6726999: nsk/stress/jck12a/jck12a010 assert(n != null,"Bad immediate dominator info.")
Summary: Escape Analysis fixes.
Reviewed-by: never, rasbold
/*
* Copyright 2005-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
//
// Adaptation for C2 of the escape analysis algorithm described in:
//
// [Choi99] Jong-Deok Shoi, Manish Gupta, Mauricio Seffano,
// Vugranam C. Sreedhar, Sam Midkiff,
// "Escape Analysis for Java", Procedings of ACM SIGPLAN
// OOPSLA Conference, November 1, 1999
//
// The flow-insensitive analysis described in the paper has been implemented.
//
// The analysis requires construction of a "connection graph" (CG) for
// the method being analyzed. The nodes of the connection graph are:
//
// - Java objects (JO)
// - Local variables (LV)
// - Fields of an object (OF), these also include array elements
//
// The CG contains 3 types of edges:
//
// - PointsTo (-P>) {LV, OF} to JO
// - Deferred (-D>) from {LV, OF} to {LV, OF}
// - Field (-F>) from JO to OF
//
// The following utility functions is used by the algorithm:
//
// PointsTo(n) - n is any CG node, it returns the set of JO that n could
// point to.
//
// The algorithm describes how to construct the connection graph
// in the following 4 cases:
//
// Case Edges Created
//
// (1) p = new T() LV -P> JO
// (2) p = q LV -D> LV
// (3) p.f = q JO -F> OF, OF -D> LV
// (4) p = q.f JO -F> OF, LV -D> OF
//
// In all these cases, p and q are local variables. For static field
// references, we can construct a local variable containing a reference
// to the static memory.
//
// C2 does not have local variables. However for the purposes of constructing
// the connection graph, the following IR nodes are treated as local variables:
// Phi (pointer values)
// LoadP
// Proj#5 (value returned from callnodes including allocations)
// CheckCastPP, CastPP
//
// The LoadP, Proj and CheckCastPP behave like variables assigned to only once.
// Only a Phi can have multiple assignments. Each input to a Phi is treated
// as an assignment to it.
//
// The following node types are JavaObject:
//
// top()
// Allocate
// AllocateArray
// Parm (for incoming arguments)
// CastX2P ("unsafe" operations)
// CreateEx
// ConP
// LoadKlass
// ThreadLocal
//
// AddP nodes are fields.
//
// After building the graph, a pass is made over the nodes, deleting deferred
// nodes and copying the edges from the target of the deferred edge to the
// source. This results in a graph with no deferred edges, only:
//
// LV -P> JO
// OF -P> JO (the object whose oop is stored in the field)
// JO -F> OF
//
// Then, for each node which is GlobalEscape, anything it could point to
// is marked GlobalEscape. Finally, for any node marked ArgEscape, anything
// it could point to is marked ArgEscape.
//
class Compile;
class Node;
class CallNode;
class PhiNode;
class PhaseTransform;
class Type;
class TypePtr;
class VectorSet;
class PointsToNode {
friend class ConnectionGraph;
public:
typedef enum {
UnknownType = 0,
JavaObject = 1,
LocalVar = 2,
Field = 3
} NodeType;
typedef enum {
UnknownEscape = 0,
NoEscape = 1, // A scalar replaceable object with unique type.
ArgEscape = 2, // An object passed as argument or referenced by
// argument (and not globally escape during call).
GlobalEscape = 3 // An object escapes the method and thread.
} EscapeState;
typedef enum {
UnknownEdge = 0,
PointsToEdge = 1,
DeferredEdge = 2,
FieldEdge = 3
} EdgeType;
private:
enum {
EdgeMask = 3,
EdgeShift = 2,
INITIAL_EDGE_COUNT = 4
};
NodeType _type;
EscapeState _escape;
GrowableArray<uint>* _edges; // outgoing edges
public:
Node* _node; // Ideal node corresponding to this PointsTo node.
int _offset; // Object fields offsets.
bool _scalar_replaceable;// Not escaped object could be replaced with scalar
bool _hidden_alias; // This node is an argument to a function.
// which may return it creating a hidden alias.
PointsToNode():
_type(UnknownType),
_escape(UnknownEscape),
_edges(NULL),
_node(NULL),
_offset(-1),
_scalar_replaceable(true),
_hidden_alias(false) {}
EscapeState escape_state() const { return _escape; }
NodeType node_type() const { return _type;}
int offset() { return _offset;}
void set_offset(int offs) { _offset = offs;}
void set_escape_state(EscapeState state) { _escape = state; }
void set_node_type(NodeType ntype) {
assert(_type == UnknownType || _type == ntype, "Can't change node type");
_type = ntype;
}
// count of outgoing edges
uint edge_count() const { return (_edges == NULL) ? 0 : _edges->length(); }
// node index of target of outgoing edge "e"
uint edge_target(uint e) const {
assert(_edges != NULL, "valid edge index");
return (_edges->at(e) >> EdgeShift);
}
// type of outgoing edge "e"
EdgeType edge_type(uint e) const {
assert(_edges != NULL, "valid edge index");
return (EdgeType) (_edges->at(e) & EdgeMask);
}
// add a edge of the specified type pointing to the specified target
void add_edge(uint targIdx, EdgeType et);
// remove an edge of the specified type pointing to the specified target
void remove_edge(uint targIdx, EdgeType et);
#ifndef PRODUCT
void dump(bool print_state=true) const;
#endif
};
class ConnectionGraph: public ResourceObj {
private:
GrowableArray<PointsToNode> _nodes; // Connection graph nodes indexed
// by ideal node index.
Unique_Node_List _delayed_worklist; // Nodes to be processed before
// the call build_connection_graph().
VectorSet _processed; // Records which nodes have been
// processed.
bool _collecting; // Indicates whether escape information
// is still being collected. If false,
// no new nodes will be processed.
uint _phantom_object; // Index of globally escaping object
// that pointer values loaded from
// a field which has not been set
// are assumed to point to.
uint _oop_null; // ConP(#NULL)
uint _noop_null; // ConN(#NULL)
Compile * _compile; // Compile object for current compilation
// Address of an element in _nodes. Used when the element is to be modified
PointsToNode *ptnode_adr(uint idx) const {
// There should be no new ideal nodes during ConnectionGraph build,
// growableArray::adr_at() will throw assert otherwise.
return _nodes.adr_at(idx);
}
uint nodes_size() const { return _nodes.length(); }
// Add node to ConnectionGraph.
void add_node(Node *n, PointsToNode::NodeType nt, PointsToNode::EscapeState es, bool done);
// offset of a field reference
int address_offset(Node* adr, PhaseTransform *phase);
// compute the escape state for arguments to a call
void process_call_arguments(CallNode *call, PhaseTransform *phase);
// compute the escape state for the return value of a call
void process_call_result(ProjNode *resproj, PhaseTransform *phase);
// Populate Connection Graph with Ideal nodes.
void record_for_escape_analysis(Node *n, PhaseTransform *phase);
// Build Connection Graph and set nodes escape state.
void build_connection_graph(Node *n, PhaseTransform *phase);
// walk the connection graph starting at the node corresponding to "n" and
// add the index of everything it could point to, to "ptset". This may cause
// Phi's encountered to get (re)processed (which requires "phase".)
void PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase);
// Edge manipulation. The "from_i" and "to_i" arguments are the
// node indices of the source and destination of the edge
void add_pointsto_edge(uint from_i, uint to_i);
void add_deferred_edge(uint from_i, uint to_i);
void add_field_edge(uint from_i, uint to_i, int offs);
// Add an edge to node given by "to_i" from any field of adr_i whose offset
// matches "offset" A deferred edge is added if to_i is a LocalVar, and
// a pointsto edge is added if it is a JavaObject
void add_edge_from_fields(uint adr, uint to_i, int offs);
// Add a deferred edge from node given by "from_i" to any field
// of adr_i whose offset matches "offset"
void add_deferred_edge_to_fields(uint from_i, uint adr, int offs);
// Remove outgoing deferred edges from the node referenced by "ni".
// Any outgoing edges from the target of the deferred edge are copied
// to "ni".
void remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited);
Node_Array _node_map; // used for bookeeping during type splitting
// Used for the following purposes:
// Memory Phi - most recent unique Phi split out
// from this Phi
// MemNode - new memory input for this node
// ChecCastPP - allocation that this is a cast of
// allocation - CheckCastPP of the allocation
void split_AddP(Node *addp, Node *base, PhaseGVN *igvn);
PhiNode *create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created);
PhiNode *split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn);
Node *find_mem(Node *mem, int alias_idx, PhaseGVN *igvn);
Node *find_inst_mem(Node *mem, int alias_idx,GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn);
// Propagate unique types created for unescaped allocated objects
// through the graph
void split_unique_types(GrowableArray<Node *> &alloc_worklist);
// manage entries in _node_map
void set_map(int idx, Node *n) { _node_map.map(idx, n); }
void set_map_phi(int idx, PhiNode *p) { _node_map.map(idx, (Node *) p); }
Node *get_map(int idx) { return _node_map[idx]; }
PhiNode *get_map_phi(int idx) {
Node *phi = _node_map[idx];
return (phi == NULL) ? NULL : phi->as_Phi();
}
// Notify optimizer that a node has been modified
// Node: This assumes that escape analysis is run before
// PhaseIterGVN creation
void record_for_optimizer(Node *n) {
_compile->record_for_igvn(n);
}
// Set the escape state of a node
void set_escape_state(uint ni, PointsToNode::EscapeState es);
public:
ConnectionGraph(Compile *C);
// Check for non-escaping candidates
static bool has_candidates(Compile *C);
// Compute the escape information
bool compute_escape();
// escape state of a node
PointsToNode::EscapeState escape_state(Node *n, PhaseTransform *phase);
// other information we have collected
bool is_scalar_replaceable(Node *n) {
if (_collecting || (n->_idx >= nodes_size()))
return false;
PointsToNode* ptn = ptnode_adr(n->_idx);
return ptn->escape_state() == PointsToNode::NoEscape && ptn->_scalar_replaceable;
}
bool hidden_alias(Node *n) {
if (_collecting || (n->_idx >= nodes_size()))
return true;
PointsToNode* ptn = ptnode_adr(n->_idx);
return (ptn->escape_state() != PointsToNode::NoEscape) || ptn->_hidden_alias;
}
#ifndef PRODUCT
void dump();
#endif
};