/*
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.dyn;
/**
* <p>
* A {@code Switcher} is an object which can publish state transitions to other threads.
* A switcher is initially in the <em>valid</em> state, but may at any time be
* changed to the <em>invalid</em> state. Invalidation cannot be reversed.
* <p>
* A single switcher may be used to create any number of guarded method handle pairs.
* Each guarded pair is wrapped in a new method handle {@code M},
* which is permanently associated with the switcher that created it.
* Each pair consists of a target {@code T} and a fallback {@code F}.
* While the switcher is valid, invocations to {@code M} are delegated to {@code T}.
* After it is invalidated, invocations are delegated to {@code F}.
* <p>
* Invalidation is global and immediate, as if the switcher contained a
* volatile boolean variable consulted on every call to {@code M}.
* The invalidation is also permanent, which means the switcher
* can change state only once.
* <p>
* Here is an example of a switcher in action:
* <blockquote><pre>
MethodType MT_str2 = MethodType.methodType(String.class, String.class);
MethodHandle MH_strcat = MethodHandles.lookup()
.findVirtual(String.class, "concat", MT_str2);
Switcher switcher = new Switcher();
// the following steps may be repeated to re-use the same switcher:
MethodHandle worker1 = strcat;
MethodHandle worker2 = MethodHandles.permuteArguments(strcat, MT_str2, 1, 0);
MethodHandle worker = switcher.guardWithTest(worker1, worker2);
assertEquals("method", (String) worker.invokeExact("met", "hod"));
switcher.invalidate();
assertEquals("hodmet", (String) worker.invokeExact("met", "hod"));
* </pre></blockquote>
* <p>
* <em>Implementation Note:</em>
* A switcher behaves as if implemented on top of {@link MutableCallSite},
* approximately as follows:
* <blockquote><pre>
public class Switcher {
private static final MethodHandle
K_true = MethodHandles.constant(boolean.class, true),
K_false = MethodHandles.constant(boolean.class, false);
private final MutableCallSite mcs;
private final MethodHandle mcsInvoker;
public Switcher() {
this.mcs = new MutableCallSite(K_true);
this.mcsInvoker = mcs.dynamicInvoker();
}
public MethodHandle guardWithTest(
MethodHandle target, MethodHandle fallback) {
// Note: mcsInvoker is of type boolean().
// Target and fallback may take any arguments, but must have the same type.
return MethodHandles.guardWithTest(this.mcsInvoker, target, fallback);
}
public static void invalidateAll(Switcher[] switchers) {
List<MutableCallSite> mcss = new ArrayList<>();
for (Switcher s : switchers) mcss.add(s.mcs);
for (MutableCallSite mcs : mcss) mcs.setTarget(K_false);
MutableCallSite.sync(mcss.toArray(new MutableCallSite[0]));
}
}
* </pre></blockquote>
* @author Remi Forax, JSR 292 EG
*/
public class Switcher {
private static final MethodHandle
K_true = MethodHandles.constant(boolean.class, true),
K_false = MethodHandles.constant(boolean.class, false);
private final MutableCallSite mcs;
private final MethodHandle mcsInvoker;
/** Create a switcher. */
public Switcher() {
this.mcs = new MutableCallSite(K_true);
this.mcsInvoker = mcs.dynamicInvoker();
}
/**
* Return a method handle which always delegates either to the target or the fallback.
* The method handle will delegate to the target exactly as long as the switcher is valid.
* After that, it will permanently delegate to the fallback.
* <p>
* The target and fallback must be of exactly the same method type,
* and the resulting combined method handle will also be of this type.
* @see MethodHandles#guardWithTest
*/
public MethodHandle guardWithTest(MethodHandle target, MethodHandle fallback) {
if (mcs.getTarget() == K_false)
return fallback; // already invalid
return MethodHandles.guardWithTest(mcsInvoker, target, fallback);
}
/** Set all of the given switchers into the invalid state. */
public static void invalidateAll(Switcher[] switchers) {
MutableCallSite[] sites = new MutableCallSite[switchers.length];
int fillp = 0;
for (Switcher switcher : switchers) {
sites[fillp++] = switcher.mcs;
switcher.mcs.setTarget(K_false);
}
MutableCallSite.sync(sites);
}
}