/*
* Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_PRIMS_METHODHANDLES_HPP
#define SHARE_VM_PRIMS_METHODHANDLES_HPP
#include "classfile/javaClasses.hpp"
#include "classfile/vmSymbols.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/globals.hpp"
#include "runtime/interfaceSupport.hpp"
class MacroAssembler;
class Label;
class MethodHandleEntry;
class MethodHandles: AllStatic {
// JVM support for MethodHandle, MethodType, and related types
// in java.lang.invoke and sun.invoke.
// See also javaClasses for layouts java_lang_invoke_Method{Handle,Type,Type::Form}.
public:
enum EntryKind {
_raise_exception, // stub for error generation from other stubs
_invokestatic_mh, // how a MH emulates invokestatic
_invokespecial_mh, // ditto for the other invokes...
_invokevirtual_mh,
_invokeinterface_mh,
_bound_ref_mh, // reference argument is bound
_bound_int_mh, // int argument is bound (via an Integer or Float)
_bound_long_mh, // long argument is bound (via a Long or Double)
_bound_ref_direct_mh, // same as above, with direct linkage to methodOop
_bound_int_direct_mh,
_bound_long_direct_mh,
_adapter_mh_first, // adapter sequence goes here...
_adapter_retype_only = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY,
_adapter_retype_raw = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW,
_adapter_check_cast = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST,
_adapter_prim_to_prim = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM,
_adapter_ref_to_prim = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM,
_adapter_prim_to_ref = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF,
_adapter_swap_args = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS,
_adapter_rot_args = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS,
_adapter_dup_args = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS,
_adapter_drop_args = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS,
_adapter_collect_args = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS,
_adapter_spread_args = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS,
_adapter_fold_args = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS,
_adapter_unused_13 = _adapter_mh_first + 13, //hole in the CONV_OP enumeration
_adapter_mh_last = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::CONV_OP_LIMIT - 1,
// Optimized adapter types
// argument list reordering
_adapter_opt_swap_1,
_adapter_opt_swap_2,
_adapter_opt_rot_1_up,
_adapter_opt_rot_1_down,
_adapter_opt_rot_2_up,
_adapter_opt_rot_2_down,
// primitive single to single:
_adapter_opt_i2i, // i2c, i2z, i2b, i2s
// primitive double to single:
_adapter_opt_l2i,
_adapter_opt_d2f,
// primitive single to double:
_adapter_opt_i2l,
_adapter_opt_f2d,
// conversion between floating point and integer type is handled by Java
// reference to primitive:
_adapter_opt_unboxi,
_adapter_opt_unboxl,
// %% Maybe tame the following with a VM_SYMBOLS_DO type macro?
// how a blocking adapter returns (platform-dependent)
_adapter_opt_return_ref,
_adapter_opt_return_int,
_adapter_opt_return_long,
_adapter_opt_return_float,
_adapter_opt_return_double,
_adapter_opt_return_void,
_adapter_opt_return_S0_ref, // return ref to S=0 (last slot)
_adapter_opt_return_S1_ref, // return ref to S=1 (2nd-to-last slot)
_adapter_opt_return_S2_ref,
_adapter_opt_return_S3_ref,
_adapter_opt_return_S4_ref,
_adapter_opt_return_S5_ref,
_adapter_opt_return_any, // dynamically select r/i/l/f/d
_adapter_opt_return_FIRST = _adapter_opt_return_ref,
_adapter_opt_return_LAST = _adapter_opt_return_any,
// spreading (array length cases 0, 1, ...)
_adapter_opt_spread_0, // spread empty array to N=0 arguments
_adapter_opt_spread_1_ref, // spread Object[] to N=1 argument
_adapter_opt_spread_2_ref, // spread Object[] to N=2 arguments
_adapter_opt_spread_3_ref, // spread Object[] to N=3 arguments
_adapter_opt_spread_4_ref, // spread Object[] to N=4 arguments
_adapter_opt_spread_5_ref, // spread Object[] to N=5 arguments
_adapter_opt_spread_ref, // spread Object[] to N arguments
_adapter_opt_spread_byte, // spread byte[] or boolean[] to N arguments
_adapter_opt_spread_char, // spread char[], etc., to N arguments
_adapter_opt_spread_short, // spread short[], etc., to N arguments
_adapter_opt_spread_int, // spread int[], short[], etc., to N arguments
_adapter_opt_spread_long, // spread long[] to N arguments
_adapter_opt_spread_float, // spread float[] to N arguments
_adapter_opt_spread_double, // spread double[] to N arguments
_adapter_opt_spread_FIRST = _adapter_opt_spread_0,
_adapter_opt_spread_LAST = _adapter_opt_spread_double,
// blocking filter/collect conversions
// These collect N arguments and replace them (at slot S) by a return value
// which is passed to the final target, along with the unaffected arguments.
// collect_{N}_{T} collects N arguments at any position into a T value
// collect_{N}_S{S}_{T} collects N arguments at slot S into a T value
// collect_{T} collects any number of arguments at any position
// filter_S{S}_{T} is the same as collect_1_S{S}_{T} (a unary collection)
// (collect_2 is also usable as a filter, with long or double arguments)
_adapter_opt_collect_ref, // combine N arguments, replace with a reference
_adapter_opt_collect_int, // combine N arguments, replace with an int, short, etc.
_adapter_opt_collect_long, // combine N arguments, replace with a long
_adapter_opt_collect_float, // combine N arguments, replace with a float
_adapter_opt_collect_double, // combine N arguments, replace with a double
_adapter_opt_collect_void, // combine N arguments, replace with nothing
// if there is a small fixed number to push, do so without a loop:
_adapter_opt_collect_0_ref, // collect N=0 arguments, insert a reference
_adapter_opt_collect_1_ref, // collect N=1 argument, replace with a reference
_adapter_opt_collect_2_ref, // combine N=2 arguments, replace with a reference
_adapter_opt_collect_3_ref, // combine N=3 arguments, replace with a reference
_adapter_opt_collect_4_ref, // combine N=4 arguments, replace with a reference
_adapter_opt_collect_5_ref, // combine N=5 arguments, replace with a reference
// filters are an important special case because they never move arguments:
_adapter_opt_filter_S0_ref, // filter N=1 argument at S=0, replace with a reference
_adapter_opt_filter_S1_ref, // filter N=1 argument at S=1, replace with a reference
_adapter_opt_filter_S2_ref, // filter N=1 argument at S=2, replace with a reference
_adapter_opt_filter_S3_ref, // filter N=1 argument at S=3, replace with a reference
_adapter_opt_filter_S4_ref, // filter N=1 argument at S=4, replace with a reference
_adapter_opt_filter_S5_ref, // filter N=1 argument at S=5, replace with a reference
// these move arguments, but they are important for boxing
_adapter_opt_collect_2_S0_ref, // combine last N=2 arguments, replace with a reference
_adapter_opt_collect_2_S1_ref, // combine N=2 arguments at S=1, replace with a reference
_adapter_opt_collect_2_S2_ref, // combine N=2 arguments at S=2, replace with a reference
_adapter_opt_collect_2_S3_ref, // combine N=2 arguments at S=3, replace with a reference
_adapter_opt_collect_2_S4_ref, // combine N=2 arguments at S=4, replace with a reference
_adapter_opt_collect_2_S5_ref, // combine N=2 arguments at S=5, replace with a reference
_adapter_opt_collect_FIRST = _adapter_opt_collect_ref,
_adapter_opt_collect_LAST = _adapter_opt_collect_2_S5_ref,
// blocking folding conversions
// these are like collects, but retain all the N arguments for the final target
//_adapter_opt_fold_0_ref, // same as _adapter_opt_collect_0_ref
// fold_{N}_{T} processes N arguments at any position into a T value, which it inserts
// fold_{T} processes any number of arguments at any position
_adapter_opt_fold_ref, // process N arguments, prepend a reference
_adapter_opt_fold_int, // process N arguments, prepend an int, short, etc.
_adapter_opt_fold_long, // process N arguments, prepend a long
_adapter_opt_fold_float, // process N arguments, prepend a float
_adapter_opt_fold_double, // process N arguments, prepend a double
_adapter_opt_fold_void, // process N arguments, but leave the list unchanged
_adapter_opt_fold_1_ref, // process N=1 argument, prepend a reference
_adapter_opt_fold_2_ref, // process N=2 arguments, prepend a reference
_adapter_opt_fold_3_ref, // process N=3 arguments, prepend a reference
_adapter_opt_fold_4_ref, // process N=4 arguments, prepend a reference
_adapter_opt_fold_5_ref, // process N=5 arguments, prepend a reference
_adapter_opt_fold_FIRST = _adapter_opt_fold_ref,
_adapter_opt_fold_LAST = _adapter_opt_fold_5_ref,
_EK_LIMIT,
_EK_FIRST = 0
};
public:
static bool enabled() { return _enabled; }
static void set_enabled(bool z);
private:
enum { // import java_lang_invoke_AdapterMethodHandle::CONV_OP_*
CONV_OP_LIMIT = java_lang_invoke_AdapterMethodHandle::CONV_OP_LIMIT,
CONV_OP_MASK = java_lang_invoke_AdapterMethodHandle::CONV_OP_MASK,
CONV_TYPE_MASK = java_lang_invoke_AdapterMethodHandle::CONV_TYPE_MASK,
CONV_VMINFO_MASK = java_lang_invoke_AdapterMethodHandle::CONV_VMINFO_MASK,
CONV_VMINFO_SHIFT = java_lang_invoke_AdapterMethodHandle::CONV_VMINFO_SHIFT,
CONV_OP_SHIFT = java_lang_invoke_AdapterMethodHandle::CONV_OP_SHIFT,
CONV_DEST_TYPE_SHIFT = java_lang_invoke_AdapterMethodHandle::CONV_DEST_TYPE_SHIFT,
CONV_SRC_TYPE_SHIFT = java_lang_invoke_AdapterMethodHandle::CONV_SRC_TYPE_SHIFT,
CONV_STACK_MOVE_SHIFT = java_lang_invoke_AdapterMethodHandle::CONV_STACK_MOVE_SHIFT,
CONV_STACK_MOVE_MASK = java_lang_invoke_AdapterMethodHandle::CONV_STACK_MOVE_MASK
};
static bool _enabled;
static MethodHandleEntry* _entries[_EK_LIMIT];
static const char* _entry_names[_EK_LIMIT+1];
static jobject _raise_exception_method;
static address _adapter_return_handlers[CONV_TYPE_MASK+1];
// Adapters.
static MethodHandlesAdapterBlob* _adapter_code;
static bool ek_valid(EntryKind ek) { return (uint)ek < (uint)_EK_LIMIT; }
static bool conv_op_valid(int op) { return (uint)op < (uint)CONV_OP_LIMIT; }
public:
static bool have_entry(EntryKind ek) { return ek_valid(ek) && _entries[ek] != NULL; }
static MethodHandleEntry* entry(EntryKind ek) { assert(ek_valid(ek), "initialized");
return _entries[ek]; }
static const char* entry_name(EntryKind ek) { assert(ek_valid(ek), "oob");
return _entry_names[ek]; }
static EntryKind adapter_entry_kind(int op) { assert(conv_op_valid(op), "oob");
return EntryKind(_adapter_mh_first + op); }
static void init_entry(EntryKind ek, MethodHandleEntry* me) {
assert(ek_valid(ek), "oob");
assert(_entries[ek] == NULL, "no double initialization");
_entries[ek] = me;
}
// Some adapter helper functions.
static EntryKind ek_original_kind(EntryKind ek) {
if (ek <= _adapter_mh_last) return ek;
switch (ek) {
case _adapter_opt_swap_1:
case _adapter_opt_swap_2:
return _adapter_swap_args;
case _adapter_opt_rot_1_up:
case _adapter_opt_rot_1_down:
case _adapter_opt_rot_2_up:
case _adapter_opt_rot_2_down:
return _adapter_rot_args;
case _adapter_opt_i2i:
case _adapter_opt_l2i:
case _adapter_opt_d2f:
case _adapter_opt_i2l:
case _adapter_opt_f2d:
return _adapter_prim_to_prim;
case _adapter_opt_unboxi:
case _adapter_opt_unboxl:
return _adapter_ref_to_prim;
}
if (ek >= _adapter_opt_spread_FIRST && ek <= _adapter_opt_spread_LAST)
return _adapter_spread_args;
if (ek >= _adapter_opt_collect_FIRST && ek <= _adapter_opt_collect_LAST)
return _adapter_collect_args;
if (ek >= _adapter_opt_fold_FIRST && ek <= _adapter_opt_fold_LAST)
return _adapter_fold_args;
if (ek >= _adapter_opt_return_FIRST && ek <= _adapter_opt_return_LAST)
return _adapter_opt_return_any;
assert(false, "oob");
return _EK_LIMIT;
}
static bool ek_supported(MethodHandles::EntryKind ek);
static BasicType ek_bound_mh_arg_type(EntryKind ek) {
switch (ek) {
case _bound_int_mh : // fall-thru
case _bound_int_direct_mh : return T_INT;
case _bound_long_mh : // fall-thru
case _bound_long_direct_mh : return T_LONG;
default : return T_OBJECT;
}
}
static int ek_adapter_opt_swap_slots(EntryKind ek) {
switch (ek) {
case _adapter_opt_swap_1 : return 1;
case _adapter_opt_swap_2 : return 2;
case _adapter_opt_rot_1_up : return 1;
case _adapter_opt_rot_1_down : return 1;
case _adapter_opt_rot_2_up : return 2;
case _adapter_opt_rot_2_down : return 2;
default : ShouldNotReachHere(); return -1;
}
}
static int ek_adapter_opt_swap_mode(EntryKind ek) {
switch (ek) {
case _adapter_opt_swap_1 : return 0;
case _adapter_opt_swap_2 : return 0;
case _adapter_opt_rot_1_up : return 1;
case _adapter_opt_rot_1_down : return -1;
case _adapter_opt_rot_2_up : return 1;
case _adapter_opt_rot_2_down : return -1;
default : ShouldNotReachHere(); return 0;
}
}
static int ek_adapter_opt_collect_count(EntryKind ek) {
assert(ek >= _adapter_opt_collect_FIRST && ek <= _adapter_opt_collect_LAST ||
ek >= _adapter_opt_fold_FIRST && ek <= _adapter_opt_fold_LAST, "");
switch (ek) {
case _adapter_opt_collect_0_ref : return 0;
case _adapter_opt_filter_S0_ref :
case _adapter_opt_filter_S1_ref :
case _adapter_opt_filter_S2_ref :
case _adapter_opt_filter_S3_ref :
case _adapter_opt_filter_S4_ref :
case _adapter_opt_filter_S5_ref :
case _adapter_opt_fold_1_ref :
case _adapter_opt_collect_1_ref : return 1;
case _adapter_opt_collect_2_S0_ref :
case _adapter_opt_collect_2_S1_ref :
case _adapter_opt_collect_2_S2_ref :
case _adapter_opt_collect_2_S3_ref :
case _adapter_opt_collect_2_S4_ref :
case _adapter_opt_collect_2_S5_ref :
case _adapter_opt_fold_2_ref :
case _adapter_opt_collect_2_ref : return 2;
case _adapter_opt_fold_3_ref :
case _adapter_opt_collect_3_ref : return 3;
case _adapter_opt_fold_4_ref :
case _adapter_opt_collect_4_ref : return 4;
case _adapter_opt_fold_5_ref :
case _adapter_opt_collect_5_ref : return 5;
default : return -1; // sentinel value for "variable"
}
}
static int ek_adapter_opt_collect_slot(EntryKind ek) {
assert(ek >= _adapter_opt_collect_FIRST && ek <= _adapter_opt_collect_LAST ||
ek >= _adapter_opt_fold_FIRST && ek <= _adapter_opt_fold_LAST, "");
switch (ek) {
case _adapter_opt_collect_2_S0_ref :
case _adapter_opt_filter_S0_ref : return 0;
case _adapter_opt_collect_2_S1_ref :
case _adapter_opt_filter_S1_ref : return 1;
case _adapter_opt_collect_2_S2_ref :
case _adapter_opt_filter_S2_ref : return 2;
case _adapter_opt_collect_2_S3_ref :
case _adapter_opt_filter_S3_ref : return 3;
case _adapter_opt_collect_2_S4_ref :
case _adapter_opt_filter_S4_ref : return 4;
case _adapter_opt_collect_2_S5_ref :
case _adapter_opt_filter_S5_ref : return 5;
default : return -1; // sentinel value for "variable"
}
}
static BasicType ek_adapter_opt_collect_type(EntryKind ek) {
assert(ek >= _adapter_opt_collect_FIRST && ek <= _adapter_opt_collect_LAST ||
ek >= _adapter_opt_fold_FIRST && ek <= _adapter_opt_fold_LAST, "");
switch (ek) {
case _adapter_opt_fold_int :
case _adapter_opt_collect_int : return T_INT;
case _adapter_opt_fold_long :
case _adapter_opt_collect_long : return T_LONG;
case _adapter_opt_fold_float :
case _adapter_opt_collect_float : return T_FLOAT;
case _adapter_opt_fold_double :
case _adapter_opt_collect_double : return T_DOUBLE;
case _adapter_opt_fold_void :
case _adapter_opt_collect_void : return T_VOID;
default : return T_OBJECT;
}
}
static int ek_adapter_opt_return_slot(EntryKind ek) {
assert(ek >= _adapter_opt_return_FIRST && ek <= _adapter_opt_return_LAST, "");
switch (ek) {
case _adapter_opt_return_S0_ref : return 0;
case _adapter_opt_return_S1_ref : return 1;
case _adapter_opt_return_S2_ref : return 2;
case _adapter_opt_return_S3_ref : return 3;
case _adapter_opt_return_S4_ref : return 4;
case _adapter_opt_return_S5_ref : return 5;
default : return -1; // sentinel value for "variable"
}
}
static BasicType ek_adapter_opt_return_type(EntryKind ek) {
assert(ek >= _adapter_opt_return_FIRST && ek <= _adapter_opt_return_LAST, "");
switch (ek) {
case _adapter_opt_return_int : return T_INT;
case _adapter_opt_return_long : return T_LONG;
case _adapter_opt_return_float : return T_FLOAT;
case _adapter_opt_return_double : return T_DOUBLE;
case _adapter_opt_return_void : return T_VOID;
case _adapter_opt_return_any : return T_CONFLICT; // sentinel value for "variable"
default : return T_OBJECT;
}
}
static int ek_adapter_opt_spread_count(EntryKind ek) {
assert(ek >= _adapter_opt_spread_FIRST && ek <= _adapter_opt_spread_LAST, "");
switch (ek) {
case _adapter_opt_spread_0 : return 0;
case _adapter_opt_spread_1_ref : return 1;
case _adapter_opt_spread_2_ref : return 2;
case _adapter_opt_spread_3_ref : return 3;
case _adapter_opt_spread_4_ref : return 4;
case _adapter_opt_spread_5_ref : return 5;
default : return -1; // sentinel value for "variable"
}
}
static BasicType ek_adapter_opt_spread_type(EntryKind ek) {
assert(ek >= _adapter_opt_spread_FIRST && ek <= _adapter_opt_spread_LAST, "");
switch (ek) {
// (there is no _adapter_opt_spread_boolean; we use byte)
case _adapter_opt_spread_byte : return T_BYTE;
case _adapter_opt_spread_char : return T_CHAR;
case _adapter_opt_spread_short : return T_SHORT;
case _adapter_opt_spread_int : return T_INT;
case _adapter_opt_spread_long : return T_LONG;
case _adapter_opt_spread_float : return T_FLOAT;
case _adapter_opt_spread_double : return T_DOUBLE;
default : return T_OBJECT;
}
}
static methodOop raise_exception_method() {
oop rem = JNIHandles::resolve(_raise_exception_method);
assert(rem == NULL || rem->is_method(), "");
return (methodOop) rem;
}
static void set_raise_exception_method(methodOop rem) {
assert(_raise_exception_method == NULL, "");
_raise_exception_method = JNIHandles::make_global(Handle(rem));
}
static methodOop resolve_raise_exception_method(TRAPS);
// call raise_exception_method from C code:
static void raise_exception(int code, oop actual, oop required, TRAPS);
static jint adapter_conversion(int conv_op, BasicType src, BasicType dest,
int stack_move = 0, int vminfo = 0) {
assert(conv_op_valid(conv_op), "oob");
jint conv = ((conv_op << CONV_OP_SHIFT)
| (src << CONV_SRC_TYPE_SHIFT)
| (dest << CONV_DEST_TYPE_SHIFT)
| (stack_move << CONV_STACK_MOVE_SHIFT)
| (vminfo << CONV_VMINFO_SHIFT)
);
assert(adapter_conversion_op(conv) == conv_op, "decode conv_op");
assert(adapter_conversion_src_type(conv) == src, "decode src");
assert(adapter_conversion_dest_type(conv) == dest, "decode dest");
assert(adapter_conversion_stack_move(conv) == stack_move, "decode stack_move");
assert(adapter_conversion_vminfo(conv) == vminfo, "decode vminfo");
return conv;
}
static int adapter_conversion_op(jint conv) {
return ((conv >> CONV_OP_SHIFT) & 0xF);
}
static BasicType adapter_conversion_src_type(jint conv) {
return (BasicType)((conv >> CONV_SRC_TYPE_SHIFT) & 0xF);
}
static BasicType adapter_conversion_dest_type(jint conv) {
return (BasicType)((conv >> CONV_DEST_TYPE_SHIFT) & 0xF);
}
static int adapter_conversion_stack_move(jint conv) {
return (conv >> CONV_STACK_MOVE_SHIFT);
}
static int adapter_conversion_vminfo(jint conv) {
return (conv >> CONV_VMINFO_SHIFT) & CONV_VMINFO_MASK;
}
// Bit mask of conversion_op values. May vary by platform.
static int adapter_conversion_ops_supported_mask();
static bool conv_op_supported(int conv_op) {
assert(conv_op_valid(conv_op), "");
return ((adapter_conversion_ops_supported_mask() & nth_bit(conv_op)) != 0);
}
// Offset in words that the interpreter stack pointer moves when an argument is pushed.
// The stack_move value must always be a multiple of this.
static int stack_move_unit() {
return frame::interpreter_frame_expression_stack_direction() * Interpreter::stackElementWords;
}
// Adapter frame traversal. (Implementation-specific.)
static frame ricochet_frame_sender(const frame& fr, RegisterMap* reg_map);
static void ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map);
enum { CONV_VMINFO_SIGN_FLAG = 0x80 };
// Shift values for prim-to-prim conversions.
static int adapter_prim_to_prim_subword_vminfo(BasicType dest) {
if (dest == T_BOOLEAN) return (BitsPerInt - 1); // boolean is 1 bit
if (dest == T_CHAR) return (BitsPerInt - BitsPerShort);
if (dest == T_BYTE) return (BitsPerInt - BitsPerByte ) | CONV_VMINFO_SIGN_FLAG;
if (dest == T_SHORT) return (BitsPerInt - BitsPerShort) | CONV_VMINFO_SIGN_FLAG;
return 0; // case T_INT
}
// Shift values for unboxing a primitive.
static int adapter_unbox_subword_vminfo(BasicType dest) {
if (dest == T_BOOLEAN) return (BitsPerInt - BitsPerByte ); // implemented as 1 byte
if (dest == T_CHAR) return (BitsPerInt - BitsPerShort);
if (dest == T_BYTE) return (BitsPerInt - BitsPerByte ) | CONV_VMINFO_SIGN_FLAG;
if (dest == T_SHORT) return (BitsPerInt - BitsPerShort) | CONV_VMINFO_SIGN_FLAG;
return 0; // case T_INT
}
// Here is the transformation the i2i adapter must perform:
static int truncate_subword_from_vminfo(jint value, int vminfo) {
jint tem = value << vminfo;
if ((vminfo & CONV_VMINFO_SIGN_FLAG) != 0) {
return (jint)tem >> vminfo;
} else {
return (juint)tem >> vminfo;
}
}
static inline address from_compiled_entry(EntryKind ek);
static inline address from_interpreted_entry(EntryKind ek);
// helpers for decode_method.
static methodOop decode_methodOop(methodOop m, int& decode_flags_result);
static methodHandle decode_vmtarget(oop vmtarget, int vmindex, oop mtype, KlassHandle& receiver_limit_result, int& decode_flags_result);
static methodHandle decode_MemberName(oop mname, KlassHandle& receiver_limit_result, int& decode_flags_result);
static methodHandle decode_MethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result);
static methodHandle decode_DirectMethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result);
static methodHandle decode_BoundMethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result);
static methodHandle decode_AdapterMethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result);
// Find out how many stack slots an mh pushes or pops.
// The result is *not* reported as a multiple of stack_move_unit();
// It is a signed net number of pushes (a difference in vmslots).
// To compare with a stack_move value, first multiply by stack_move_unit().
static int decode_MethodHandle_stack_pushes(oop mh);
public:
// working with member names
static void resolve_MemberName(Handle mname, TRAPS); // compute vmtarget/vmindex from name/type
static void expand_MemberName(Handle mname, int suppress, TRAPS); // expand defc/name/type if missing
static Handle new_MemberName(TRAPS); // must be followed by init_MemberName
static void init_MemberName(oop mname_oop, oop target); // compute vmtarget/vmindex from target
static void init_MemberName(oop mname_oop, methodOop m, bool do_dispatch = true);
static void init_MemberName(oop mname_oop, klassOop field_holder, AccessFlags mods, int offset);
static int find_MemberNames(klassOop k, Symbol* name, Symbol* sig,
int mflags, klassOop caller,
int skip, objArrayOop results);
// bit values for suppress argument to expand_MemberName:
enum { _suppress_defc = 1, _suppress_name = 2, _suppress_type = 4 };
// Generate MethodHandles adapters.
static void generate_adapters();
// Called from InterpreterGenerator and MethodHandlesAdapterGenerator.
static address generate_method_handle_interpreter_entry(MacroAssembler* _masm);
static void generate_method_handle_stub(MacroAssembler* _masm, EntryKind ek);
// argument list parsing
static int argument_slot(oop method_type, int arg);
static int argument_slot_count(oop method_type) { return argument_slot(method_type, -1); }
static int argument_slot_to_argnum(oop method_type, int argslot);
// Runtime support
enum { // bit-encoded flags from decode_method or decode_vmref
_dmf_has_receiver = 0x01, // target method has leading reference argument
_dmf_does_dispatch = 0x02, // method handle performs virtual or interface dispatch
_dmf_from_interface = 0x04, // peforms interface dispatch
_DMF_DIRECT_MASK = (_dmf_from_interface*2 - _dmf_has_receiver),
_dmf_binds_method = 0x08,
_dmf_binds_argument = 0x10,
_DMF_BOUND_MASK = (_dmf_binds_argument*2 - _dmf_binds_method),
_dmf_adapter_lsb = 0x20,
_DMF_ADAPTER_MASK = (_dmf_adapter_lsb << CONV_OP_LIMIT) - _dmf_adapter_lsb
};
static methodHandle decode_method(oop x, KlassHandle& receiver_limit_result, int& decode_flags_result);
enum {
// format of query to getConstant:
GC_JVM_PUSH_LIMIT = 0,
GC_JVM_STACK_MOVE_UNIT = 1,
GC_CONV_OP_IMPLEMENTED_MASK = 2,
// format of result from getTarget / encode_target:
ETF_HANDLE_OR_METHOD_NAME = 0, // all available data (immediate MH or method)
ETF_DIRECT_HANDLE = 1, // ultimate method handle (will be a DMH, may be self)
ETF_METHOD_NAME = 2, // ultimate method as MemberName
ETF_REFLECT_METHOD = 3 // ultimate method as java.lang.reflect object (sans refClass)
};
static int get_named_constant(int which, Handle name_box, TRAPS);
static oop encode_target(Handle mh, int format, TRAPS); // report vmtarget (to Java code)
static bool class_cast_needed(klassOop src, klassOop dst);
static instanceKlassHandle resolve_instance_klass(oop java_mirror_oop, TRAPS);
static instanceKlassHandle resolve_instance_klass(jclass java_mirror_jh, TRAPS) {
return resolve_instance_klass(JNIHandles::resolve(java_mirror_jh), THREAD);
}
private:
// These checkers operate on a pair of whole MethodTypes:
static const char* check_method_type_change(oop src_mtype, int src_beg, int src_end,
int insert_argnum, oop insert_type,
int change_argnum, oop change_type,
int delete_argnum,
oop dst_mtype, int dst_beg, int dst_end,
bool raw = false);
static const char* check_method_type_insertion(oop src_mtype,
int insert_argnum, oop insert_type,
oop dst_mtype) {
oop no_ref = NULL;
return check_method_type_change(src_mtype, 0, -1,
insert_argnum, insert_type,
-1, no_ref, -1, dst_mtype, 0, -1);
}
static const char* check_method_type_conversion(oop src_mtype,
int change_argnum, oop change_type,
oop dst_mtype) {
oop no_ref = NULL;
return check_method_type_change(src_mtype, 0, -1, -1, no_ref,
change_argnum, change_type,
-1, dst_mtype, 0, -1);
}
static const char* check_method_type_passthrough(oop src_mtype, oop dst_mtype, bool raw) {
oop no_ref = NULL;
return check_method_type_change(src_mtype, 0, -1,
-1, no_ref, -1, no_ref, -1,
dst_mtype, 0, -1, raw);
}
// These checkers operate on pairs of argument or return types:
static const char* check_argument_type_change(BasicType src_type, klassOop src_klass,
BasicType dst_type, klassOop dst_klass,
int argnum, bool raw = false);
static const char* check_argument_type_change(oop src_type, oop dst_type,
int argnum, bool raw = false) {
klassOop src_klass = NULL, dst_klass = NULL;
BasicType src_bt = java_lang_Class::as_BasicType(src_type, &src_klass);
BasicType dst_bt = java_lang_Class::as_BasicType(dst_type, &dst_klass);
return check_argument_type_change(src_bt, src_klass,
dst_bt, dst_klass, argnum, raw);
}
static const char* check_return_type_change(oop src_type, oop dst_type, bool raw = false) {
return check_argument_type_change(src_type, dst_type, -1, raw);
}
static const char* check_return_type_change(BasicType src_type, klassOop src_klass,
BasicType dst_type, klassOop dst_klass) {
return check_argument_type_change(src_type, src_klass, dst_type, dst_klass, -1);
}
static const char* check_method_receiver(methodOop m, klassOop passed_recv_type);
// These verifiers can block, and will throw an error if the checking fails:
static void verify_vmslots(Handle mh, TRAPS);
static void verify_vmargslot(Handle mh, int argnum, int argslot, TRAPS);
static void verify_method_type(methodHandle m, Handle mtype,
bool has_bound_oop,
KlassHandle bound_oop_type,
TRAPS);
static void verify_method_signature(methodHandle m, Handle mtype,
int first_ptype_pos,
KlassHandle insert_ptype, TRAPS);
static void verify_DirectMethodHandle(Handle mh, methodHandle m, TRAPS);
static void verify_BoundMethodHandle(Handle mh, Handle target, int argnum,
bool direct_to_method, TRAPS);
static void verify_BoundMethodHandle_with_receiver(Handle mh, methodHandle m, TRAPS);
static void verify_AdapterMethodHandle(Handle mh, int argnum, TRAPS);
public:
// Fill in the fields of a DirectMethodHandle mh. (MH.type must be pre-filled.)
static void init_DirectMethodHandle(Handle mh, methodHandle method, bool do_dispatch, TRAPS);
// Fill in the fields of a BoundMethodHandle mh. (MH.type, BMH.argument must be pre-filled.)
static void init_BoundMethodHandle(Handle mh, Handle target, int argnum, TRAPS);
static void init_BoundMethodHandle_with_receiver(Handle mh,
methodHandle original_m,
KlassHandle receiver_limit,
int decode_flags,
TRAPS);
// Fill in the fields of an AdapterMethodHandle mh. (MH.type must be pre-filled.)
static void init_AdapterMethodHandle(Handle mh, Handle target, int argnum, TRAPS);
static void ensure_vmlayout_field(Handle target, TRAPS);
#ifdef ASSERT
static bool spot_check_entry_names();
#endif
private:
static methodHandle dispatch_decoded_method(methodHandle m,
KlassHandle receiver_limit,
int decode_flags,
KlassHandle receiver_klass,
TRAPS);
public:
static bool is_float_fixed_reinterpretation_cast(BasicType src, BasicType dst);
static bool same_basic_type_for_arguments(BasicType src, BasicType dst,
bool raw = false,
bool for_return = false);
static bool same_basic_type_for_returns(BasicType src, BasicType dst, bool raw = false) {
return same_basic_type_for_arguments(src, dst, raw, true);
}
static Symbol* convert_to_signature(oop type_str, bool polymorphic, TRAPS);
#ifdef TARGET_ARCH_x86
# include "methodHandles_x86.hpp"
#endif
#ifdef TARGET_ARCH_sparc
# include "methodHandles_sparc.hpp"
#endif
#ifdef TARGET_ARCH_zero
# include "methodHandles_zero.hpp"
#endif
#ifdef TARGET_ARCH_arm
# include "methodHandles_arm.hpp"
#endif
#ifdef TARGET_ARCH_ppc
# include "methodHandles_ppc.hpp"
#endif
#ifdef TARGET_ARCH_NYI_6939861
// Here are some backward compatible declarations until the 6939861 ports are updated.
#define _adapter_flyby (_EK_LIMIT + 10)
#define _adapter_ricochet (_EK_LIMIT + 11)
#define _adapter_opt_spread_1 _adapter_opt_spread_1_ref
#define _adapter_opt_spread_more _adapter_opt_spread_ref
enum {
_INSERT_NO_MASK = -1,
_INSERT_REF_MASK = 0,
_INSERT_INT_MASK = 1,
_INSERT_LONG_MASK = 3
};
static void get_ek_bound_mh_info(EntryKind ek, BasicType& arg_type, int& arg_mask, int& arg_slots) {
arg_type = ek_bound_mh_arg_type(ek);
arg_mask = 0;
arg_slots = type2size[arg_type];;
}
static void get_ek_adapter_opt_swap_rot_info(EntryKind ek, int& swap_bytes, int& rotate) {
int swap_slots = ek_adapter_opt_swap_slots(ek);
rotate = ek_adapter_opt_swap_mode(ek);
swap_bytes = swap_slots * Interpreter::stackElementSize;
}
static int get_ek_adapter_opt_spread_info(EntryKind ek) {
return ek_adapter_opt_spread_count(ek);
}
static void insert_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
int arg_mask,
Register argslot_reg,
Register temp_reg, Register temp2_reg, Register temp3_reg = noreg);
static void remove_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register argslot_reg,
Register temp_reg, Register temp2_reg, Register temp3_reg = noreg);
static void trace_method_handle(MacroAssembler* _masm, const char* adaptername) PRODUCT_RETURN;
#endif //TARGET_ARCH_NYI_6939861
};
// Access methods for the "entry" field of a java.lang.invoke.MethodHandle.
// The field is primarily a jump target for compiled calls.
// However, we squirrel away some nice pointers for other uses,
// just before the jump target.
// Aspects of a method handle entry:
// - from_compiled_entry - stub used when compiled code calls the MH
// - from_interpreted_entry - stub used when the interpreter calls the MH
// - type_checking_entry - stub for runtime casting between MHForm siblings (NYI)
class MethodHandleEntry {
public:
class Data {
friend class MethodHandleEntry;
size_t _total_size; // size including Data and code stub
MethodHandleEntry* _type_checking_entry;
address _from_interpreted_entry;
MethodHandleEntry* method_entry() { return (MethodHandleEntry*)(this + 1); }
};
Data* data() { return (Data*)this - 1; }
address start_address() { return (address) data(); }
address end_address() { return start_address() + data()->_total_size; }
address from_compiled_entry() { return (address) this; }
address from_interpreted_entry() { return data()->_from_interpreted_entry; }
void set_from_interpreted_entry(address e) { data()->_from_interpreted_entry = e; }
MethodHandleEntry* type_checking_entry() { return data()->_type_checking_entry; }
void set_type_checking_entry(MethodHandleEntry* e) { data()->_type_checking_entry = e; }
void set_end_address(address end_addr) {
size_t total_size = end_addr - start_address();
assert(total_size > 0 && total_size < 0x1000, "reasonable end address");
data()->_total_size = total_size;
}
// Compiler support:
static int from_interpreted_entry_offset_in_bytes() {
return (int)( offset_of(Data, _from_interpreted_entry) - sizeof(Data) );
}
static int type_checking_entry_offset_in_bytes() {
return (int)( offset_of(Data, _from_interpreted_entry) - sizeof(Data) );
}
static address start_compiled_entry(MacroAssembler* _masm,
address interpreted_entry = NULL);
static MethodHandleEntry* finish_compiled_entry(MacroAssembler* masm, address start_addr);
};
address MethodHandles::from_compiled_entry(EntryKind ek) { return entry(ek)->from_compiled_entry(); }
address MethodHandles::from_interpreted_entry(EntryKind ek) { return entry(ek)->from_interpreted_entry(); }
//------------------------------------------------------------------------------
// MethodHandlesAdapterGenerator
//
class MethodHandlesAdapterGenerator : public StubCodeGenerator {
public:
MethodHandlesAdapterGenerator(CodeBuffer* code) : StubCodeGenerator(code) {}
void generate();
};
#endif // SHARE_VM_PRIMS_METHODHANDLES_HPP