8032410: compiler/uncommontrap/TestStackBangRbp.java times out on Solaris-Sparc V9
Summary: make compiled code bang the stack by the worst case size of the interpreter frame at deoptimization points.
Reviewed-by: twisti, kvn
/*
* Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "c1/c1_CFGPrinter.hpp"
#include "c1/c1_Compilation.hpp"
#include "c1/c1_IR.hpp"
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_LinearScan.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_ValueMap.hpp"
#include "c1/c1_ValueStack.hpp"
#include "code/debugInfoRec.hpp"
#include "compiler/compileLog.hpp"
#include "c1/c1_RangeCheckElimination.hpp"
typedef enum {
_t_compile,
_t_setup,
_t_buildIR,
_t_optimize_blocks,
_t_optimize_null_checks,
_t_rangeCheckElimination,
_t_emit_lir,
_t_linearScan,
_t_lirGeneration,
_t_lir_schedule,
_t_codeemit,
_t_codeinstall,
max_phase_timers
} TimerName;
static const char * timer_name[] = {
"compile",
"setup",
"buildIR",
"optimize_blocks",
"optimize_null_checks",
"rangeCheckElimination",
"emit_lir",
"linearScan",
"lirGeneration",
"lir_schedule",
"codeemit",
"codeinstall"
};
static elapsedTimer timers[max_phase_timers];
static int totalInstructionNodes = 0;
class PhaseTraceTime: public TraceTime {
private:
JavaThread* _thread;
CompileLog* _log;
TimerName _timer;
public:
PhaseTraceTime(TimerName timer)
: TraceTime("", &timers[timer], CITime || CITimeEach, Verbose),
_log(NULL), _timer(timer)
{
if (Compilation::current() != NULL) {
_log = Compilation::current()->log();
}
if (_log != NULL) {
_log->begin_head("phase name='%s'", timer_name[_timer]);
_log->stamp();
_log->end_head();
}
}
~PhaseTraceTime() {
if (_log != NULL)
_log->done("phase name='%s'", timer_name[_timer]);
}
};
// Implementation of Compilation
#ifndef PRODUCT
void Compilation::maybe_print_current_instruction() {
if (_current_instruction != NULL && _last_instruction_printed != _current_instruction) {
_last_instruction_printed = _current_instruction;
_current_instruction->print_line();
}
}
#endif // PRODUCT
DebugInformationRecorder* Compilation::debug_info_recorder() const {
return _env->debug_info();
}
Dependencies* Compilation::dependency_recorder() const {
return _env->dependencies();
}
void Compilation::initialize() {
// Use an oop recorder bound to the CI environment.
// (The default oop recorder is ignorant of the CI.)
OopRecorder* ooprec = new OopRecorder(_env->arena());
_env->set_oop_recorder(ooprec);
_env->set_debug_info(new DebugInformationRecorder(ooprec));
debug_info_recorder()->set_oopmaps(new OopMapSet());
_env->set_dependencies(new Dependencies(_env));
}
void Compilation::build_hir() {
CHECK_BAILOUT();
// setup ir
CompileLog* log = this->log();
if (log != NULL) {
log->begin_head("parse method='%d' ",
log->identify(_method));
log->stamp();
log->end_head();
}
_hir = new IR(this, method(), osr_bci());
if (log) log->done("parse");
if (!_hir->is_valid()) {
bailout("invalid parsing");
return;
}
#ifndef PRODUCT
if (PrintCFGToFile) {
CFGPrinter::print_cfg(_hir, "After Generation of HIR", true, false);
}
#endif
#ifndef PRODUCT
if (PrintCFG || PrintCFG0) { tty->print_cr("CFG after parsing"); _hir->print(true); }
if (PrintIR || PrintIR0 ) { tty->print_cr("IR after parsing"); _hir->print(false); }
#endif
_hir->verify();
if (UseC1Optimizations) {
NEEDS_CLEANUP
// optimization
PhaseTraceTime timeit(_t_optimize_blocks);
_hir->optimize_blocks();
}
_hir->verify();
_hir->split_critical_edges();
#ifndef PRODUCT
if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after optimizations"); _hir->print(true); }
if (PrintIR || PrintIR1 ) { tty->print_cr("IR after optimizations"); _hir->print(false); }
#endif
_hir->verify();
// compute block ordering for code generation
// the control flow must not be changed from here on
_hir->compute_code();
if (UseGlobalValueNumbering) {
// No resource mark here! LoopInvariantCodeMotion can allocate ValueStack objects.
int instructions = Instruction::number_of_instructions();
GlobalValueNumbering gvn(_hir);
assert(instructions == Instruction::number_of_instructions(),
"shouldn't have created an instructions");
}
_hir->verify();
#ifndef PRODUCT
if (PrintCFGToFile) {
CFGPrinter::print_cfg(_hir, "Before RangeCheckElimination", true, false);
}
#endif
if (RangeCheckElimination) {
if (_hir->osr_entry() == NULL) {
PhaseTraceTime timeit(_t_rangeCheckElimination);
RangeCheckElimination::eliminate(_hir);
}
}
#ifndef PRODUCT
if (PrintCFGToFile) {
CFGPrinter::print_cfg(_hir, "After RangeCheckElimination", true, false);
}
#endif
if (UseC1Optimizations) {
// loop invariant code motion reorders instructions and range
// check elimination adds new instructions so do null check
// elimination after.
NEEDS_CLEANUP
// optimization
PhaseTraceTime timeit(_t_optimize_null_checks);
_hir->eliminate_null_checks();
}
_hir->verify();
// compute use counts after global value numbering
_hir->compute_use_counts();
#ifndef PRODUCT
if (PrintCFG || PrintCFG2) { tty->print_cr("CFG before code generation"); _hir->code()->print(true); }
if (PrintIR || PrintIR2 ) { tty->print_cr("IR before code generation"); _hir->code()->print(false, true); }
#endif
_hir->verify();
}
void Compilation::emit_lir() {
CHECK_BAILOUT();
LIRGenerator gen(this, method());
{
PhaseTraceTime timeit(_t_lirGeneration);
hir()->iterate_linear_scan_order(&gen);
}
CHECK_BAILOUT();
{
PhaseTraceTime timeit(_t_linearScan);
LinearScan* allocator = new LinearScan(hir(), &gen, frame_map());
set_allocator(allocator);
// Assign physical registers to LIR operands using a linear scan algorithm.
allocator->do_linear_scan();
CHECK_BAILOUT();
_max_spills = allocator->max_spills();
}
if (BailoutAfterLIR) {
if (PrintLIR && !bailed_out()) {
print_LIR(hir()->code());
}
bailout("Bailing out because of -XX:+BailoutAfterLIR");
}
}
void Compilation::emit_code_epilog(LIR_Assembler* assembler) {
CHECK_BAILOUT();
CodeOffsets* code_offsets = assembler->offsets();
// generate code or slow cases
assembler->emit_slow_case_stubs();
CHECK_BAILOUT();
// generate exception adapters
assembler->emit_exception_entries(exception_info_list());
CHECK_BAILOUT();
// Generate code for exception handler.
code_offsets->set_value(CodeOffsets::Exceptions, assembler->emit_exception_handler());
CHECK_BAILOUT();
// Generate code for deopt handler.
code_offsets->set_value(CodeOffsets::Deopt, assembler->emit_deopt_handler());
CHECK_BAILOUT();
// Emit the MethodHandle deopt handler code (if required).
if (has_method_handle_invokes()) {
// We can use the same code as for the normal deopt handler, we
// just need a different entry point address.
code_offsets->set_value(CodeOffsets::DeoptMH, assembler->emit_deopt_handler());
CHECK_BAILOUT();
}
// Emit the handler to remove the activation from the stack and
// dispatch to the caller.
offsets()->set_value(CodeOffsets::UnwindHandler, assembler->emit_unwind_handler());
// done
masm()->flush();
}
bool Compilation::setup_code_buffer(CodeBuffer* code, int call_stub_estimate) {
// Preinitialize the consts section to some large size:
int locs_buffer_size = 20 * (relocInfo::length_limit + sizeof(relocInfo));
char* locs_buffer = NEW_RESOURCE_ARRAY(char, locs_buffer_size);
code->insts()->initialize_shared_locs((relocInfo*)locs_buffer,
locs_buffer_size / sizeof(relocInfo));
code->initialize_consts_size(Compilation::desired_max_constant_size());
// Call stubs + two deopt handlers (regular and MH) + exception handler
int stub_size = (call_stub_estimate * LIR_Assembler::call_stub_size) +
LIR_Assembler::exception_handler_size +
(2 * LIR_Assembler::deopt_handler_size);
if (stub_size >= code->insts_capacity()) return false;
code->initialize_stubs_size(stub_size);
return true;
}
int Compilation::emit_code_body() {
// emit code
if (!setup_code_buffer(code(), allocator()->num_calls())) {
BAILOUT_("size requested greater than avail code buffer size", 0);
}
code()->initialize_oop_recorder(env()->oop_recorder());
_masm = new C1_MacroAssembler(code());
_masm->set_oop_recorder(env()->oop_recorder());
LIR_Assembler lir_asm(this);
lir_asm.emit_code(hir()->code());
CHECK_BAILOUT_(0);
emit_code_epilog(&lir_asm);
CHECK_BAILOUT_(0);
generate_exception_handler_table();
#ifndef PRODUCT
if (PrintExceptionHandlers && Verbose) {
exception_handler_table()->print();
}
#endif /* PRODUCT */
return frame_map()->framesize();
}
int Compilation::compile_java_method() {
assert(!method()->is_native(), "should not reach here");
if (BailoutOnExceptionHandlers) {
if (method()->has_exception_handlers()) {
bailout("linear scan can't handle exception handlers");
}
}
CHECK_BAILOUT_(no_frame_size);
if (is_profiling() && !method()->ensure_method_data()) {
BAILOUT_("mdo allocation failed", no_frame_size);
}
{
PhaseTraceTime timeit(_t_buildIR);
build_hir();
}
if (BailoutAfterHIR) {
BAILOUT_("Bailing out because of -XX:+BailoutAfterHIR", no_frame_size);
}
{
PhaseTraceTime timeit(_t_emit_lir);
_frame_map = new FrameMap(method(), hir()->number_of_locks(), MAX2(4, hir()->max_stack()));
emit_lir();
}
CHECK_BAILOUT_(no_frame_size);
{
PhaseTraceTime timeit(_t_codeemit);
return emit_code_body();
}
}
void Compilation::install_code(int frame_size) {
// frame_size is in 32-bit words so adjust it intptr_t words
assert(frame_size == frame_map()->framesize(), "must match");
assert(in_bytes(frame_map()->framesize_in_bytes()) % sizeof(intptr_t) == 0, "must be at least pointer aligned");
_env->register_method(
method(),
osr_bci(),
&_offsets,
in_bytes(_frame_map->sp_offset_for_orig_pc()),
code(),
in_bytes(frame_map()->framesize_in_bytes()) / sizeof(intptr_t),
debug_info_recorder()->_oopmaps,
exception_handler_table(),
implicit_exception_table(),
compiler(),
_env->comp_level(),
has_unsafe_access(),
SharedRuntime::is_wide_vector(max_vector_size())
);
}
void Compilation::compile_method() {
// setup compilation
initialize();
if (!method()->can_be_compiled()) {
// Prevent race condition 6328518.
// This can happen if the method is obsolete or breakpointed.
bailout("Bailing out because method is not compilable");
return;
}
if (_env->jvmti_can_hotswap_or_post_breakpoint()) {
// We can assert evol_method because method->can_be_compiled is true.
dependency_recorder()->assert_evol_method(method());
}
if (method()->break_at_execute()) {
BREAKPOINT;
}
#ifndef PRODUCT
if (PrintCFGToFile) {
CFGPrinter::print_compilation(this);
}
#endif
// compile method
int frame_size = compile_java_method();
// bailout if method couldn't be compiled
// Note: make sure we mark the method as not compilable!
CHECK_BAILOUT();
if (InstallMethods) {
// install code
PhaseTraceTime timeit(_t_codeinstall);
install_code(frame_size);
}
if (log() != NULL) // Print code cache state into compiler log
log()->code_cache_state();
totalInstructionNodes += Instruction::number_of_instructions();
}
void Compilation::generate_exception_handler_table() {
// Generate an ExceptionHandlerTable from the exception handler
// information accumulated during the compilation.
ExceptionInfoList* info_list = exception_info_list();
if (info_list->length() == 0) {
return;
}
// allocate some arrays for use by the collection code.
const int num_handlers = 5;
GrowableArray<intptr_t>* bcis = new GrowableArray<intptr_t>(num_handlers);
GrowableArray<intptr_t>* scope_depths = new GrowableArray<intptr_t>(num_handlers);
GrowableArray<intptr_t>* pcos = new GrowableArray<intptr_t>(num_handlers);
for (int i = 0; i < info_list->length(); i++) {
ExceptionInfo* info = info_list->at(i);
XHandlers* handlers = info->exception_handlers();
// empty the arrays
bcis->trunc_to(0);
scope_depths->trunc_to(0);
pcos->trunc_to(0);
for (int i = 0; i < handlers->length(); i++) {
XHandler* handler = handlers->handler_at(i);
assert(handler->entry_pco() != -1, "must have been generated");
int e = bcis->find(handler->handler_bci());
if (e >= 0 && scope_depths->at(e) == handler->scope_count()) {
// two different handlers are declared to dispatch to the same
// catch bci. During parsing we created edges for each
// handler but we really only need one. The exception handler
// table will also get unhappy if we try to declare both since
// it's nonsensical. Just skip this handler.
continue;
}
bcis->append(handler->handler_bci());
if (handler->handler_bci() == -1) {
// insert a wildcard handler at scope depth 0 so that the
// exception lookup logic with find it.
scope_depths->append(0);
} else {
scope_depths->append(handler->scope_count());
}
pcos->append(handler->entry_pco());
// stop processing once we hit a catch any
if (handler->is_catch_all()) {
assert(i == handlers->length() - 1, "catch all must be last handler");
}
}
exception_handler_table()->add_subtable(info->pco(), bcis, scope_depths, pcos);
}
}
Compilation::Compilation(AbstractCompiler* compiler, ciEnv* env, ciMethod* method,
int osr_bci, BufferBlob* buffer_blob)
: _compiler(compiler)
, _env(env)
, _log(env->log())
, _method(method)
, _osr_bci(osr_bci)
, _hir(NULL)
, _max_spills(-1)
, _frame_map(NULL)
, _masm(NULL)
, _has_exception_handlers(false)
, _has_fpu_code(true) // pessimistic assumption
, _would_profile(false)
, _has_unsafe_access(false)
, _has_method_handle_invokes(false)
, _bailout_msg(NULL)
, _exception_info_list(NULL)
, _allocator(NULL)
, _next_id(0)
, _next_block_id(0)
, _code(buffer_blob)
, _has_access_indexed(false)
, _current_instruction(NULL)
, _interpreter_frame_size(0)
#ifndef PRODUCT
, _last_instruction_printed(NULL)
#endif // PRODUCT
{
PhaseTraceTime timeit(_t_compile);
_arena = Thread::current()->resource_area();
_env->set_compiler_data(this);
_exception_info_list = new ExceptionInfoList();
_implicit_exception_table.set_size(0);
compile_method();
if (bailed_out()) {
_env->record_method_not_compilable(bailout_msg(), !TieredCompilation);
if (is_profiling()) {
// Compilation failed, create MDO, which would signal the interpreter
// to start profiling on its own.
_method->ensure_method_data();
}
} else if (is_profiling()) {
ciMethodData *md = method->method_data_or_null();
if (md != NULL) {
md->set_would_profile(_would_profile);
}
}
}
Compilation::~Compilation() {
_env->set_compiler_data(NULL);
}
void Compilation::add_exception_handlers_for_pco(int pco, XHandlers* exception_handlers) {
#ifndef PRODUCT
if (PrintExceptionHandlers && Verbose) {
tty->print_cr(" added exception scope for pco %d", pco);
}
#endif
// Note: we do not have program counters for these exception handlers yet
exception_info_list()->push(new ExceptionInfo(pco, exception_handlers));
}
void Compilation::notice_inlined_method(ciMethod* method) {
_env->notice_inlined_method(method);
}
void Compilation::bailout(const char* msg) {
assert(msg != NULL, "bailout message must exist");
if (!bailed_out()) {
// keep first bailout message
if (PrintCompilation || PrintBailouts) tty->print_cr("compilation bailout: %s", msg);
_bailout_msg = msg;
}
}
ciKlass* Compilation::cha_exact_type(ciType* type) {
if (type != NULL && type->is_loaded() && type->is_instance_klass()) {
ciInstanceKlass* ik = type->as_instance_klass();
assert(ik->exact_klass() == NULL, "no cha for final klass");
if (DeoptC1 && UseCHA && !(ik->has_subklass() || ik->is_interface())) {
dependency_recorder()->assert_leaf_type(ik);
return ik;
}
}
return NULL;
}
void Compilation::print_timers() {
// tty->print_cr(" Native methods : %6.3f s, Average : %2.3f", CompileBroker::_t_native_compilation.seconds(), CompileBroker::_t_native_compilation.seconds() / CompileBroker::_total_native_compile_count);
float total = timers[_t_setup].seconds() + timers[_t_buildIR].seconds() + timers[_t_emit_lir].seconds() + timers[_t_lir_schedule].seconds() + timers[_t_codeemit].seconds() + timers[_t_codeinstall].seconds();
tty->print_cr(" Detailed C1 Timings");
tty->print_cr(" Setup time: %6.3f s (%4.1f%%)", timers[_t_setup].seconds(), (timers[_t_setup].seconds() / total) * 100.0);
tty->print_cr(" Build IR: %6.3f s (%4.1f%%)", timers[_t_buildIR].seconds(), (timers[_t_buildIR].seconds() / total) * 100.0);
float t_optimizeIR = timers[_t_optimize_blocks].seconds() + timers[_t_optimize_null_checks].seconds();
tty->print_cr(" Optimize: %6.3f s (%4.1f%%)", t_optimizeIR, (t_optimizeIR / total) * 100.0);
tty->print_cr(" RCE: %6.3f s (%4.1f%%)", timers[_t_rangeCheckElimination].seconds(), (timers[_t_rangeCheckElimination].seconds() / total) * 100.0);
tty->print_cr(" Emit LIR: %6.3f s (%4.1f%%)", timers[_t_emit_lir].seconds(), (timers[_t_emit_lir].seconds() / total) * 100.0);
tty->print_cr(" LIR Gen: %6.3f s (%4.1f%%)", timers[_t_lirGeneration].seconds(), (timers[_t_lirGeneration].seconds() / total) * 100.0);
tty->print_cr(" Linear Scan: %6.3f s (%4.1f%%)", timers[_t_linearScan].seconds(), (timers[_t_linearScan].seconds() / total) * 100.0);
NOT_PRODUCT(LinearScan::print_timers(timers[_t_linearScan].seconds()));
tty->print_cr(" LIR Schedule: %6.3f s (%4.1f%%)", timers[_t_lir_schedule].seconds(), (timers[_t_lir_schedule].seconds() / total) * 100.0);
tty->print_cr(" Code Emission: %6.3f s (%4.1f%%)", timers[_t_codeemit].seconds(), (timers[_t_codeemit].seconds() / total) * 100.0);
tty->print_cr(" Code Installation: %6.3f s (%4.1f%%)", timers[_t_codeinstall].seconds(), (timers[_t_codeinstall].seconds() / total) * 100.0);
tty->print_cr(" Instruction Nodes: %6d nodes", totalInstructionNodes);
NOT_PRODUCT(LinearScan::print_statistics());
}
#ifndef PRODUCT
void Compilation::compile_only_this_method() {
ResourceMark rm;
fileStream stream(fopen("c1_compile_only", "wt"));
stream.print_cr("# c1 compile only directives");
compile_only_this_scope(&stream, hir()->top_scope());
}
void Compilation::compile_only_this_scope(outputStream* st, IRScope* scope) {
st->print("CompileOnly=");
scope->method()->holder()->name()->print_symbol_on(st);
st->print(".");
scope->method()->name()->print_symbol_on(st);
st->cr();
}
void Compilation::exclude_this_method() {
fileStream stream(fopen(".hotspot_compiler", "at"));
stream.print("exclude ");
method()->holder()->name()->print_symbol_on(&stream);
stream.print(" ");
method()->name()->print_symbol_on(&stream);
stream.cr();
stream.cr();
}
#endif