7000578: CMS: assert(SafepointSynchronize::is_at_safepoint()) failed: Else races are possible
Summary: Weakened assert in onj_is_alive() to allow its use at initialization time when is_at_safepoint() normally reports false; added some related asserts to check order of is_init_completed() after Universe::is_fully_initialized().
Reviewed-by: jcoomes
/*
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_frame.cpp.incl"
RegisterMap::RegisterMap(JavaThread *thread, bool update_map) {
_thread = thread;
_update_map = update_map;
clear();
debug_only(_update_for_id = NULL;)
#ifndef PRODUCT
for (int i = 0; i < reg_count ; i++ ) _location[i] = NULL;
#endif /* PRODUCT */
}
RegisterMap::RegisterMap(const RegisterMap* map) {
assert(map != this, "bad initialization parameter");
assert(map != NULL, "RegisterMap must be present");
_thread = map->thread();
_update_map = map->update_map();
_include_argument_oops = map->include_argument_oops();
debug_only(_update_for_id = map->_update_for_id;)
pd_initialize_from(map);
if (update_map()) {
for(int i = 0; i < location_valid_size; i++) {
LocationValidType bits = !update_map() ? 0 : map->_location_valid[i];
_location_valid[i] = bits;
// for whichever bits are set, pull in the corresponding map->_location
int j = i*location_valid_type_size;
while (bits != 0) {
if ((bits & 1) != 0) {
assert(0 <= j && j < reg_count, "range check");
_location[j] = map->_location[j];
}
bits >>= 1;
j += 1;
}
}
}
}
void RegisterMap::clear() {
set_include_argument_oops(true);
if (_update_map) {
for(int i = 0; i < location_valid_size; i++) {
_location_valid[i] = 0;
}
pd_clear();
} else {
pd_initialize();
}
}
#ifndef PRODUCT
void RegisterMap::print_on(outputStream* st) const {
st->print_cr("Register map");
for(int i = 0; i < reg_count; i++) {
VMReg r = VMRegImpl::as_VMReg(i);
intptr_t* src = (intptr_t*) location(r);
if (src != NULL) {
r->print_on(st);
st->print(" [" INTPTR_FORMAT "] = ", src);
if (((uintptr_t)src & (sizeof(*src)-1)) != 0) {
st->print_cr("<misaligned>");
} else {
st->print_cr(INTPTR_FORMAT, *src);
}
}
}
}
void RegisterMap::print() const {
print_on(tty);
}
#endif
// This returns the pc that if you were in the debugger you'd see. Not
// the idealized value in the frame object. This undoes the magic conversion
// that happens for deoptimized frames. In addition it makes the value the
// hardware would want to see in the native frame. The only user (at this point)
// is deoptimization. It likely no one else should ever use it.
address frame::raw_pc() const {
if (is_deoptimized_frame()) {
nmethod* nm = cb()->as_nmethod_or_null();
if (nm->is_method_handle_return(pc()))
return nm->deopt_mh_handler_begin() - pc_return_offset;
else
return nm->deopt_handler_begin() - pc_return_offset;
} else {
return (pc() - pc_return_offset);
}
}
// Change the pc in a frame object. This does not change the actual pc in
// actual frame. To do that use patch_pc.
//
void frame::set_pc(address newpc ) {
#ifdef ASSERT
if (_cb != NULL && _cb->is_nmethod()) {
assert(!((nmethod*)_cb)->is_deopt_pc(_pc), "invariant violation");
}
#endif // ASSERT
// Unsafe to use the is_deoptimzed tester after changing pc
_deopt_state = unknown;
_pc = newpc;
_cb = CodeCache::find_blob_unsafe(_pc);
}
// type testers
bool frame::is_deoptimized_frame() const {
assert(_deopt_state != unknown, "not answerable");
return _deopt_state == is_deoptimized;
}
bool frame::is_native_frame() const {
return (_cb != NULL &&
_cb->is_nmethod() &&
((nmethod*)_cb)->is_native_method());
}
bool frame::is_java_frame() const {
if (is_interpreted_frame()) return true;
if (is_compiled_frame()) return true;
return false;
}
bool frame::is_compiled_frame() const {
if (_cb != NULL &&
_cb->is_nmethod() &&
((nmethod*)_cb)->is_java_method()) {
return true;
}
return false;
}
bool frame::is_runtime_frame() const {
return (_cb != NULL && _cb->is_runtime_stub());
}
bool frame::is_safepoint_blob_frame() const {
return (_cb != NULL && _cb->is_safepoint_stub());
}
// testers
bool frame::is_first_java_frame() const {
RegisterMap map(JavaThread::current(), false); // No update
frame s;
for (s = sender(&map); !(s.is_java_frame() || s.is_first_frame()); s = s.sender(&map));
return s.is_first_frame();
}
bool frame::entry_frame_is_first() const {
return entry_frame_call_wrapper()->anchor()->last_Java_sp() == NULL;
}
bool frame::should_be_deoptimized() const {
if (_deopt_state == is_deoptimized ||
!is_compiled_frame() ) return false;
assert(_cb != NULL && _cb->is_nmethod(), "must be an nmethod");
nmethod* nm = (nmethod *)_cb;
if (TraceDependencies) {
tty->print("checking (%s) ", nm->is_marked_for_deoptimization() ? "true" : "false");
nm->print_value_on(tty);
tty->cr();
}
if( !nm->is_marked_for_deoptimization() )
return false;
// If at the return point, then the frame has already been popped, and
// only the return needs to be executed. Don't deoptimize here.
return !nm->is_at_poll_return(pc());
}
bool frame::can_be_deoptimized() const {
if (!is_compiled_frame()) return false;
nmethod* nm = (nmethod*)_cb;
if( !nm->can_be_deoptimized() )
return false;
return !nm->is_at_poll_return(pc());
}
void frame::deoptimize(JavaThread* thread) {
// Schedule deoptimization of an nmethod activation with this frame.
assert(_cb != NULL && _cb->is_nmethod(), "must be");
nmethod* nm = (nmethod*)_cb;
// This is a fix for register window patching race
if (NeedsDeoptSuspend && Thread::current() != thread) {
assert(SafepointSynchronize::is_at_safepoint(),
"patching other threads for deopt may only occur at a safepoint");
// It is possible especially with DeoptimizeALot/DeoptimizeRandom that
// we could see the frame again and ask for it to be deoptimized since
// it might move for a long time. That is harmless and we just ignore it.
if (id() == thread->must_deopt_id()) {
assert(thread->is_deopt_suspend(), "lost suspension");
return;
}
// We are at a safepoint so the target thread can only be
// in 4 states:
// blocked - no problem
// blocked_trans - no problem (i.e. could have woken up from blocked
// during a safepoint).
// native - register window pc patching race
// native_trans - momentary state
//
// We could just wait out a thread in native_trans to block.
// Then we'd have all the issues that the safepoint code has as to
// whether to spin or block. It isn't worth it. Just treat it like
// native and be done with it.
//
// Examine the state of the thread at the start of safepoint since
// threads that were in native at the start of the safepoint could
// come to a halt during the safepoint, changing the current value
// of the safepoint_state.
JavaThreadState state = thread->safepoint_state()->orig_thread_state();
if (state == _thread_in_native || state == _thread_in_native_trans) {
// Since we are at a safepoint the target thread will stop itself
// before it can return to java as long as we remain at the safepoint.
// Therefore we can put an additional request for the thread to stop
// no matter what no (like a suspend). This will cause the thread
// to notice it needs to do the deopt on its own once it leaves native.
//
// The only reason we must do this is because on machine with register
// windows we have a race with patching the return address and the
// window coming live as the thread returns to the Java code (but still
// in native mode) and then blocks. It is only this top most frame
// that is at risk. So in truth we could add an additional check to
// see if this frame is one that is at risk.
RegisterMap map(thread, false);
frame at_risk = thread->last_frame().sender(&map);
if (id() == at_risk.id()) {
thread->set_must_deopt_id(id());
thread->set_deopt_suspend();
return;
}
}
} // NeedsDeoptSuspend
// If the call site is a MethodHandle call site use the MH deopt
// handler.
address deopt = nm->is_method_handle_return(pc()) ?
nm->deopt_mh_handler_begin() :
nm->deopt_handler_begin();
// Save the original pc before we patch in the new one
nm->set_original_pc(this, pc());
patch_pc(thread, deopt);
#ifdef ASSERT
{
RegisterMap map(thread, false);
frame check = thread->last_frame();
while (id() != check.id()) {
check = check.sender(&map);
}
assert(check.is_deoptimized_frame(), "missed deopt");
}
#endif // ASSERT
}
frame frame::java_sender() const {
RegisterMap map(JavaThread::current(), false);
frame s;
for (s = sender(&map); !(s.is_java_frame() || s.is_first_frame()); s = s.sender(&map)) ;
guarantee(s.is_java_frame(), "tried to get caller of first java frame");
return s;
}
frame frame::real_sender(RegisterMap* map) const {
frame result = sender(map);
while (result.is_runtime_frame()) {
result = result.sender(map);
}
return result;
}
// Note: called by profiler - NOT for current thread
frame frame::profile_find_Java_sender_frame(JavaThread *thread) {
// If we don't recognize this frame, walk back up the stack until we do
RegisterMap map(thread, false);
frame first_java_frame = frame();
// Find the first Java frame on the stack starting with input frame
if (is_java_frame()) {
// top frame is compiled frame or deoptimized frame
first_java_frame = *this;
} else if (safe_for_sender(thread)) {
for (frame sender_frame = sender(&map);
sender_frame.safe_for_sender(thread) && !sender_frame.is_first_frame();
sender_frame = sender_frame.sender(&map)) {
if (sender_frame.is_java_frame()) {
first_java_frame = sender_frame;
break;
}
}
}
return first_java_frame;
}
// Interpreter frames
void frame::interpreter_frame_set_locals(intptr_t* locs) {
assert(is_interpreted_frame(), "Not an interpreted frame");
*interpreter_frame_locals_addr() = locs;
}
methodOop frame::interpreter_frame_method() const {
assert(is_interpreted_frame(), "interpreted frame expected");
methodOop m = *interpreter_frame_method_addr();
assert(m->is_perm(), "bad methodOop in interpreter frame");
assert(m->is_method(), "not a methodOop");
return m;
}
void frame::interpreter_frame_set_method(methodOop method) {
assert(is_interpreted_frame(), "interpreted frame expected");
*interpreter_frame_method_addr() = method;
}
void frame::interpreter_frame_set_bcx(intptr_t bcx) {
assert(is_interpreted_frame(), "Not an interpreted frame");
if (ProfileInterpreter) {
bool formerly_bci = is_bci(interpreter_frame_bcx());
bool is_now_bci = is_bci(bcx);
*interpreter_frame_bcx_addr() = bcx;
intptr_t mdx = interpreter_frame_mdx();
if (mdx != 0) {
if (formerly_bci) {
if (!is_now_bci) {
// The bcx was just converted from bci to bcp.
// Convert the mdx in parallel.
methodDataOop mdo = interpreter_frame_method()->method_data();
assert(mdo != NULL, "");
int mdi = mdx - 1; // We distinguish valid mdi from zero by adding one.
address mdp = mdo->di_to_dp(mdi);
interpreter_frame_set_mdx((intptr_t)mdp);
}
} else {
if (is_now_bci) {
// The bcx was just converted from bcp to bci.
// Convert the mdx in parallel.
methodDataOop mdo = interpreter_frame_method()->method_data();
assert(mdo != NULL, "");
int mdi = mdo->dp_to_di((address)mdx);
interpreter_frame_set_mdx((intptr_t)mdi + 1); // distinguish valid from 0.
}
}
}
} else {
*interpreter_frame_bcx_addr() = bcx;
}
}
jint frame::interpreter_frame_bci() const {
assert(is_interpreted_frame(), "interpreted frame expected");
intptr_t bcx = interpreter_frame_bcx();
return is_bci(bcx) ? bcx : interpreter_frame_method()->bci_from((address)bcx);
}
void frame::interpreter_frame_set_bci(jint bci) {
assert(is_interpreted_frame(), "interpreted frame expected");
assert(!is_bci(interpreter_frame_bcx()), "should not set bci during GC");
interpreter_frame_set_bcx((intptr_t)interpreter_frame_method()->bcp_from(bci));
}
address frame::interpreter_frame_bcp() const {
assert(is_interpreted_frame(), "interpreted frame expected");
intptr_t bcx = interpreter_frame_bcx();
return is_bci(bcx) ? interpreter_frame_method()->bcp_from(bcx) : (address)bcx;
}
void frame::interpreter_frame_set_bcp(address bcp) {
assert(is_interpreted_frame(), "interpreted frame expected");
assert(!is_bci(interpreter_frame_bcx()), "should not set bcp during GC");
interpreter_frame_set_bcx((intptr_t)bcp);
}
void frame::interpreter_frame_set_mdx(intptr_t mdx) {
assert(is_interpreted_frame(), "Not an interpreted frame");
assert(ProfileInterpreter, "must be profiling interpreter");
*interpreter_frame_mdx_addr() = mdx;
}
address frame::interpreter_frame_mdp() const {
assert(ProfileInterpreter, "must be profiling interpreter");
assert(is_interpreted_frame(), "interpreted frame expected");
intptr_t bcx = interpreter_frame_bcx();
intptr_t mdx = interpreter_frame_mdx();
assert(!is_bci(bcx), "should not access mdp during GC");
return (address)mdx;
}
void frame::interpreter_frame_set_mdp(address mdp) {
assert(is_interpreted_frame(), "interpreted frame expected");
if (mdp == NULL) {
// Always allow the mdp to be cleared.
interpreter_frame_set_mdx((intptr_t)mdp);
}
intptr_t bcx = interpreter_frame_bcx();
assert(!is_bci(bcx), "should not set mdp during GC");
interpreter_frame_set_mdx((intptr_t)mdp);
}
BasicObjectLock* frame::next_monitor_in_interpreter_frame(BasicObjectLock* current) const {
assert(is_interpreted_frame(), "Not an interpreted frame");
#ifdef ASSERT
interpreter_frame_verify_monitor(current);
#endif
BasicObjectLock* next = (BasicObjectLock*) (((intptr_t*) current) + interpreter_frame_monitor_size());
return next;
}
BasicObjectLock* frame::previous_monitor_in_interpreter_frame(BasicObjectLock* current) const {
assert(is_interpreted_frame(), "Not an interpreted frame");
#ifdef ASSERT
// // This verification needs to be checked before being enabled
// interpreter_frame_verify_monitor(current);
#endif
BasicObjectLock* previous = (BasicObjectLock*) (((intptr_t*) current) - interpreter_frame_monitor_size());
return previous;
}
// Interpreter locals and expression stack locations.
intptr_t* frame::interpreter_frame_local_at(int index) const {
const int n = Interpreter::local_offset_in_bytes(index)/wordSize;
return &((*interpreter_frame_locals_addr())[n]);
}
intptr_t* frame::interpreter_frame_expression_stack_at(jint offset) const {
const int i = offset * interpreter_frame_expression_stack_direction();
const int n = i * Interpreter::stackElementWords;
return &(interpreter_frame_expression_stack()[n]);
}
jint frame::interpreter_frame_expression_stack_size() const {
// Number of elements on the interpreter expression stack
// Callers should span by stackElementWords
int element_size = Interpreter::stackElementWords;
if (frame::interpreter_frame_expression_stack_direction() < 0) {
return (interpreter_frame_expression_stack() -
interpreter_frame_tos_address() + 1)/element_size;
} else {
return (interpreter_frame_tos_address() -
interpreter_frame_expression_stack() + 1)/element_size;
}
}
// (frame::interpreter_frame_sender_sp accessor is in frame_<arch>.cpp)
const char* frame::print_name() const {
if (is_native_frame()) return "Native";
if (is_interpreted_frame()) return "Interpreted";
if (is_compiled_frame()) {
if (is_deoptimized_frame()) return "Deoptimized";
return "Compiled";
}
if (sp() == NULL) return "Empty";
return "C";
}
void frame::print_value_on(outputStream* st, JavaThread *thread) const {
NOT_PRODUCT(address begin = pc()-40;)
NOT_PRODUCT(address end = NULL;)
st->print("%s frame (sp=" INTPTR_FORMAT " unextended sp=" INTPTR_FORMAT, print_name(), sp(), unextended_sp());
if (sp() != NULL)
st->print(", fp=" INTPTR_FORMAT ", pc=" INTPTR_FORMAT, fp(), pc());
if (StubRoutines::contains(pc())) {
st->print_cr(")");
st->print("(");
StubCodeDesc* desc = StubCodeDesc::desc_for(pc());
st->print("~Stub::%s", desc->name());
NOT_PRODUCT(begin = desc->begin(); end = desc->end();)
} else if (Interpreter::contains(pc())) {
st->print_cr(")");
st->print("(");
InterpreterCodelet* desc = Interpreter::codelet_containing(pc());
if (desc != NULL) {
st->print("~");
desc->print();
NOT_PRODUCT(begin = desc->code_begin(); end = desc->code_end();)
} else {
st->print("~interpreter");
}
}
st->print_cr(")");
if (_cb != NULL) {
st->print(" ");
_cb->print_value_on(st);
st->cr();
#ifndef PRODUCT
if (end == NULL) {
begin = _cb->code_begin();
end = _cb->code_end();
}
#endif
}
NOT_PRODUCT(if (WizardMode && Verbose) Disassembler::decode(begin, end);)
}
void frame::print_on(outputStream* st) const {
print_value_on(st,NULL);
if (is_interpreted_frame()) {
interpreter_frame_print_on(st);
}
}
void frame::interpreter_frame_print_on(outputStream* st) const {
#ifndef PRODUCT
assert(is_interpreted_frame(), "Not an interpreted frame");
jint i;
for (i = 0; i < interpreter_frame_method()->max_locals(); i++ ) {
intptr_t x = *interpreter_frame_local_at(i);
st->print(" - local [" INTPTR_FORMAT "]", x);
st->fill_to(23);
st->print_cr("; #%d", i);
}
for (i = interpreter_frame_expression_stack_size() - 1; i >= 0; --i ) {
intptr_t x = *interpreter_frame_expression_stack_at(i);
st->print(" - stack [" INTPTR_FORMAT "]", x);
st->fill_to(23);
st->print_cr("; #%d", i);
}
// locks for synchronization
for (BasicObjectLock* current = interpreter_frame_monitor_end();
current < interpreter_frame_monitor_begin();
current = next_monitor_in_interpreter_frame(current)) {
st->print(" - obj [");
current->obj()->print_value_on(st);
st->print_cr("]");
st->print(" - lock [");
current->lock()->print_on(st);
st->print_cr("]");
}
// monitor
st->print_cr(" - monitor[" INTPTR_FORMAT "]", interpreter_frame_monitor_begin());
// bcp
st->print(" - bcp [" INTPTR_FORMAT "]", interpreter_frame_bcp());
st->fill_to(23);
st->print_cr("; @%d", interpreter_frame_bci());
// locals
st->print_cr(" - locals [" INTPTR_FORMAT "]", interpreter_frame_local_at(0));
// method
st->print(" - method [" INTPTR_FORMAT "]", (address)interpreter_frame_method());
st->fill_to(23);
st->print("; ");
interpreter_frame_method()->print_name(st);
st->cr();
#endif
}
// Return whether the frame is in the VM or os indicating a Hotspot problem.
// Otherwise, it's likely a bug in the native library that the Java code calls,
// hopefully indicating where to submit bugs.
static void print_C_frame(outputStream* st, char* buf, int buflen, address pc) {
// C/C++ frame
bool in_vm = os::address_is_in_vm(pc);
st->print(in_vm ? "V" : "C");
int offset;
bool found;
// libname
found = os::dll_address_to_library_name(pc, buf, buflen, &offset);
if (found) {
// skip directory names
const char *p1, *p2;
p1 = buf;
int len = (int)strlen(os::file_separator());
while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
st->print(" [%s+0x%x]", p1, offset);
} else {
st->print(" " PTR_FORMAT, pc);
}
// function name - os::dll_address_to_function_name() may return confusing
// names if pc is within jvm.dll or libjvm.so, because JVM only has
// JVM_xxxx and a few other symbols in the dynamic symbol table. Do this
// only for native libraries.
if (!in_vm) {
found = os::dll_address_to_function_name(pc, buf, buflen, &offset);
if (found) {
st->print(" %s+0x%x", buf, offset);
}
}
}
// frame::print_on_error() is called by fatal error handler. Notice that we may
// crash inside this function if stack frame is corrupted. The fatal error
// handler can catch and handle the crash. Here we assume the frame is valid.
//
// First letter indicates type of the frame:
// J: Java frame (compiled)
// j: Java frame (interpreted)
// V: VM frame (C/C++)
// v: Other frames running VM generated code (e.g. stubs, adapters, etc.)
// C: C/C++ frame
//
// We don't need detailed frame type as that in frame::print_name(). "C"
// suggests the problem is in user lib; everything else is likely a VM bug.
void frame::print_on_error(outputStream* st, char* buf, int buflen, bool verbose) const {
if (_cb != NULL) {
if (Interpreter::contains(pc())) {
methodOop m = this->interpreter_frame_method();
if (m != NULL) {
m->name_and_sig_as_C_string(buf, buflen);
st->print("j %s", buf);
st->print("+%d", this->interpreter_frame_bci());
} else {
st->print("j " PTR_FORMAT, pc());
}
} else if (StubRoutines::contains(pc())) {
StubCodeDesc* desc = StubCodeDesc::desc_for(pc());
if (desc != NULL) {
st->print("v ~StubRoutines::%s", desc->name());
} else {
st->print("v ~StubRoutines::" PTR_FORMAT, pc());
}
} else if (_cb->is_buffer_blob()) {
st->print("v ~BufferBlob::%s", ((BufferBlob *)_cb)->name());
} else if (_cb->is_nmethod()) {
methodOop m = ((nmethod *)_cb)->method();
if (m != NULL) {
m->name_and_sig_as_C_string(buf, buflen);
st->print("J %s", buf);
} else {
st->print("J " PTR_FORMAT, pc());
}
} else if (_cb->is_runtime_stub()) {
st->print("v ~RuntimeStub::%s", ((RuntimeStub *)_cb)->name());
} else if (_cb->is_deoptimization_stub()) {
st->print("v ~DeoptimizationBlob");
} else if (_cb->is_exception_stub()) {
st->print("v ~ExceptionBlob");
} else if (_cb->is_safepoint_stub()) {
st->print("v ~SafepointBlob");
} else {
st->print("v blob " PTR_FORMAT, pc());
}
} else {
print_C_frame(st, buf, buflen, pc());
}
}
/*
The interpreter_frame_expression_stack_at method in the case of SPARC needs the
max_stack value of the method in order to compute the expression stack address.
It uses the methodOop in order to get the max_stack value but during GC this
methodOop value saved on the frame is changed by reverse_and_push and hence cannot
be used. So we save the max_stack value in the FrameClosure object and pass it
down to the interpreter_frame_expression_stack_at method
*/
class InterpreterFrameClosure : public OffsetClosure {
private:
frame* _fr;
OopClosure* _f;
int _max_locals;
int _max_stack;
public:
InterpreterFrameClosure(frame* fr, int max_locals, int max_stack,
OopClosure* f) {
_fr = fr;
_max_locals = max_locals;
_max_stack = max_stack;
_f = f;
}
void offset_do(int offset) {
oop* addr;
if (offset < _max_locals) {
addr = (oop*) _fr->interpreter_frame_local_at(offset);
assert((intptr_t*)addr >= _fr->sp(), "must be inside the frame");
_f->do_oop(addr);
} else {
addr = (oop*) _fr->interpreter_frame_expression_stack_at((offset - _max_locals));
// In case of exceptions, the expression stack is invalid and the esp will be reset to express
// this condition. Therefore, we call f only if addr is 'inside' the stack (i.e., addr >= esp for Intel).
bool in_stack;
if (frame::interpreter_frame_expression_stack_direction() > 0) {
in_stack = (intptr_t*)addr <= _fr->interpreter_frame_tos_address();
} else {
in_stack = (intptr_t*)addr >= _fr->interpreter_frame_tos_address();
}
if (in_stack) {
_f->do_oop(addr);
}
}
}
int max_locals() { return _max_locals; }
frame* fr() { return _fr; }
};
class InterpretedArgumentOopFinder: public SignatureInfo {
private:
OopClosure* _f; // Closure to invoke
int _offset; // TOS-relative offset, decremented with each argument
bool _has_receiver; // true if the callee has a receiver
frame* _fr;
void set(int size, BasicType type) {
_offset -= size;
if (type == T_OBJECT || type == T_ARRAY) oop_offset_do();
}
void oop_offset_do() {
oop* addr;
addr = (oop*)_fr->interpreter_frame_tos_at(_offset);
_f->do_oop(addr);
}
public:
InterpretedArgumentOopFinder(symbolHandle signature, bool has_receiver, frame* fr, OopClosure* f) : SignatureInfo(signature), _has_receiver(has_receiver) {
// compute size of arguments
int args_size = ArgumentSizeComputer(signature).size() + (has_receiver ? 1 : 0);
assert(!fr->is_interpreted_frame() ||
args_size <= fr->interpreter_frame_expression_stack_size(),
"args cannot be on stack anymore");
// initialize InterpretedArgumentOopFinder
_f = f;
_fr = fr;
_offset = args_size;
}
void oops_do() {
if (_has_receiver) {
--_offset;
oop_offset_do();
}
iterate_parameters();
}
};
// Entry frame has following form (n arguments)
// +-----------+
// sp -> | last arg |
// +-----------+
// : ::: :
// +-----------+
// (sp+n)->| first arg|
// +-----------+
// visits and GC's all the arguments in entry frame
class EntryFrameOopFinder: public SignatureInfo {
private:
bool _is_static;
int _offset;
frame* _fr;
OopClosure* _f;
void set(int size, BasicType type) {
assert (_offset >= 0, "illegal offset");
if (type == T_OBJECT || type == T_ARRAY) oop_at_offset_do(_offset);
_offset -= size;
}
void oop_at_offset_do(int offset) {
assert (offset >= 0, "illegal offset");
oop* addr = (oop*) _fr->entry_frame_argument_at(offset);
_f->do_oop(addr);
}
public:
EntryFrameOopFinder(frame* frame, symbolHandle signature, bool is_static) : SignatureInfo(signature) {
_f = NULL; // will be set later
_fr = frame;
_is_static = is_static;
_offset = ArgumentSizeComputer(signature).size() - 1; // last parameter is at index 0
}
void arguments_do(OopClosure* f) {
_f = f;
if (!_is_static) oop_at_offset_do(_offset+1); // do the receiver
iterate_parameters();
}
};
oop* frame::interpreter_callee_receiver_addr(symbolHandle signature) {
ArgumentSizeComputer asc(signature);
int size = asc.size();
return (oop *)interpreter_frame_tos_at(size);
}
void frame::oops_interpreted_do(OopClosure* f, const RegisterMap* map, bool query_oop_map_cache) {
assert(is_interpreted_frame(), "Not an interpreted frame");
assert(map != NULL, "map must be set");
Thread *thread = Thread::current();
methodHandle m (thread, interpreter_frame_method());
jint bci = interpreter_frame_bci();
assert(Universe::heap()->is_in(m()), "must be valid oop");
assert(m->is_method(), "checking frame value");
assert((m->is_native() && bci == 0) || (!m->is_native() && bci >= 0 && bci < m->code_size()), "invalid bci value");
// Handle the monitor elements in the activation
for (
BasicObjectLock* current = interpreter_frame_monitor_end();
current < interpreter_frame_monitor_begin();
current = next_monitor_in_interpreter_frame(current)
) {
#ifdef ASSERT
interpreter_frame_verify_monitor(current);
#endif
current->oops_do(f);
}
// process fixed part
f->do_oop((oop*)interpreter_frame_method_addr());
f->do_oop((oop*)interpreter_frame_cache_addr());
// Hmm what about the mdp?
#ifdef CC_INTERP
// Interpreter frame in the midst of a call have a methodOop within the
// object.
interpreterState istate = get_interpreterState();
if (istate->msg() == BytecodeInterpreter::call_method) {
f->do_oop((oop*)&istate->_result._to_call._callee);
}
#endif /* CC_INTERP */
#if !defined(PPC) || defined(ZERO)
if (m->is_native()) {
#ifdef CC_INTERP
f->do_oop((oop*)&istate->_oop_temp);
#else
f->do_oop((oop*)( fp() + interpreter_frame_oop_temp_offset ));
#endif /* CC_INTERP */
}
#else // PPC
if (m->is_native() && m->is_static()) {
f->do_oop(interpreter_frame_mirror_addr());
}
#endif // PPC
int max_locals = m->is_native() ? m->size_of_parameters() : m->max_locals();
symbolHandle signature;
bool has_receiver = false;
// Process a callee's arguments if we are at a call site
// (i.e., if we are at an invoke bytecode)
// This is used sometimes for calling into the VM, not for another
// interpreted or compiled frame.
if (!m->is_native()) {
Bytecode_invoke *call = Bytecode_invoke_at_check(m, bci);
if (call != NULL) {
signature = symbolHandle(thread, call->signature());
has_receiver = call->has_receiver();
if (map->include_argument_oops() &&
interpreter_frame_expression_stack_size() > 0) {
ResourceMark rm(thread); // is this right ???
// we are at a call site & the expression stack is not empty
// => process callee's arguments
//
// Note: The expression stack can be empty if an exception
// occurred during method resolution/execution. In all
// cases we empty the expression stack completely be-
// fore handling the exception (the exception handling
// code in the interpreter calls a blocking runtime
// routine which can cause this code to be executed).
// (was bug gri 7/27/98)
oops_interpreted_arguments_do(signature, has_receiver, f);
}
}
}
InterpreterFrameClosure blk(this, max_locals, m->max_stack(), f);
// process locals & expression stack
InterpreterOopMap mask;
if (query_oop_map_cache) {
m->mask_for(bci, &mask);
} else {
OopMapCache::compute_one_oop_map(m, bci, &mask);
}
mask.iterate_oop(&blk);
}
void frame::oops_interpreted_arguments_do(symbolHandle signature, bool has_receiver, OopClosure* f) {
InterpretedArgumentOopFinder finder(signature, has_receiver, this, f);
finder.oops_do();
}
void frame::oops_code_blob_do(OopClosure* f, CodeBlobClosure* cf, const RegisterMap* reg_map) {
assert(_cb != NULL, "sanity check");
if (_cb->oop_maps() != NULL) {
OopMapSet::oops_do(this, reg_map, f);
// Preserve potential arguments for a callee. We handle this by dispatching
// on the codeblob. For c2i, we do
if (reg_map->include_argument_oops()) {
_cb->preserve_callee_argument_oops(*this, reg_map, f);
}
}
// In cases where perm gen is collected, GC will want to mark
// oops referenced from nmethods active on thread stacks so as to
// prevent them from being collected. However, this visit should be
// restricted to certain phases of the collection only. The
// closure decides how it wants nmethods to be traced.
if (cf != NULL)
cf->do_code_blob(_cb);
}
class CompiledArgumentOopFinder: public SignatureInfo {
protected:
OopClosure* _f;
int _offset; // the current offset, incremented with each argument
bool _has_receiver; // true if the callee has a receiver
frame _fr;
RegisterMap* _reg_map;
int _arg_size;
VMRegPair* _regs; // VMReg list of arguments
void set(int size, BasicType type) {
if (type == T_OBJECT || type == T_ARRAY) handle_oop_offset();
_offset += size;
}
virtual void handle_oop_offset() {
// Extract low order register number from register array.
// In LP64-land, the high-order bits are valid but unhelpful.
VMReg reg = _regs[_offset].first();
oop *loc = _fr.oopmapreg_to_location(reg, _reg_map);
_f->do_oop(loc);
}
public:
CompiledArgumentOopFinder(symbolHandle signature, bool has_receiver, OopClosure* f, frame fr, const RegisterMap* reg_map)
: SignatureInfo(signature) {
// initialize CompiledArgumentOopFinder
_f = f;
_offset = 0;
_has_receiver = has_receiver;
_fr = fr;
_reg_map = (RegisterMap*)reg_map;
_arg_size = ArgumentSizeComputer(signature).size() + (has_receiver ? 1 : 0);
int arg_size;
_regs = SharedRuntime::find_callee_arguments(signature(), has_receiver, &arg_size);
assert(arg_size == _arg_size, "wrong arg size");
}
void oops_do() {
if (_has_receiver) {
handle_oop_offset();
_offset++;
}
iterate_parameters();
}
};
void frame::oops_compiled_arguments_do(symbolHandle signature, bool has_receiver, const RegisterMap* reg_map, OopClosure* f) {
ResourceMark rm;
CompiledArgumentOopFinder finder(signature, has_receiver, f, *this, reg_map);
finder.oops_do();
}
// Get receiver out of callers frame, i.e. find parameter 0 in callers
// frame. Consult ADLC for where parameter 0 is to be found. Then
// check local reg_map for it being a callee-save register or argument
// register, both of which are saved in the local frame. If not found
// there, it must be an in-stack argument of the caller.
// Note: caller.sp() points to callee-arguments
oop frame::retrieve_receiver(RegisterMap* reg_map) {
frame caller = *this;
// First consult the ADLC on where it puts parameter 0 for this signature.
VMReg reg = SharedRuntime::name_for_receiver();
oop r = *caller.oopmapreg_to_location(reg, reg_map);
assert( Universe::heap()->is_in_or_null(r), "bad receiver" );
return r;
}
oop* frame::oopmapreg_to_location(VMReg reg, const RegisterMap* reg_map) const {
if(reg->is_reg()) {
// If it is passed in a register, it got spilled in the stub frame.
return (oop *)reg_map->location(reg);
} else {
int sp_offset_in_bytes = reg->reg2stack() * VMRegImpl::stack_slot_size;
return (oop*)(((address)unextended_sp()) + sp_offset_in_bytes);
}
}
BasicLock* frame::compiled_synchronized_native_monitor(nmethod* nm) {
if (nm == NULL) {
assert(_cb != NULL && _cb->is_nmethod() &&
nm->method()->is_native() &&
nm->method()->is_synchronized(),
"should not call this otherwise");
nm = (nmethod*) _cb;
}
int byte_offset = in_bytes(nm->compiled_synchronized_native_basic_lock_sp_offset());
assert(byte_offset >= 0, "should not see invalid offset");
return (BasicLock*) &sp()[byte_offset / wordSize];
}
oop frame::compiled_synchronized_native_monitor_owner(nmethod* nm) {
if (nm == NULL) {
assert(_cb != NULL && _cb->is_nmethod() &&
nm->method()->is_native() &&
nm->method()->is_synchronized(),
"should not call this otherwise");
nm = (nmethod*) _cb;
}
int byte_offset = in_bytes(nm->compiled_synchronized_native_basic_lock_owner_sp_offset());
assert(byte_offset >= 0, "should not see invalid offset");
oop owner = ((oop*) sp())[byte_offset / wordSize];
assert( Universe::heap()->is_in(owner), "bad receiver" );
return owner;
}
void frame::oops_entry_do(OopClosure* f, const RegisterMap* map) {
assert(map != NULL, "map must be set");
if (map->include_argument_oops()) {
// must collect argument oops, as nobody else is doing it
Thread *thread = Thread::current();
methodHandle m (thread, entry_frame_call_wrapper()->callee_method());
symbolHandle signature (thread, m->signature());
EntryFrameOopFinder finder(this, signature, m->is_static());
finder.arguments_do(f);
}
// Traverse the Handle Block saved in the entry frame
entry_frame_call_wrapper()->oops_do(f);
}
void frame::oops_do_internal(OopClosure* f, CodeBlobClosure* cf, RegisterMap* map, bool use_interpreter_oop_map_cache) {
#ifndef PRODUCT
// simulate GC crash here to dump java thread in error report
if (CrashGCForDumpingJavaThread) {
char *t = NULL;
*t = 'c';
}
#endif
if (is_interpreted_frame()) {
oops_interpreted_do(f, map, use_interpreter_oop_map_cache);
} else if (is_entry_frame()) {
oops_entry_do(f, map);
} else if (CodeCache::contains(pc())) {
oops_code_blob_do(f, cf, map);
#ifdef SHARK
} else if (is_fake_stub_frame()) {
// nothing to do
#endif // SHARK
} else {
ShouldNotReachHere();
}
}
void frame::nmethods_do(CodeBlobClosure* cf) {
if (_cb != NULL && _cb->is_nmethod()) {
cf->do_code_blob(_cb);
}
}
void frame::gc_prologue() {
if (is_interpreted_frame()) {
// set bcx to bci to become methodOop position independent during GC
interpreter_frame_set_bcx(interpreter_frame_bci());
}
}
void frame::gc_epilogue() {
if (is_interpreted_frame()) {
// set bcx back to bcp for interpreter
interpreter_frame_set_bcx((intptr_t)interpreter_frame_bcp());
}
// call processor specific epilog function
pd_gc_epilog();
}
# ifdef ENABLE_ZAP_DEAD_LOCALS
void frame::CheckValueClosure::do_oop(oop* p) {
if (CheckOopishValues && Universe::heap()->is_in_reserved(*p)) {
warning("value @ " INTPTR_FORMAT " looks oopish (" INTPTR_FORMAT ") (thread = " INTPTR_FORMAT ")", p, (address)*p, Thread::current());
}
}
frame::CheckValueClosure frame::_check_value;
void frame::CheckOopClosure::do_oop(oop* p) {
if (*p != NULL && !(*p)->is_oop()) {
warning("value @ " INTPTR_FORMAT " should be an oop (" INTPTR_FORMAT ") (thread = " INTPTR_FORMAT ")", p, (address)*p, Thread::current());
}
}
frame::CheckOopClosure frame::_check_oop;
void frame::check_derived_oop(oop* base, oop* derived) {
_check_oop.do_oop(base);
}
void frame::ZapDeadClosure::do_oop(oop* p) {
if (TraceZapDeadLocals) tty->print_cr("zapping @ " INTPTR_FORMAT " containing " INTPTR_FORMAT, p, (address)*p);
// Need cast because on _LP64 the conversion to oop is ambiguous. Constant
// can be either long or int.
*p = (oop)(int)0xbabebabe;
}
frame::ZapDeadClosure frame::_zap_dead;
void frame::zap_dead_locals(JavaThread* thread, const RegisterMap* map) {
assert(thread == Thread::current(), "need to synchronize to do this to another thread");
// Tracing - part 1
if (TraceZapDeadLocals) {
ResourceMark rm(thread);
tty->print_cr("--------------------------------------------------------------------------------");
tty->print("Zapping dead locals in ");
print_on(tty);
tty->cr();
}
// Zapping
if (is_entry_frame ()) zap_dead_entry_locals (thread, map);
else if (is_interpreted_frame()) zap_dead_interpreted_locals(thread, map);
else if (is_compiled_frame()) zap_dead_compiled_locals (thread, map);
else
// could be is_runtime_frame
// so remove error: ShouldNotReachHere();
;
// Tracing - part 2
if (TraceZapDeadLocals) {
tty->cr();
}
}
void frame::zap_dead_interpreted_locals(JavaThread *thread, const RegisterMap* map) {
// get current interpreter 'pc'
assert(is_interpreted_frame(), "Not an interpreted frame");
methodOop m = interpreter_frame_method();
int bci = interpreter_frame_bci();
int max_locals = m->is_native() ? m->size_of_parameters() : m->max_locals();
// process dynamic part
InterpreterFrameClosure value_blk(this, max_locals, m->max_stack(),
&_check_value);
InterpreterFrameClosure oop_blk(this, max_locals, m->max_stack(),
&_check_oop );
InterpreterFrameClosure dead_blk(this, max_locals, m->max_stack(),
&_zap_dead );
// get frame map
InterpreterOopMap mask;
m->mask_for(bci, &mask);
mask.iterate_all( &oop_blk, &value_blk, &dead_blk);
}
void frame::zap_dead_compiled_locals(JavaThread* thread, const RegisterMap* reg_map) {
ResourceMark rm(thread);
assert(_cb != NULL, "sanity check");
if (_cb->oop_maps() != NULL) {
OopMapSet::all_do(this, reg_map, &_check_oop, check_derived_oop, &_check_value);
}
}
void frame::zap_dead_entry_locals(JavaThread*, const RegisterMap*) {
if (TraceZapDeadLocals) warning("frame::zap_dead_entry_locals unimplemented");
}
void frame::zap_dead_deoptimized_locals(JavaThread*, const RegisterMap*) {
if (TraceZapDeadLocals) warning("frame::zap_dead_deoptimized_locals unimplemented");
}
# endif // ENABLE_ZAP_DEAD_LOCALS
void frame::verify(const RegisterMap* map) {
// for now make sure receiver type is correct
if (is_interpreted_frame()) {
methodOop method = interpreter_frame_method();
guarantee(method->is_method(), "method is wrong in frame::verify");
if (!method->is_static()) {
// fetch the receiver
oop* p = (oop*) interpreter_frame_local_at(0);
// make sure we have the right receiver type
}
}
COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(), "must be empty before verify");)
oops_do_internal(&VerifyOopClosure::verify_oop, NULL, (RegisterMap*)map, false);
}
#ifdef ASSERT
bool frame::verify_return_pc(address x) {
if (StubRoutines::returns_to_call_stub(x)) {
return true;
}
if (CodeCache::contains(x)) {
return true;
}
if (Interpreter::contains(x)) {
return true;
}
return false;
}
#endif
#ifdef ASSERT
void frame::interpreter_frame_verify_monitor(BasicObjectLock* value) const {
assert(is_interpreted_frame(), "Not an interpreted frame");
// verify that the value is in the right part of the frame
address low_mark = (address) interpreter_frame_monitor_end();
address high_mark = (address) interpreter_frame_monitor_begin();
address current = (address) value;
const int monitor_size = frame::interpreter_frame_monitor_size();
guarantee((high_mark - current) % monitor_size == 0 , "Misaligned top of BasicObjectLock*");
guarantee( high_mark > current , "Current BasicObjectLock* higher than high_mark");
guarantee((current - low_mark) % monitor_size == 0 , "Misaligned bottom of BasicObjectLock*");
guarantee( current >= low_mark , "Current BasicObjectLock* below than low_mark");
}
#endif
//-----------------------------------------------------------------------------------
// StackFrameStream implementation
StackFrameStream::StackFrameStream(JavaThread *thread, bool update) : _reg_map(thread, update) {
assert(thread->has_last_Java_frame(), "sanity check");
_fr = thread->last_frame();
_is_done = false;
}