7000578: CMS: assert(SafepointSynchronize::is_at_safepoint()) failed: Else races are possible
Summary: Weakened assert in onj_is_alive() to allow its use at initialization time when is_at_safepoint() normally reports false; added some related asserts to check order of is_init_completed() after Universe::is_fully_initialized().
Reviewed-by: jcoomes
/*
* Copyright (c) 2001, 2008, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_perfMemory.cpp.incl"
// Prefix of performance data file.
const char PERFDATA_NAME[] = "hsperfdata";
// Add 1 for the '_' character between PERFDATA_NAME and pid. The '\0' terminating
// character will be included in the sizeof(PERFDATA_NAME) operation.
static const size_t PERFDATA_FILENAME_LEN = sizeof(PERFDATA_NAME) +
UINT_CHARS + 1;
char* PerfMemory::_start = NULL;
char* PerfMemory::_end = NULL;
char* PerfMemory::_top = NULL;
size_t PerfMemory::_capacity = 0;
jint PerfMemory::_initialized = false;
PerfDataPrologue* PerfMemory::_prologue = NULL;
void perfMemory_init() {
if (!UsePerfData) return;
PerfMemory::initialize();
}
void perfMemory_exit() {
if (!UsePerfData) return;
if (!PerfMemory::is_initialized()) return;
// if the StatSampler is active, then we don't want to remove
// resources it may be dependent on. Typically, the StatSampler
// is disengaged from the watcher thread when this method is called,
// but it is not disengaged if this method is invoked during a
// VM abort.
//
if (!StatSampler::is_active())
PerfDataManager::destroy();
// remove the persistent external resources, if any. this method
// does not unmap or invalidate any virtual memory allocated during
// initialization.
//
PerfMemory::destroy();
}
void PerfMemory::initialize() {
if (_prologue != NULL)
// initialization already performed
return;
size_t capacity = align_size_up(PerfDataMemorySize,
os::vm_allocation_granularity());
if (PerfTraceMemOps) {
tty->print("PerfDataMemorySize = " SIZE_FORMAT ","
" os::vm_allocation_granularity = " SIZE_FORMAT ","
" adjusted size = " SIZE_FORMAT "\n",
PerfDataMemorySize,
os::vm_allocation_granularity(),
capacity);
}
// allocate PerfData memory region
create_memory_region(capacity);
if (_start == NULL) {
// the PerfMemory region could not be created as desired. Rather
// than terminating the JVM, we revert to creating the instrumentation
// on the C heap. When running in this mode, external monitoring
// clients cannot attach to and monitor this JVM.
//
// the warning is issued only in debug mode in order to avoid
// additional output to the stdout or stderr output streams.
//
if (PrintMiscellaneous && Verbose) {
warning("Could not create PerfData Memory region, reverting to malloc");
}
_prologue = NEW_C_HEAP_OBJ(PerfDataPrologue);
}
else {
// the PerfMemory region was created as expected.
if (PerfTraceMemOps) {
tty->print("PerfMemory created: address = " INTPTR_FORMAT ","
" size = " SIZE_FORMAT "\n",
(void*)_start,
_capacity);
}
_prologue = (PerfDataPrologue *)_start;
_end = _start + _capacity;
_top = _start + sizeof(PerfDataPrologue);
}
assert(_prologue != NULL, "prologue pointer must be initialized");
#ifdef VM_LITTLE_ENDIAN
_prologue->magic = (jint)0xc0c0feca;
_prologue->byte_order = PERFDATA_LITTLE_ENDIAN;
#else
_prologue->magic = (jint)0xcafec0c0;
_prologue->byte_order = PERFDATA_BIG_ENDIAN;
#endif
_prologue->major_version = PERFDATA_MAJOR_VERSION;
_prologue->minor_version = PERFDATA_MINOR_VERSION;
_prologue->accessible = 0;
_prologue->entry_offset = sizeof(PerfDataPrologue);
_prologue->num_entries = 0;
_prologue->used = 0;
_prologue->overflow = 0;
_prologue->mod_time_stamp = 0;
OrderAccess::release_store(&_initialized, 1);
}
void PerfMemory::destroy() {
assert(_prologue != NULL, "prologue pointer must be initialized");
if (_start != NULL && _prologue->overflow != 0) {
// This state indicates that the contiguous memory region exists and
// that it wasn't large enough to hold all the counters. In this case,
// we output a warning message to the user on exit if the -XX:+Verbose
// flag is set (a debug only flag). External monitoring tools can detect
// this condition by monitoring the _prologue->overflow word.
//
// There are two tunables that can help resolve this issue:
// - increase the size of the PerfMemory with -XX:PerfDataMemorySize=<n>
// - decrease the maximum string constant length with
// -XX:PerfMaxStringConstLength=<n>
//
if (PrintMiscellaneous && Verbose) {
warning("PerfMemory Overflow Occurred.\n"
"\tCapacity = " SIZE_FORMAT " bytes"
" Used = " SIZE_FORMAT " bytes"
" Overflow = " INT32_FORMAT " bytes"
"\n\tUse -XX:PerfDataMemorySize=<size> to specify larger size.",
PerfMemory::capacity(),
PerfMemory::used(),
_prologue->overflow);
}
}
if (_start != NULL) {
// this state indicates that the contiguous memory region was successfully
// and that persistent resources may need to be cleaned up. This is
// expected to be the typical condition.
//
delete_memory_region();
}
_start = NULL;
_end = NULL;
_top = NULL;
_prologue = NULL;
_capacity = 0;
}
// allocate an aligned block of memory from the PerfData memory
// region. This method assumes that the PerfData memory region
// was aligned on a double word boundary when created.
//
char* PerfMemory::alloc(size_t size) {
if (!UsePerfData) return NULL;
MutexLocker ml(PerfDataMemAlloc_lock);
assert(_prologue != NULL, "called before initialization");
// check that there is enough memory for this request
if ((_top + size) >= _end) {
_prologue->overflow += (jint)size;
return NULL;
}
char* result = _top;
_top += size;
assert(contains(result), "PerfData memory pointer out of range");
_prologue->used = (jint)used();
_prologue->num_entries = _prologue->num_entries + 1;
return result;
}
void PerfMemory::mark_updated() {
if (!UsePerfData) return;
_prologue->mod_time_stamp = os::elapsed_counter();
}
// Returns the complete path including the file name of performance data file.
// Caller is expected to release the allocated memory.
char* PerfMemory::get_perfdata_file_path() {
char* dest_file = NULL;
if (PerfDataSaveFile != NULL) {
// dest_file_name stores the validated file name if file_name
// contains %p which will be replaced by pid.
dest_file = NEW_C_HEAP_ARRAY(char, JVM_MAXPATHLEN);
if(!Arguments::copy_expand_pid(PerfDataSaveFile, strlen(PerfDataSaveFile),
dest_file, JVM_MAXPATHLEN)) {
FREE_C_HEAP_ARRAY(char, dest_file);
if (PrintMiscellaneous && Verbose) {
warning("Invalid performance data file path name specified, "\
"fall back to a default name");
}
} else {
return dest_file;
}
}
// create the name of the file for retaining the instrumentation memory.
dest_file = NEW_C_HEAP_ARRAY(char, PERFDATA_FILENAME_LEN);
jio_snprintf(dest_file, PERFDATA_FILENAME_LEN,
"%s_%d", PERFDATA_NAME, os::current_process_id());
return dest_file;
}