8017326: Cleanup of the javadoc <code> tag in java.security.spec
Summary: Convert javadoc <code> and <tt> tags to {@code ...}
Reviewed-by: darcy
/*
* Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.security.spec;
import java.math.BigInteger;
/**
* This class specifies an RSA private key, as defined in the PKCS#1
* standard, using the Chinese Remainder Theorem (CRT) information values for
* efficiency.
*
* @author Jan Luehe
*
*
* @see java.security.Key
* @see java.security.KeyFactory
* @see KeySpec
* @see PKCS8EncodedKeySpec
* @see RSAPrivateKeySpec
* @see RSAPublicKeySpec
*/
public class RSAPrivateCrtKeySpec extends RSAPrivateKeySpec {
private final BigInteger publicExponent;
private final BigInteger primeP;
private final BigInteger primeQ;
private final BigInteger primeExponentP;
private final BigInteger primeExponentQ;
private final BigInteger crtCoefficient;
/**
* Creates a new {@code RSAPrivateCrtKeySpec}
* given the modulus, publicExponent, privateExponent,
* primeP, primeQ, primeExponentP, primeExponentQ, and
* crtCoefficient as defined in PKCS#1.
*
* @param modulus the modulus n
* @param publicExponent the public exponent e
* @param privateExponent the private exponent d
* @param primeP the prime factor p of n
* @param primeQ the prime factor q of n
* @param primeExponentP this is d mod (p-1)
* @param primeExponentQ this is d mod (q-1)
* @param crtCoefficient the Chinese Remainder Theorem
* coefficient q-1 mod p
*/
public RSAPrivateCrtKeySpec(BigInteger modulus,
BigInteger publicExponent,
BigInteger privateExponent,
BigInteger primeP,
BigInteger primeQ,
BigInteger primeExponentP,
BigInteger primeExponentQ,
BigInteger crtCoefficient) {
super(modulus, privateExponent);
this.publicExponent = publicExponent;
this.primeP = primeP;
this.primeQ = primeQ;
this.primeExponentP = primeExponentP;
this.primeExponentQ = primeExponentQ;
this.crtCoefficient = crtCoefficient;
}
/**
* Returns the public exponent.
*
* @return the public exponent
*/
public BigInteger getPublicExponent() {
return this.publicExponent;
}
/**
* Returns the primeP.
* @return the primeP
*/
public BigInteger getPrimeP() {
return this.primeP;
}
/**
* Returns the primeQ.
*
* @return the primeQ
*/
public BigInteger getPrimeQ() {
return this.primeQ;
}
/**
* Returns the primeExponentP.
*
* @return the primeExponentP
*/
public BigInteger getPrimeExponentP() {
return this.primeExponentP;
}
/**
* Returns the primeExponentQ.
*
* @return the primeExponentQ
*/
public BigInteger getPrimeExponentQ() {
return this.primeExponentQ;
}
/**
* Returns the crtCoefficient.
*
* @return the crtCoefficient
*/
public BigInteger getCrtCoefficient() {
return this.crtCoefficient;
}
}