldref:
case CONSTANT_Methodref:
case CONSTANT_InterfaceMethodref:
case CONSTANT_NameandType:
case CONSTANT_InvokeDynamic:
putu2(e.refs[0]->getOutputIndex());
putu2(e.refs[1]->getOutputIndex());
break;
case CONSTANT_MethodHandle:
putu1(e.value.i);
putu2(e.refs[0]->getOutputIndex());
break;
case CONSTANT_MethodType:
putu2(e.refs[0]->getOutputIndex());
break;
case CONSTANT_BootstrapMethod: // should not happen
default:
abort(ERROR_INTERNAL);
}
}
#ifndef PRODUCT
total_cp_size[0] += cp.outputIndexLimit;
total_cp_size[1] += (int)cur_classfile_head.size();
#endif
close_output();
}
unpacker::file* unpacker::get_next_file() {
CHECK_0;
free_temps();
if (files_remaining == 0) {
// Leave a clue that we're exhausted.
cur_file.name = null;
cur_file.size = null;
if (archive_size != 0) {
julong predicted_size = unsized_bytes_read + archive_size;
if (predicted_size != bytes_read)
abort("archive header had incorrect size");
}
return null;
}
files_remaining -= 1;
assert(files_written < file_count || classes_written < class_count);
cur_file.name = "";
cur_file.size = 0;
cur_file.modtime = default_file_modtime;
cur_file.options = default_file_options;
cur_file.data[0].set(null, 0);
cur_file.data[1].set(null, 0);
if (files_written < file_count) {
entry* e = file_name.getRef();
CHECK_0;
cur_file.name = e->utf8String();
bool haveLongSize = (testBit(archive_options, AO_HAVE_FILE_SIZE_HI));
cur_file.size = file_size_hi.getLong(file_size_lo, haveLongSize);
if (testBit(archive_options, AO_HAVE_FILE_MODTIME))
cur_file.modtime += file_modtime.getInt(); //relative to archive modtime
if (testBit(archive_options, AO_HAVE_FILE_OPTIONS))
cur_file.options |= file_options.getInt() & ~suppress_file_options;
} else if (classes_written < class_count) {
// there is a class for a missing file record
cur_file.options |= FO_IS_CLASS_STUB;
}
if ((cur_file.options & FO_IS_CLASS_STUB) != 0) {
assert(classes_written < class_count);
classes_written += 1;
if (cur_file.size != 0) {
abort("class file size transmitted");
return null;
}
reset_cur_classfile();
// write the meat of the classfile:
write_classfile_tail();
cur_file.data[1] = cur_classfile_tail.b;
CHECK_0;
// write the CP of the classfile, second:
write_classfile_head();
cur_file.data[0] = cur_classfile_head.b;
CHECK_0;
cur_file.size += cur_file.data[0].len;
cur_file.size += cur_file.data[1].len;
if (cur_file.name[0] == '\0') {
bytes& prefix = cur_class->ref(0)->value.b;
const char* suffix = ".class";
int len = (int)(prefix.len + strlen(suffix));
bytes name; name.set(T_NEW(byte, add_size(len, 1)), len);
cur_file.name = name.strcat(prefix).strcat(suffix).strval();
}
} else {
// If there is buffered file data, produce a pointer to it.
if (cur_file.size != (size_t) cur_file.size) {
// Silly size specified.
abort("resource file too large");
return null;
}
size_t rpleft = input_remaining();
if (rpleft > 0) {
if (rpleft > cur_file.size)
rpleft = (size_t) cur_file.size;
cur_file.data[0].set(rp, rpleft);
rp += rpleft;
}
if (rpleft < cur_file.size) {
// Caller must read the rest.
size_t fleft = (size_t)cur_file.size - rpleft;
bytes_read += fleft; // Credit it to the overall archive size.
}
}
CHECK_0;
bytes_written += cur_file.size;
files_written += 1;
return &cur_file;
}
// Write a file to jarout.
void unpacker::write_file_to_jar(unpacker::file* f) {
size_t htsize = f->data[0].len + f->data[1].len;
julong fsize = f->size;
#ifndef PRODUCT
if (nowrite NOT_PRODUCT(|| skipfiles-- > 0)) {
PRINTCR((2,"would write %d bytes to %s", (int) fsize, f->name));
return;
}
#endif
if (htsize == fsize) {
jarout->addJarEntry(f->name, f->deflate_hint(), f->modtime,
f->data[0], f->data[1]);
} else {
assert(input_remaining() == 0);
bytes part1, part2;
part1.len = f->data[0].len;
part1.set(T_NEW(byte, part1.len), part1.len);
part1.copyFrom(f->data[0]);
assert(f->data[1].len == 0);
part2.set(null, 0);
size_t fleft = (size_t) fsize - part1.len;
assert(bytes_read > fleft); // part2 already credited by get_next_file
bytes_read -= fleft;
if (fleft > 0) {
// Must read some more.
if (live_input) {
// Stop using the input buffer. Make a new one:
if (free_input) input.free();
input.init(fleft > (1<<12) ? fleft : (1<<12));
free_input = true;
live_input = false;
} else {
// Make it large enough.
assert(free_input); // must be reallocable
input.ensureSize(fleft);
}
rplimit = rp = input.base();
CHECK;
input.setLimit(rp + fleft);
if (!ensure_input(fleft))
abort("EOF reading resource file");
part2.ptr = input_scan();
part2.len = input_remaining();
rplimit = rp = input.base();
}
jarout->addJarEntry(f->name, f->deflate_hint(), f->modtime,
part1, part2);
}
if (verbose >= 3) {
fprintf(errstrm, "Wrote "
LONG_LONG_FORMAT " bytes to: %s\n", fsize, f->name);
}
}
// Redirect the stdio to the specified file in the unpack.log.file option
void unpacker::redirect_stdio() {
if (log_file == null) {
log_file = LOGFILE_STDOUT;
}
if (log_file == errstrm_name)
// Nothing more to be done.
return;
errstrm_name = log_file;
if (strcmp(log_file, LOGFILE_STDERR) == 0) {
errstrm = stderr;
return;
} else if (strcmp(log_file, LOGFILE_STDOUT) == 0) {
errstrm = stdout;
return;
} else if (log_file[0] != '\0' && (errstrm = fopen(log_file,"a+")) != NULL) {
return;
} else {
fprintf(stderr, "Can not open log file %s\n", log_file);
// Last resort
// (Do not use stdout, since it might be jarout->jarfp.)
errstrm = stderr;
log_file = errstrm_name = LOGFILE_STDERR;
}
}
#ifndef PRODUCT
int unpacker::printcr_if_verbose(int level, const char* fmt ...) {
if (verbose < level) return 0;
va_list vl;
va_start(vl, fmt);
char fmtbuf[300];
strcpy(fmtbuf+100, fmt);
strcat(fmtbuf+100, "\n");
char* fmt2 = fmtbuf+100;
while (level-- > 0) *--fmt2 = ' ';
vfprintf(errstrm, fmt2, vl);
return 1; // for ?: usage
}
#endif
void unpacker::abort(const char* message) {
if (message == null) message = "error unpacking archive";
#ifdef UNPACK_JNI
if (message[0] == '@') { // secret convention for sprintf
bytes saved;
saved.saveFrom(message+1);
mallocs.add(message = saved.strval());
}
abort_message = message;
return;
#else
if (message[0] == '@') ++message;
fprintf(errstrm, "%s\n", message);
#ifndef PRODUCT
fflush(errstrm);
::abort();
#else
exit(-1);
#endif
#endif // JNI
}