8201786: Modularize interpreter GC barriers: leftovers for ARM32
Reviewed-by: enevill, eosterlund
/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1BarrierSetAssembler.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#include "gc/g1/heapRegion.hpp"
#include "interpreter/interp_masm.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/thread.hpp"
#include "utilities/macros.hpp"
#ifdef COMPILER1
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "gc/g1/c1/g1BarrierSetC1.hpp"
#endif
#define __ masm->
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
void G1BarrierSetAssembler::gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count, int callee_saved_regs) {
bool dest_uninitialized = (decorators & AS_DEST_NOT_INITIALIZED) != 0;
if (!dest_uninitialized) {
assert( addr->encoding() < callee_saved_regs, "addr must be saved");
assert(count->encoding() < callee_saved_regs, "count must be saved");
BLOCK_COMMENT("PreBarrier");
#ifdef AARCH64
callee_saved_regs = align_up(callee_saved_regs, 2);
for (int i = 0; i < callee_saved_regs; i += 2) {
__ raw_push(as_Register(i), as_Register(i+1));
}
#else
RegisterSet saved_regs = RegisterSet(R0, as_Register(callee_saved_regs-1));
__ push(saved_regs | R9ifScratched);
#endif // AARCH64
if (addr != R0) {
assert_different_registers(count, R0);
__ mov(R0, addr);
}
#ifdef AARCH64
__ zero_extend(R1, count, 32); // G1BarrierSet::write_ref_array_pre_*_entry takes size_t
#else
if (count != R1) {
__ mov(R1, count);
}
#endif // AARCH64
if (UseCompressedOops) {
__ call(CAST_FROM_FN_PTR(address, G1BarrierSet::write_ref_array_pre_narrow_oop_entry));
} else {
__ call(CAST_FROM_FN_PTR(address, G1BarrierSet::write_ref_array_pre_oop_entry));
}
#ifdef AARCH64
for (int i = callee_saved_regs - 2; i >= 0; i -= 2) {
__ raw_pop(as_Register(i), as_Register(i+1));
}
#else
__ pop(saved_regs | R9ifScratched);
#endif // AARCH64
}
}
void G1BarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count, Register tmp) {
BLOCK_COMMENT("G1PostBarrier");
if (addr != R0) {
assert_different_registers(count, R0);
__ mov(R0, addr);
}
#ifdef AARCH64
__ zero_extend(R1, count, 32); // G1BarrierSet::write_ref_array_post_entry takes size_t
#else
if (count != R1) {
__ mov(R1, count);
}
#if R9_IS_SCRATCHED
// Safer to save R9 here since callers may have been written
// assuming R9 survives. This is suboptimal but is not in
// general worth optimizing for the few platforms where R9
// is scratched. Note that the optimization might not be to
// difficult for this particular call site.
__ push(R9);
#endif // !R9_IS_SCRATCHED
#endif // !AARCH64
__ call(CAST_FROM_FN_PTR(address, G1BarrierSet::write_ref_array_post_entry));
#ifndef AARCH64
#if R9_IS_SCRATCHED
__ pop(R9);
#endif // !R9_IS_SCRATCHED
#endif // !AARCH64
}
// G1 pre-barrier.
// Blows all volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
// If store_addr != noreg, then previous value is loaded from [store_addr];
// in such case store_addr and new_val registers are preserved;
// otherwise pre_val register is preserved.
void G1BarrierSetAssembler::g1_write_barrier_pre(MacroAssembler* masm,
Register store_addr,
Register new_val,
Register pre_val,
Register tmp1,
Register tmp2) {
Label done;
Label runtime;
if (store_addr != noreg) {
assert_different_registers(store_addr, new_val, pre_val, tmp1, tmp2, noreg);
} else {
assert (new_val == noreg, "should be");
assert_different_registers(pre_val, tmp1, tmp2, noreg);
}
Address in_progress(Rthread, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()));
Address index(Rthread, in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset()));
Address buffer(Rthread, in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset()));
// Is marking active?
assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "adjust this code");
__ ldrb(tmp1, in_progress);
__ cbz(tmp1, done);
// Do we need to load the previous value?
if (store_addr != noreg) {
__ load_heap_oop(pre_val, Address(store_addr, 0));
}
// Is the previous value null?
__ cbz(pre_val, done);
// Can we store original value in the thread's buffer?
// Is index == 0?
// (The index field is typed as size_t.)
__ ldr(tmp1, index); // tmp1 := *index_adr
__ ldr(tmp2, buffer);
__ subs(tmp1, tmp1, wordSize); // tmp1 := tmp1 - wordSize
__ b(runtime, lt); // If negative, goto runtime
__ str(tmp1, index); // *index_adr := tmp1
// Record the previous value
__ str(pre_val, Address(tmp2, tmp1));
__ b(done);
__ bind(runtime);
// save the live input values
#ifdef AARCH64
if (store_addr != noreg) {
__ raw_push(store_addr, new_val);
} else {
__ raw_push(pre_val, ZR);
}
#else
if (store_addr != noreg) {
// avoid raw_push to support any ordering of store_addr and new_val
__ push(RegisterSet(store_addr) | RegisterSet(new_val));
} else {
__ push(pre_val);
}
#endif // AARCH64
if (pre_val != R0) {
__ mov(R0, pre_val);
}
__ mov(R1, Rthread);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), R0, R1);
#ifdef AARCH64
if (store_addr != noreg) {
__ raw_pop(store_addr, new_val);
} else {
__ raw_pop(pre_val, ZR);
}
#else
if (store_addr != noreg) {
__ pop(RegisterSet(store_addr) | RegisterSet(new_val));
} else {
__ pop(pre_val);
}
#endif // AARCH64
__ bind(done);
}
// G1 post-barrier.
// Blows all volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
void G1BarrierSetAssembler::g1_write_barrier_post(MacroAssembler* masm,
Register store_addr,
Register new_val,
Register tmp1,
Register tmp2,
Register tmp3) {
Address queue_index(Rthread, in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset()));
Address buffer(Rthread, in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset()));
BarrierSet* bs = BarrierSet::barrier_set();
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(bs);
CardTable* ct = ctbs->card_table();
Label done;
Label runtime;
// Does store cross heap regions?
__ eor(tmp1, store_addr, new_val);
#ifdef AARCH64
__ logical_shift_right(tmp1, tmp1, HeapRegion::LogOfHRGrainBytes);
__ cbz(tmp1, done);
#else
__ movs(tmp1, AsmOperand(tmp1, lsr, HeapRegion::LogOfHRGrainBytes));
__ b(done, eq);
#endif
// crosses regions, storing NULL?
__ cbz(new_val, done);
// storing region crossing non-NULL, is card already dirty?
const Register card_addr = tmp1;
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
__ mov_address(tmp2, (address)ct->byte_map_base(), symbolic_Relocation::card_table_reference);
__ add(card_addr, tmp2, AsmOperand(store_addr, lsr, CardTable::card_shift));
__ ldrb(tmp2, Address(card_addr));
__ cmp(tmp2, (int)G1CardTable::g1_young_card_val());
__ b(done, eq);
__ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad), tmp2);
assert(CardTable::dirty_card_val() == 0, "adjust this code");
__ ldrb(tmp2, Address(card_addr));
__ cbz(tmp2, done);
// storing a region crossing, non-NULL oop, card is clean.
// dirty card and log.
__ strb(__ zero_register(tmp2), Address(card_addr));
__ ldr(tmp2, queue_index);
__ ldr(tmp3, buffer);
__ subs(tmp2, tmp2, wordSize);
__ b(runtime, lt); // go to runtime if now negative
__ str(tmp2, queue_index);
__ str(card_addr, Address(tmp3, tmp2));
__ b(done);
__ bind(runtime);
if (card_addr != R0) {
__ mov(R0, card_addr);
}
__ mov(R1, Rthread);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), R0, R1);
__ bind(done);
}
void G1BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register dst, Address src, Register tmp1, Register tmp2, Register tmp3) {
bool on_oop = type == T_OBJECT || type == T_ARRAY;
bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0;
bool on_reference = on_weak || on_phantom;
ModRefBarrierSetAssembler::load_at(masm, decorators, type, dst, src, tmp1, tmp2, tmp3);
if (on_oop && on_reference) {
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer.
g1_write_barrier_pre(masm, noreg, noreg, dst, tmp1, tmp2);
}
}
void G1BarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address obj, Register new_val, Register tmp1, Register tmp2, Register tmp3, bool is_null) {
bool in_heap = (decorators & IN_HEAP) != 0;
bool in_concurrent_root = (decorators & IN_CONCURRENT_ROOT) != 0;
bool needs_pre_barrier = in_heap || in_concurrent_root;
bool needs_post_barrier = (new_val != noreg) && in_heap;
// flatten object address if needed
assert (obj.mode() == basic_offset, "pre- or post-indexing is not supported here");
const Register store_addr = obj.base();
if (obj.index() != noreg) {
assert (obj.disp() == 0, "index or displacement, not both");
#ifdef AARCH64
__ add(store_addr, obj.base(), obj.index(), obj.extend(), obj.shift_imm());
#else
assert(obj.offset_op() == add_offset, "addition is expected");
__ add(store_addr, obj.base(), AsmOperand(obj.index(), obj.shift(), obj.shift_imm()));
#endif // AARCH64
} else if (obj.disp() != 0) {
__ add(store_addr, obj.base(), obj.disp());
}
if (needs_pre_barrier) {
g1_write_barrier_pre(masm, store_addr, new_val, tmp1, tmp2, tmp3);
}
if (is_null) {
BarrierSetAssembler::store_at(masm, decorators, type, Address(store_addr), new_val, tmp1, tmp2, tmp3, true);
} else {
// G1 barrier needs uncompressed oop for region cross check.
Register val_to_store = new_val;
if (UseCompressedOops) {
val_to_store = tmp1;
__ mov(val_to_store, new_val);
}
BarrierSetAssembler::store_at(masm, decorators, type, Address(store_addr), val_to_store, tmp1, tmp2, tmp3, false);
if (needs_post_barrier) {
g1_write_barrier_post(masm, store_addr, new_val, tmp1, tmp2, tmp3);
}
}
};
#ifdef COMPILER1
#undef __
#define __ ce->masm()->
void G1BarrierSetAssembler::gen_pre_barrier_stub(LIR_Assembler* ce, G1PreBarrierStub* stub) {
G1BarrierSetC1* bs = (G1BarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1();
// At this point we know that marking is in progress.
// If do_load() is true then we have to emit the
// load of the previous value; otherwise it has already
// been loaded into _pre_val.
__ bind(*stub->entry());
assert(stub->pre_val()->is_register(), "Precondition.");
Register pre_val_reg = stub->pre_val()->as_register();
if (stub->do_load()) {
ce->mem2reg(stub->addr(), stub->pre_val(), T_OBJECT, stub->patch_code(), stub->info(), false /*wide*/, false /*unaligned*/);
}
__ cbz(pre_val_reg, *stub->continuation());
ce->verify_reserved_argument_area_size(1);
__ str(pre_val_reg, Address(SP));
__ call(bs->pre_barrier_c1_runtime_code_blob()->code_begin(), relocInfo::runtime_call_type);
__ b(*stub->continuation());
}
void G1BarrierSetAssembler::gen_post_barrier_stub(LIR_Assembler* ce, G1PostBarrierStub* stub) {
G1BarrierSetC1* bs = (G1BarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1();
__ bind(*stub->entry());
assert(stub->addr()->is_register(), "Precondition.");
assert(stub->new_val()->is_register(), "Precondition.");
Register new_val_reg = stub->new_val()->as_register();
__ cbz(new_val_reg, *stub->continuation());
ce->verify_reserved_argument_area_size(1);
__ str(stub->addr()->as_pointer_register(), Address(SP));
__ call(bs->post_barrier_c1_runtime_code_blob()->code_begin(), relocInfo::runtime_call_type);
__ b(*stub->continuation());
}
#undef __
#define __ sasm->
void G1BarrierSetAssembler::generate_c1_pre_barrier_runtime_stub(StubAssembler* sasm) {
// Input:
// - pre_val pushed on the stack
__ set_info("g1_pre_barrier_slow_id", false);
// save at least the registers that need saving if the runtime is called
#ifdef AARCH64
__ raw_push(R0, R1);
__ raw_push(R2, R3);
const int nb_saved_regs = 4;
#else // AARCH64
const RegisterSet saved_regs = RegisterSet(R0,R3) | RegisterSet(R12) | RegisterSet(LR);
const int nb_saved_regs = 6;
assert(nb_saved_regs == saved_regs.size(), "fix nb_saved_regs");
__ push(saved_regs);
#endif // AARCH64
const Register r_pre_val_0 = R0; // must be R0, to be ready for the runtime call
const Register r_index_1 = R1;
const Register r_buffer_2 = R2;
Address queue_active(Rthread, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()));
Address queue_index(Rthread, in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset()));
Address buffer(Rthread, in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset()));
Label done;
Label runtime;
// Is marking still active?
assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
__ ldrb(R1, queue_active);
__ cbz(R1, done);
__ ldr(r_index_1, queue_index);
__ ldr(r_pre_val_0, Address(SP, nb_saved_regs*wordSize));
__ ldr(r_buffer_2, buffer);
__ subs(r_index_1, r_index_1, wordSize);
__ b(runtime, lt);
__ str(r_index_1, queue_index);
__ str(r_pre_val_0, Address(r_buffer_2, r_index_1));
__ bind(done);
#ifdef AARCH64
__ raw_pop(R2, R3);
__ raw_pop(R0, R1);
#else // AARCH64
__ pop(saved_regs);
#endif // AARCH64
__ ret();
__ bind(runtime);
__ save_live_registers();
assert(r_pre_val_0 == c_rarg0, "pre_val should be in R0");
__ mov(c_rarg1, Rthread);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), c_rarg0, c_rarg1);
__ restore_live_registers_without_return();
__ b(done);
}
void G1BarrierSetAssembler::generate_c1_post_barrier_runtime_stub(StubAssembler* sasm) {
// Input:
// - store_addr, pushed on the stack
__ set_info("g1_post_barrier_slow_id", false);
Label done;
Label recheck;
Label runtime;
Address queue_index(Rthread, in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset()));
Address buffer(Rthread, in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset()));
AddressLiteral cardtable(ci_card_table_address_as<address>(), relocInfo::none);
// save at least the registers that need saving if the runtime is called
#ifdef AARCH64
__ raw_push(R0, R1);
__ raw_push(R2, R3);
const int nb_saved_regs = 4;
#else // AARCH64
const RegisterSet saved_regs = RegisterSet(R0,R3) | RegisterSet(R12) | RegisterSet(LR);
const int nb_saved_regs = 6;
assert(nb_saved_regs == saved_regs.size(), "fix nb_saved_regs");
__ push(saved_regs);
#endif // AARCH64
const Register r_card_addr_0 = R0; // must be R0 for the slow case
const Register r_obj_0 = R0;
const Register r_card_base_1 = R1;
const Register r_tmp2 = R2;
const Register r_index_2 = R2;
const Register r_buffer_3 = R3;
const Register tmp1 = Rtemp;
__ ldr(r_obj_0, Address(SP, nb_saved_regs*wordSize));
// Note: there is a comment in x86 code about not using
// ExternalAddress / lea, due to relocation not working
// properly for that address. Should be OK for arm, where we
// explicitly specify that 'cardtable' has a relocInfo::none
// type.
__ lea(r_card_base_1, cardtable);
__ add(r_card_addr_0, r_card_base_1, AsmOperand(r_obj_0, lsr, CardTable::card_shift));
// first quick check without barrier
__ ldrb(r_tmp2, Address(r_card_addr_0));
__ cmp(r_tmp2, (int)G1CardTable::g1_young_card_val());
__ b(recheck, ne);
__ bind(done);
#ifdef AARCH64
__ raw_pop(R2, R3);
__ raw_pop(R0, R1);
#else // AARCH64
__ pop(saved_regs);
#endif // AARCH64
__ ret();
__ bind(recheck);
__ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad), tmp1);
// reload card state after the barrier that ensures the stored oop was visible
__ ldrb(r_tmp2, Address(r_card_addr_0));
assert(CardTable::dirty_card_val() == 0, "adjust this code");
__ cbz(r_tmp2, done);
// storing region crossing non-NULL, card is clean.
// dirty card and log.
assert(0 == (int)CardTable::dirty_card_val(), "adjust this code");
if ((ci_card_table_address_as<intptr_t>() & 0xff) == 0) {
// Card table is aligned so the lowest byte of the table address base is zero.
__ strb(r_card_base_1, Address(r_card_addr_0));
} else {
__ strb(__ zero_register(r_tmp2), Address(r_card_addr_0));
}
__ ldr(r_index_2, queue_index);
__ ldr(r_buffer_3, buffer);
__ subs(r_index_2, r_index_2, wordSize);
__ b(runtime, lt); // go to runtime if now negative
__ str(r_index_2, queue_index);
__ str(r_card_addr_0, Address(r_buffer_3, r_index_2));
__ b(done);
__ bind(runtime);
__ save_live_registers();
assert(r_card_addr_0 == c_rarg0, "card_addr should be in R0");
__ mov(c_rarg1, Rthread);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), c_rarg0, c_rarg1);
__ restore_live_registers_without_return();
__ b(done);
}
#undef __
#endif // COMPILER1