8001107: @Stable annotation for constant folding of lazily evaluated variables
Reviewed-by: rbackman, twisti, kvn
Contributed-by: john.r.rose@oracle.com, vladimir.x.ivanov@oracle.com
/* * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */#ifndef SHARE_VM_OPTO_SUBNODE_HPP#define SHARE_VM_OPTO_SUBNODE_HPP#include "opto/node.hpp"#include "opto/opcodes.hpp"#include "opto/type.hpp"// Portions of code courtesy of Clifford Click//------------------------------SUBNode----------------------------------------// Class SUBTRACTION functionality. This covers all the usual 'subtract'// behaviors. Subtract-integer, -float, -double, binary xor, compare-integer,// -float, and -double are all inherited from this class. The compare// functions behave like subtract functions, except that all negative answers// are compressed into -1, and all positive answers compressed to 1.class SubNode : public Node {public: SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) { init_class_id(Class_Sub); } // Handle algebraic identities here. If we have an identity, return the Node // we are equivalent to. We look for "add of zero" as an identity. virtual Node *Identity( PhaseTransform *phase ); // Compute a new Type for this node. Basically we just do the pre-check, // then call the virtual add() to set the type. virtual const Type *Value( PhaseTransform *phase ) const; // Supplied function returns the subtractend of the inputs. // This also type-checks the inputs for sanity. Guaranteed never to // be passed a TOP or BOTTOM type, these are filtered out by a pre-check. virtual const Type *sub( const Type *, const Type * ) const = 0; // Supplied function to return the additive identity type. // This is returned whenever the subtracts inputs are the same. virtual const Type *add_id() const = 0;};// NOTE: SubINode should be taken away and replaced by add and negate//------------------------------SubINode---------------------------------------// Subtract 2 integersclass SubINode : public SubNode {public: SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *sub( const Type *, const Type * ) const; const Type *add_id() const { return TypeInt::ZERO; } const Type *bottom_type() const { return TypeInt::INT; } virtual uint ideal_reg() const { return Op_RegI; }};//------------------------------SubLNode---------------------------------------// Subtract 2 integersclass SubLNode : public SubNode {public: SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *sub( const Type *, const Type * ) const; const Type *add_id() const { return TypeLong::ZERO; } const Type *bottom_type() const { return TypeLong::LONG; } virtual uint ideal_reg() const { return Op_RegL; }};// NOTE: SubFPNode should be taken away and replaced by add and negate//------------------------------SubFPNode--------------------------------------// Subtract 2 floats or doublesclass SubFPNode : public SubNode {protected: SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}public: const Type *Value( PhaseTransform *phase ) const;};// NOTE: SubFNode should be taken away and replaced by add and negate//------------------------------SubFNode---------------------------------------// Subtract 2 doublesclass SubFNode : public SubFPNode {public: SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *sub( const Type *, const Type * ) const; const Type *add_id() const { return TypeF::ZERO; } const Type *bottom_type() const { return Type::FLOAT; } virtual uint ideal_reg() const { return Op_RegF; }};// NOTE: SubDNode should be taken away and replaced by add and negate//------------------------------SubDNode---------------------------------------// Subtract 2 doublesclass SubDNode : public SubFPNode {public: SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *sub( const Type *, const Type * ) const; const Type *add_id() const { return TypeD::ZERO; } const Type *bottom_type() const { return Type::DOUBLE; } virtual uint ideal_reg() const { return Op_RegD; }};//------------------------------CmpNode---------------------------------------// Compare 2 values, returning condition codes (-1, 0 or 1).class CmpNode : public SubNode {public: CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) { init_class_id(Class_Cmp); } virtual Node *Identity( PhaseTransform *phase ); const Type *add_id() const { return TypeInt::ZERO; } const Type *bottom_type() const { return TypeInt::CC; } virtual uint ideal_reg() const { return Op_RegFlags; }};//------------------------------CmpINode---------------------------------------// Compare 2 signed values, returning condition codes (-1, 0 or 1).class CmpINode : public CmpNode {public: CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *sub( const Type *, const Type * ) const;};//------------------------------CmpUNode---------------------------------------// Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).class CmpUNode : public CmpNode {public: CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} virtual int Opcode() const; virtual const Type *sub( const Type *, const Type * ) const; bool is_index_range_check() const;};//------------------------------CmpPNode---------------------------------------// Compare 2 pointer values, returning condition codes (-1, 0 or 1).class CmpPNode : public CmpNode {public: CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *sub( const Type *, const Type * ) const;};//------------------------------CmpNNode--------------------------------------// Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).class CmpNNode : public CmpNode {public: CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *sub( const Type *, const Type * ) const;};//------------------------------CmpLNode---------------------------------------// Compare 2 long values, returning condition codes (-1, 0 or 1).class CmpLNode : public CmpNode {public: CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} virtual int Opcode() const; virtual const Type *sub( const Type *, const Type * ) const;};//------------------------------CmpL3Node--------------------------------------// Compare 2 long values, returning integer value (-1, 0 or 1).class CmpL3Node : public CmpLNode {public: CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) { // Since it is not consumed by Bools, it is not really a Cmp. init_class_id(Class_Sub); } virtual int Opcode() const; virtual uint ideal_reg() const { return Op_RegI; }};//------------------------------CmpFNode---------------------------------------// Compare 2 float values, returning condition codes (-1, 0 or 1).// This implements the Java bytecode fcmpl, so unordered returns -1.// Operands may not commute.class CmpFNode : public CmpNode {public: CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} virtual int Opcode() const; virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; } const Type *Value( PhaseTransform *phase ) const;};//------------------------------CmpF3Node--------------------------------------// Compare 2 float values, returning integer value (-1, 0 or 1).// This implements the Java bytecode fcmpl, so unordered returns -1.// Operands may not commute.class CmpF3Node : public CmpFNode {public: CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) { // Since it is not consumed by Bools, it is not really a Cmp. init_class_id(Class_Sub); } virtual int Opcode() const; // Since it is not consumed by Bools, it is not really a Cmp. virtual uint ideal_reg() const { return Op_RegI; }};//------------------------------CmpDNode---------------------------------------// Compare 2 double values, returning condition codes (-1, 0 or 1).// This implements the Java bytecode dcmpl, so unordered returns -1.// Operands may not commute.class CmpDNode : public CmpNode {public: CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} virtual int Opcode() const; virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; } const Type *Value( PhaseTransform *phase ) const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);};//------------------------------CmpD3Node--------------------------------------// Compare 2 double values, returning integer value (-1, 0 or 1).// This implements the Java bytecode dcmpl, so unordered returns -1.// Operands may not commute.class CmpD3Node : public CmpDNode {public: CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) { // Since it is not consumed by Bools, it is not really a Cmp. init_class_id(Class_Sub); } virtual int Opcode() const; virtual uint ideal_reg() const { return Op_RegI; }};//------------------------------BoolTest---------------------------------------// Convert condition codes to a boolean test value (0 or -1).// We pick the values as 3 bits; the low order 2 bits we compare against the// condition codes, the high bit flips the sense of the result.struct BoolTest VALUE_OBJ_CLASS_SPEC { enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, illegal = 8 }; mask _test; BoolTest( mask btm ) : _test(btm) {} const Type *cc2logical( const Type *CC ) const; // Commute the test. I use a small table lookup. The table is created as // a simple char array where each element is the ASCII version of a 'mask' // enum from above. mask commute( ) const { return mask("038147858"[_test]-'0'); } mask negate( ) const { return mask(_test^4); } bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le); }#ifndef PRODUCT void dump_on(outputStream *st) const;#endif};//------------------------------BoolNode---------------------------------------// A Node to convert a Condition Codes to a Logical result.class BoolNode : public Node { virtual uint hash() const; virtual uint cmp( const Node &n ) const; virtual uint size_of() const;public: const BoolTest _test; BoolNode( Node *cc, BoolTest::mask t): _test(t), Node(0,cc) { init_class_id(Class_Bool); } // Convert an arbitrary int value to a Bool or other suitable predicate. static Node* make_predicate(Node* test_value, PhaseGVN* phase); // Convert self back to an integer value. Node* as_int_value(PhaseGVN* phase); // Invert sense of self, returning new Bool. BoolNode* negate(PhaseGVN* phase); virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *Value( PhaseTransform *phase ) const; virtual const Type *bottom_type() const { return TypeInt::BOOL; } uint match_edge(uint idx) const { return 0; } virtual uint ideal_reg() const { return Op_RegI; } bool is_counted_loop_exit_test();#ifndef PRODUCT virtual void dump_spec(outputStream *st) const;#endif};//------------------------------AbsNode----------------------------------------// Abstract class for absolute value. Mostly used to get a handy wrapper// for finding this pattern in the graph.class AbsNode : public Node {public: AbsNode( Node *value ) : Node(0,value) {}};//------------------------------AbsINode---------------------------------------// Absolute value an integer. Since a naive graph involves control flow, we// "match" it in the ideal world (so the control flow can be removed).class AbsINode : public AbsNode {public: AbsINode( Node *in1 ) : AbsNode(in1) {} virtual int Opcode() const; const Type *bottom_type() const { return TypeInt::INT; } virtual uint ideal_reg() const { return Op_RegI; }};//------------------------------AbsFNode---------------------------------------// Absolute value a float, a common float-point idiom with a cheap hardware// implemention on most chips. Since a naive graph involves control flow, we// "match" it in the ideal world (so the control flow can be removed).class AbsFNode : public AbsNode {public: AbsFNode( Node *in1 ) : AbsNode(in1) {} virtual int Opcode() const; const Type *bottom_type() const { return Type::FLOAT; } virtual uint ideal_reg() const { return Op_RegF; }};//------------------------------AbsDNode---------------------------------------// Absolute value a double, a common float-point idiom with a cheap hardware// implemention on most chips. Since a naive graph involves control flow, we// "match" it in the ideal world (so the control flow can be removed).class AbsDNode : public AbsNode {public: AbsDNode( Node *in1 ) : AbsNode(in1) {} virtual int Opcode() const; const Type *bottom_type() const { return Type::DOUBLE; } virtual uint ideal_reg() const { return Op_RegD; }};//------------------------------CmpLTMaskNode----------------------------------// If p < q, return -1 else return 0. Nice for flow-free idioms.class CmpLTMaskNode : public Node {public: CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {} virtual int Opcode() const; const Type *bottom_type() const { return TypeInt::INT; } virtual uint ideal_reg() const { return Op_RegI; }};//------------------------------NegNode----------------------------------------class NegNode : public Node {public: NegNode( Node *in1 ) : Node(0,in1) {}};//------------------------------NegFNode---------------------------------------// Negate value a float. Negating 0.0 returns -0.0, but subtracting from// zero returns +0.0 (per JVM spec on 'fneg' bytecode). As subtraction// cannot be used to replace negation we have to implement negation as ideal// node; note that negation and addition can replace subtraction.class NegFNode : public NegNode {public: NegFNode( Node *in1 ) : NegNode(in1) {} virtual int Opcode() const; const Type *bottom_type() const { return Type::FLOAT; } virtual uint ideal_reg() const { return Op_RegF; }};//------------------------------NegDNode---------------------------------------// Negate value a double. Negating 0.0 returns -0.0, but subtracting from// zero returns +0.0 (per JVM spec on 'dneg' bytecode). As subtraction// cannot be used to replace negation we have to implement negation as ideal// node; note that negation and addition can replace subtraction.class NegDNode : public NegNode {public: NegDNode( Node *in1 ) : NegNode(in1) {} virtual int Opcode() const; const Type *bottom_type() const { return Type::DOUBLE; } virtual uint ideal_reg() const { return Op_RegD; }};//------------------------------CosDNode---------------------------------------// Cosinus of a doubleclass CosDNode : public Node {public: CosDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) { init_flags(Flag_is_expensive); C->add_expensive_node(this); } virtual int Opcode() const; const Type *bottom_type() const { return Type::DOUBLE; } virtual uint ideal_reg() const { return Op_RegD; } virtual const Type *Value( PhaseTransform *phase ) const;};//------------------------------CosDNode---------------------------------------// Sinus of a doubleclass SinDNode : public Node {public: SinDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) { init_flags(Flag_is_expensive); C->add_expensive_node(this); } virtual int Opcode() const; const Type *bottom_type() const { return Type::DOUBLE; } virtual uint ideal_reg() const { return Op_RegD; } virtual const Type *Value( PhaseTransform *phase ) const;};//------------------------------TanDNode---------------------------------------// tangens of a doubleclass TanDNode : public Node {public: TanDNode(Compile* C, Node *c,Node *in1) : Node(c, in1) { init_flags(Flag_is_expensive); C->add_expensive_node(this); } virtual int Opcode() const; const Type *bottom_type() const { return Type::DOUBLE; } virtual uint ideal_reg() const { return Op_RegD; } virtual const Type *Value( PhaseTransform *phase ) const;};//------------------------------AtanDNode--------------------------------------// arcus tangens of a doubleclass AtanDNode : public Node {public: AtanDNode(Node *c, Node *in1, Node *in2 ) : Node(c, in1, in2) {} virtual int Opcode() const; const Type *bottom_type() const { return Type::DOUBLE; } virtual uint ideal_reg() const { return Op_RegD; }};//------------------------------SqrtDNode--------------------------------------// square root a doubleclass SqrtDNode : public Node {public: SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) { init_flags(Flag_is_expensive); C->add_expensive_node(this); } virtual int Opcode() const; const Type *bottom_type() const { return Type::DOUBLE; } virtual uint ideal_reg() const { return Op_RegD; } virtual const Type *Value( PhaseTransform *phase ) const;};//------------------------------ExpDNode---------------------------------------// Exponentiate a doubleclass ExpDNode : public Node {public: ExpDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) { init_flags(Flag_is_expensive); C->add_expensive_node(this); } virtual int Opcode() const; const Type *bottom_type() const { return Type::DOUBLE; } virtual uint ideal_reg() const { return Op_RegD; } virtual const Type *Value( PhaseTransform *phase ) const;};//------------------------------LogDNode---------------------------------------// Log_e of a doubleclass LogDNode : public Node {public: LogDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) { init_flags(Flag_is_expensive); C->add_expensive_node(this); } virtual int Opcode() const; const Type *bottom_type() const { return Type::DOUBLE; } virtual uint ideal_reg() const { return Op_RegD; } virtual const Type *Value( PhaseTransform *phase ) const;};//------------------------------Log10DNode---------------------------------------// Log_10 of a doubleclass Log10DNode : public Node {public: Log10DNode(Compile* C, Node *c, Node *in1) : Node(c, in1) { init_flags(Flag_is_expensive); C->add_expensive_node(this); } virtual int Opcode() const; const Type *bottom_type() const { return Type::DOUBLE; } virtual uint ideal_reg() const { return Op_RegD; } virtual const Type *Value( PhaseTransform *phase ) const;};//------------------------------PowDNode---------------------------------------// Raise a double to a double powerclass PowDNode : public Node {public: PowDNode(Compile* C, Node *c, Node *in1, Node *in2 ) : Node(c, in1, in2) { init_flags(Flag_is_expensive); C->add_expensive_node(this); } virtual int Opcode() const; const Type *bottom_type() const { return Type::DOUBLE; } virtual uint ideal_reg() const { return Op_RegD; } virtual const Type *Value( PhaseTransform *phase ) const;};//-------------------------------ReverseBytesINode--------------------------------// reverse bytes of an integerclass ReverseBytesINode : public Node {public: ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {} virtual int Opcode() const; const Type *bottom_type() const { return TypeInt::INT; } virtual uint ideal_reg() const { return Op_RegI; }};//-------------------------------ReverseBytesLNode--------------------------------// reverse bytes of a longclass ReverseBytesLNode : public Node {public: ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {} virtual int Opcode() const; const Type *bottom_type() const { return TypeLong::LONG; } virtual uint ideal_reg() const { return Op_RegL; }};//-------------------------------ReverseBytesUSNode--------------------------------// reverse bytes of an unsigned short / charclass ReverseBytesUSNode : public Node {public: ReverseBytesUSNode(Node *c, Node *in1) : Node(c, in1) {} virtual int Opcode() const; const Type *bottom_type() const { return TypeInt::CHAR; } virtual uint ideal_reg() const { return Op_RegI; }};//-------------------------------ReverseBytesSNode--------------------------------// reverse bytes of a shortclass ReverseBytesSNode : public Node {public: ReverseBytesSNode(Node *c, Node *in1) : Node(c, in1) {} virtual int Opcode() const; const Type *bottom_type() const { return TypeInt::SHORT; } virtual uint ideal_reg() const { return Op_RegI; }};#endif // SHARE_VM_OPTO_SUBNODE_HPP