8054818: Refactor HeapRegionSeq to manage heap region and auxiliary data
Summary: Let HeapRegionSeq manage the heap region and auxiliary data to decrease the amount of responsibilities of G1CollectedHeap, and encapsulate this work from other code.
Reviewed-by: jwilhelm, jmasa, mgerdin, brutisso
/*
* Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGIONSEQ_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGIONSEQ_HPP
#include "gc_implementation/g1/g1BiasedArray.hpp"
#include "gc_implementation/g1/heapRegionSet.hpp"
class HeapRegion;
class HeapRegionClosure;
class FreeRegionList;
class G1HeapRegionTable : public G1BiasedMappedArray<HeapRegion*> {
protected:
virtual HeapRegion* default_value() const { return NULL; }
};
// This class keeps track of the region metadata (i.e., HeapRegion
// instances). They are kept in the _regions array in address
// order. A region's index in the array corresponds to its index in
// the heap (i.e., 0 is the region at the bottom of the heap, 1 is
// the one after it, etc.). Two regions that are consecutive in the
// array should also be adjacent in the address space (i.e.,
// region(i).end() == region(i+1).bottom().
//
// We create a HeapRegion when we commit the region's address space
// for the first time. When we uncommit the address space of a
// region we retain the HeapRegion to be able to re-use it in the
// future (in case we recommit it).
//
// We keep track of three lengths:
//
// * _committed_length (returned by length()) is the number of currently
// committed regions.
// * _allocated_length (not exposed outside this class) is the
// number of regions for which we have HeapRegions.
// * max_length() returns the maximum number of regions the heap can have.
//
// and maintain that: _committed_length <= _allocated_length <= max_length()
class HeapRegionSeq: public CHeapObj<mtGC> {
friend class VMStructs;
G1HeapRegionTable _regions;
ReservedSpace _reserved;
VirtualSpace _storage;
FreeRegionList _free_list;
// The number of regions committed in the heap.
uint _num_committed;
// Internal only. The highest heap region +1 we allocated a HeapRegion instance for.
uint _allocated_heapregions_length;
HeapWord* heap_bottom() const { return _regions.bottom_address_mapped(); }
HeapWord* heap_top() const { return heap_bottom() + _num_committed * HeapRegion::GrainWords; }
HeapWord* heap_end() const {return _regions.end_address_mapped(); }
void make_regions_available(uint index, uint num_regions = 1);
// Pass down commit calls to the VirtualSpace.
void commit_regions(uint index, size_t num_regions = 1);
void uncommit_regions(uint index, size_t num_regions = 1);
// Notify other data structures about change in the heap layout.
void update_committed_space(HeapWord* old_end, HeapWord* new_end);
// Calculate the starting region for each worker during parallel iteration so
// that they do not all start from the same region.
uint start_region_for_worker(uint worker_i, uint num_workers, uint num_regions) const;
// Finds the next sequence of unavailable regions starting from start_idx. Returns the
// length of the sequence found. If this result is zero, no such sequence could be found,
// otherwise res_idx indicates the start index of these regions.
uint find_unavailable_from_idx(uint start_idx, uint* res_idx) const;
// Finds the next sequence of empty regions starting from start_idx, going backwards in
// the heap. Returns the length of the sequence found. If this value is zero, no
// sequence could be found, otherwise res_idx contains the start index of this range.
uint find_empty_from_idx_reverse(uint start_idx, uint* res_idx) const;
#ifdef ASSERT
public:
bool is_free(HeapRegion* hr) const;
#endif
// Returns whether the given region is available for allocation.
bool is_available(uint region) const;
// Allocate a new HeapRegion for the given index.
HeapRegion* new_heap_region(uint hrs_index);
public:
// Empty constructor, we'll initialize it with the initialize() method.
HeapRegionSeq() : _regions(), _reserved(), _storage(), _num_committed(0),
_free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
_allocated_heapregions_length(0)
{ }
void initialize(ReservedSpace reserved);
// Return the "dummy" region used for G1AllocRegion. This is currently a hardwired
// new HeapRegion that owns HeapRegion at index 0. Since at the moment we commit
// the heap from the lowest address, this region (and its associated data
// structures) are available and we do not need to check further.
HeapRegion* get_dummy_region() { return new_heap_region(0); }
// Return the HeapRegion at the given index. Assume that the index
// is valid.
inline HeapRegion* at(uint index) const;
// If addr is within the committed space return its corresponding
// HeapRegion, otherwise return NULL.
inline HeapRegion* addr_to_region(HeapWord* addr) const;
// Insert the given region into the free region list.
inline void insert_into_free_list(HeapRegion* hr);
// Insert the given region list into the global free region list.
void insert_list_into_free_list(FreeRegionList* list) {
_free_list.add_ordered(list);
}
HeapRegion* allocate_free_region(bool is_old) {
HeapRegion* hr = _free_list.remove_region(is_old);
if (hr != NULL) {
assert(hr->next() == NULL, "Single region should not have next");
assert(is_available(hr->hrs_index()), "Must be committed");
}
return hr;
}
inline void allocate_free_regions_starting_at(uint first, uint num_regions);
// Remove all regions from the free list.
void remove_all_free_regions() {
_free_list.remove_all();
}
// Return the number of committed free regions in the heap.
uint num_free_regions() const {
return _free_list.length();
}
size_t total_capacity_bytes() const {
return num_free_regions() * HeapRegion::GrainBytes;
}
// Return the number of available (uncommitted) regions.
uint available() const { return max_length() - length(); }
// Return the number of regions that have been committed in the heap.
uint length() const { return _num_committed; }
// Return the maximum number of regions in the heap.
uint max_length() const { return (uint)_regions.length(); }
MemRegion committed() const { return MemRegion(heap_bottom(), heap_top()); }
MemRegion reserved() const { return MemRegion(heap_bottom(), heap_end()); }
// Expand the sequence to reflect that the heap has grown. Either create new
// HeapRegions, or re-use existing ones. Returns the number of regions the
// sequence was expanded by. If a HeapRegion allocation fails, the resulting
// number of regions might be smaller than what's desired.
uint expand_by(uint num_regions);
// Makes sure that the regions from start to start+num_regions-1 are available
// for allocation. Returns the number of regions that were committed to achieve
// this.
uint expand_at(uint start, uint num_regions);
// Find a contiguous set of empty or uncommitted regions of length num and return
// the index of the first region or G1_NO_HRS_INDEX if the search was unsuccessful.
// If only_empty is true, only empty regions are considered.
// Searches from bottom to top of the heap, doing a first-fit.
uint find_contiguous(size_t num, bool only_empty);
HeapRegion* next_region_in_heap(const HeapRegion* r) const;
// Apply blk->doHeapRegion() on all committed regions in address order,
// terminating the iteration early if doHeapRegion() returns true.
void iterate(HeapRegionClosure* blk) const;
void par_iterate(HeapRegionClosure* blk, uint worker_id, uint no_of_par_workers, jint claim_value) const;
// Uncommit up to num_regions_to_remove regions that are completely free.
// Return the actual number of uncommitted regions.
uint shrink_by(uint num_regions_to_remove);
void verify();
// Do some sanity checking.
void verify_optional() PRODUCT_RETURN;
};
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGIONSEQ_HPP