7000578: CMS: assert(SafepointSynchronize::is_at_safepoint()) failed: Else races are possible
Summary: Weakened assert in onj_is_alive() to allow its use at initialization time when is_at_safepoint() normally reports false; added some related asserts to check order of is_init_completed() after Universe::is_fully_initialized().
Reviewed-by: jcoomes
/*
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
typedef class BytecodeInterpreter* interpreterState;
class CodeBlob;
class vframeArray;
// A frame represents a physical stack frame (an activation). Frames
// can be C or Java frames, and the Java frames can be interpreted or
// compiled. In contrast, vframes represent source-level activations,
// so that one physical frame can correspond to multiple source level
// frames because of inlining.
class frame VALUE_OBJ_CLASS_SPEC {
private:
// Instance variables:
intptr_t* _sp; // stack pointer (from Thread::last_Java_sp)
address _pc; // program counter (the next instruction after the call)
CodeBlob* _cb; // CodeBlob that "owns" pc
enum deopt_state {
not_deoptimized,
is_deoptimized,
unknown
};
deopt_state _deopt_state;
public:
// Constructors
frame();
// Accessors
// pc: Returns the pc at which this frame will continue normally.
// It must point at the beginning of the next instruction to execute.
address pc() const { return _pc; }
// This returns the pc that if you were in the debugger you'd see. Not
// the idealized value in the frame object. This undoes the magic conversion
// that happens for deoptimized frames. In addition it makes the value the
// hardware would want to see in the native frame. The only user (at this point)
// is deoptimization. It likely no one else should ever use it.
address raw_pc() const;
void set_pc( address newpc );
intptr_t* sp() const { return _sp; }
void set_sp( intptr_t* newsp ) { _sp = newsp; }
CodeBlob* cb() const { return _cb; }
// patching operations
void patch_pc(Thread* thread, address pc);
// Every frame needs to return a unique id which distinguishes it from all other frames.
// For sparc and ia32 use sp. ia64 can have memory frames that are empty so multiple frames
// will have identical sp values. For ia64 the bsp (fp) value will serve. No real frame
// should have an id() of NULL so it is a distinguishing value for an unmatchable frame.
// We also have relationals which allow comparing a frame to anoth frame's id() allow
// us to distinguish younger (more recent activation) from older (less recent activations)
// A NULL id is only valid when comparing for equality.
intptr_t* id(void) const;
bool is_younger(intptr_t* id) const;
bool is_older(intptr_t* id) const;
// testers
// Compares for strict equality. Rarely used or needed.
// It can return a different result than f1.id() == f2.id()
bool equal(frame other) const;
// type testers
bool is_interpreted_frame() const;
bool is_java_frame() const;
bool is_entry_frame() const; // Java frame called from C?
bool is_native_frame() const;
bool is_runtime_frame() const;
bool is_compiled_frame() const;
bool is_safepoint_blob_frame() const;
bool is_deoptimized_frame() const;
// testers
bool is_first_frame() const; // oldest frame? (has no sender)
bool is_first_java_frame() const; // same for Java frame
bool is_interpreted_frame_valid(JavaThread* thread) const; // performs sanity checks on interpreted frames.
// tells whether this frame is marked for deoptimization
bool should_be_deoptimized() const;
// tells whether this frame can be deoptimized
bool can_be_deoptimized() const;
// returns the frame size in stack slots
int frame_size(RegisterMap* map) const;
// returns the sending frame
frame sender(RegisterMap* map) const;
// for Profiling - acting on another frame. walks sender frames
// if valid.
frame profile_find_Java_sender_frame(JavaThread *thread);
bool safe_for_sender(JavaThread *thread);
// returns the sender, but skips conversion frames
frame real_sender(RegisterMap* map) const;
// returns the the sending Java frame, skipping any intermediate C frames
// NB: receiver must not be first frame
frame java_sender() const;
private:
// Helper methods for better factored code in frame::sender
frame sender_for_compiled_frame(RegisterMap* map) const;
frame sender_for_entry_frame(RegisterMap* map) const;
frame sender_for_interpreter_frame(RegisterMap* map) const;
frame sender_for_native_frame(RegisterMap* map) const;
// All frames:
// A low-level interface for vframes:
public:
intptr_t* addr_at(int index) const { return &fp()[index]; }
intptr_t at(int index) const { return *addr_at(index); }
// accessors for locals
oop obj_at(int offset) const { return *obj_at_addr(offset); }
void obj_at_put(int offset, oop value) { *obj_at_addr(offset) = value; }
jint int_at(int offset) const { return *int_at_addr(offset); }
void int_at_put(int offset, jint value) { *int_at_addr(offset) = value; }
oop* obj_at_addr(int offset) const { return (oop*) addr_at(offset); }
oop* adjusted_obj_at_addr(methodOop method, int index) { return obj_at_addr(adjust_offset(method, index)); }
private:
jint* int_at_addr(int offset) const { return (jint*) addr_at(offset); }
public:
// Link (i.e., the pointer to the previous frame)
intptr_t* link() const;
void set_link(intptr_t* addr);
// Return address
address sender_pc() const;
// Support for deoptimization
void deoptimize(JavaThread* thread);
// The frame's original SP, before any extension by an interpreted callee;
// used for packing debug info into vframeArray objects and vframeArray lookup.
intptr_t* unextended_sp() const;
// returns the stack pointer of the calling frame
intptr_t* sender_sp() const;
// Interpreter frames:
private:
intptr_t** interpreter_frame_locals_addr() const;
intptr_t* interpreter_frame_bcx_addr() const;
intptr_t* interpreter_frame_mdx_addr() const;
public:
// Locals
// The _at version returns a pointer because the address is used for GC.
intptr_t* interpreter_frame_local_at(int index) const;
void interpreter_frame_set_locals(intptr_t* locs);
// byte code index/pointer (use these functions for unchecked frame access only!)
intptr_t interpreter_frame_bcx() const { return *interpreter_frame_bcx_addr(); }
void interpreter_frame_set_bcx(intptr_t bcx);
// byte code index
jint interpreter_frame_bci() const;
void interpreter_frame_set_bci(jint bci);
// byte code pointer
address interpreter_frame_bcp() const;
void interpreter_frame_set_bcp(address bcp);
// Unchecked access to the method data index/pointer.
// Only use this if you know what you are doing.
intptr_t interpreter_frame_mdx() const { return *interpreter_frame_mdx_addr(); }
void interpreter_frame_set_mdx(intptr_t mdx);
// method data pointer
address interpreter_frame_mdp() const;
void interpreter_frame_set_mdp(address dp);
// Find receiver out of caller's (compiled) argument list
oop retrieve_receiver(RegisterMap *reg_map);
// Return the monitor owner and BasicLock for compiled synchronized
// native methods so that biased locking can revoke the receiver's
// bias if necessary. Takes optional nmethod for this frame as
// argument to avoid performing repeated lookups in code cache.
BasicLock* compiled_synchronized_native_monitor (nmethod* nm = NULL);
oop compiled_synchronized_native_monitor_owner(nmethod* nm = NULL);
// Find receiver for an invoke when arguments are just pushed on stack (i.e., callee stack-frame is
// not setup)
oop interpreter_callee_receiver(symbolHandle signature) { return *interpreter_callee_receiver_addr(signature); }
oop* interpreter_callee_receiver_addr(symbolHandle signature);
// expression stack (may go up or down, direction == 1 or -1)
public:
intptr_t* interpreter_frame_expression_stack() const;
static jint interpreter_frame_expression_stack_direction();
// The _at version returns a pointer because the address is used for GC.
intptr_t* interpreter_frame_expression_stack_at(jint offset) const;
// top of expression stack
intptr_t* interpreter_frame_tos_at(jint offset) const;
intptr_t* interpreter_frame_tos_address() const;
jint interpreter_frame_expression_stack_size() const;
intptr_t* interpreter_frame_sender_sp() const;
#ifndef CC_INTERP
// template based interpreter deoptimization support
void set_interpreter_frame_sender_sp(intptr_t* sender_sp);
void interpreter_frame_set_monitor_end(BasicObjectLock* value);
#endif // CC_INTERP
// BasicObjectLocks:
//
// interpreter_frame_monitor_begin is higher in memory than interpreter_frame_monitor_end
// Interpreter_frame_monitor_begin points to one element beyond the oldest one,
// interpreter_frame_monitor_end points to the youngest one, or if there are none,
// it points to one beyond where the first element will be.
// interpreter_frame_monitor_size reports the allocation size of a monitor in the interpreter stack.
// this value is >= BasicObjectLock::size(), and may be rounded up
BasicObjectLock* interpreter_frame_monitor_begin() const;
BasicObjectLock* interpreter_frame_monitor_end() const;
BasicObjectLock* next_monitor_in_interpreter_frame(BasicObjectLock* current) const;
BasicObjectLock* previous_monitor_in_interpreter_frame(BasicObjectLock* current) const;
static int interpreter_frame_monitor_size();
void interpreter_frame_verify_monitor(BasicObjectLock* value) const;
// Tells whether the current interpreter_frame frame pointer
// corresponds to the old compiled/deoptimized fp
// The receiver used to be a top level frame
bool interpreter_frame_equals_unpacked_fp(intptr_t* fp);
// Return/result value from this interpreter frame
// If the method return type is T_OBJECT or T_ARRAY populates oop_result
// For other (non-T_VOID) the appropriate field in the jvalue is populated
// with the result value.
// Should only be called when at method exit when the method is not
// exiting due to an exception.
BasicType interpreter_frame_result(oop* oop_result, jvalue* value_result);
public:
// Method & constant pool cache
methodOop interpreter_frame_method() const;
void interpreter_frame_set_method(methodOop method);
methodOop* interpreter_frame_method_addr() const;
constantPoolCacheOop* interpreter_frame_cache_addr() const;
#ifdef PPC
oop* interpreter_frame_mirror_addr() const;
#endif
public:
// Entry frames
JavaCallWrapper* entry_frame_call_wrapper() const;
intptr_t* entry_frame_argument_at(int offset) const;
// tells whether there is another chunk of Delta stack above
bool entry_frame_is_first() const;
// Compiled frames:
public:
// Given the index of a local, and the number of argument words
// in this stack frame, tell which word of the stack frame to find
// the local in. Arguments are stored above the ofp/rpc pair,
// while other locals are stored below it.
// Since monitors (BasicLock blocks) are also assigned indexes,
// but may have different storage requirements, their presence
// can also affect the calculation of offsets.
static int local_offset_for_compiler(int local_index, int nof_args, int max_nof_locals, int max_nof_monitors);
// Given the index of a monitor, etc., tell which word of the
// stack frame contains the start of the BasicLock block.
// Note that the local index by convention is the __higher__
// of the two indexes allocated to the block.
static int monitor_offset_for_compiler(int local_index, int nof_args, int max_nof_locals, int max_nof_monitors);
// Tell the smallest value that local_offset_for_compiler will attain.
// This is used to help determine how much stack frame to allocate.
static int min_local_offset_for_compiler(int nof_args, int max_nof_locals, int max_nof_monitors);
// Tells if this register must be spilled during a call.
// On Intel, all registers are smashed by calls.
static bool volatile_across_calls(Register reg);
// Safepoints
public:
oop saved_oop_result(RegisterMap* map) const;
void set_saved_oop_result(RegisterMap* map, oop obj);
// For debugging
private:
const char* print_name() const;
public:
void print_value() const { print_value_on(tty,NULL); }
void print_value_on(outputStream* st, JavaThread *thread) const;
void print_on(outputStream* st) const;
void interpreter_frame_print_on(outputStream* st) const;
void print_on_error(outputStream* st, char* buf, int buflen, bool verbose = false) const;
// Conversion from an VMReg to physical stack location
oop* oopmapreg_to_location(VMReg reg, const RegisterMap* regmap) const;
// Oops-do's
void oops_compiled_arguments_do(symbolHandle signature, bool has_receiver, const RegisterMap* reg_map, OopClosure* f);
void oops_interpreted_do(OopClosure* f, const RegisterMap* map, bool query_oop_map_cache = true);
private:
void oops_interpreted_arguments_do(symbolHandle signature, bool has_receiver, OopClosure* f);
// Iteration of oops
void oops_do_internal(OopClosure* f, CodeBlobClosure* cf, RegisterMap* map, bool use_interpreter_oop_map_cache);
void oops_entry_do(OopClosure* f, const RegisterMap* map);
void oops_code_blob_do(OopClosure* f, CodeBlobClosure* cf, const RegisterMap* map);
int adjust_offset(methodOop method, int index); // helper for above fn
public:
// Memory management
void oops_do(OopClosure* f, CodeBlobClosure* cf, RegisterMap* map) { oops_do_internal(f, cf, map, true); }
void nmethods_do(CodeBlobClosure* cf);
void gc_prologue();
void gc_epilogue();
void pd_gc_epilog();
# ifdef ENABLE_ZAP_DEAD_LOCALS
private:
class CheckValueClosure: public OopClosure {
public:
void do_oop(oop* p);
void do_oop(narrowOop* p) { ShouldNotReachHere(); }
};
static CheckValueClosure _check_value;
class CheckOopClosure: public OopClosure {
public:
void do_oop(oop* p);
void do_oop(narrowOop* p) { ShouldNotReachHere(); }
};
static CheckOopClosure _check_oop;
static void check_derived_oop(oop* base, oop* derived);
class ZapDeadClosure: public OopClosure {
public:
void do_oop(oop* p);
void do_oop(narrowOop* p) { ShouldNotReachHere(); }
};
static ZapDeadClosure _zap_dead;
public:
// Zapping
void zap_dead_locals (JavaThread* thread, const RegisterMap* map);
void zap_dead_interpreted_locals(JavaThread* thread, const RegisterMap* map);
void zap_dead_compiled_locals (JavaThread* thread, const RegisterMap* map);
void zap_dead_entry_locals (JavaThread* thread, const RegisterMap* map);
void zap_dead_deoptimized_locals(JavaThread* thread, const RegisterMap* map);
# endif
// Verification
void verify(const RegisterMap* map);
static bool verify_return_pc(address x);
static bool is_bci(intptr_t bcx);
// Usage:
// assert(frame::verify_return_pc(return_address), "must be a return pc");
int pd_oop_map_offset_adjustment() const;
# include "incls/_frame_pd.hpp.incl"
};
//
// StackFrameStream iterates through the frames of a thread starting from
// top most frame. It automatically takes care of updating the location of
// all (callee-saved) registers. Notice: If a thread is stopped at
// a safepoint, all registers are saved, not only the callee-saved ones.
//
// Use:
//
// for(StackFrameStream fst(thread); !fst.is_done(); fst.next()) {
// ...
// }
//
class StackFrameStream : public StackObj {
private:
frame _fr;
RegisterMap _reg_map;
bool _is_done;
public:
StackFrameStream(JavaThread *thread, bool update = true);
// Iteration
bool is_done() { return (_is_done) ? true : (_is_done = _fr.is_first_frame(), false); }
void next() { if (!_is_done) _fr = _fr.sender(&_reg_map); }
// Query
frame *current() { return &_fr; }
RegisterMap* register_map() { return &_reg_map; }
};